• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    2015-10-11 06:11:32XiaHuaGangZhangJiaweiYangandZhengyuanLi
    ZTE Communications 2015年3期

    Xia Hua,Gang Zhang,Jiawei Yang,and Zhengyuan Li

    (1.Gansu Electric Power Research Institute,State Grid Gansu Electric Power Company,Lanzhou 730050,China;2.Institute of Water Resources and Hydro-Electric Engineering,Xi'an University of Technology Xi'an 710048,China;3.College of International Communications,China Three Gorges University,Yichang 443000,China)

    Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting

    Xia Hua1,Gang Zhang2,Jiawei Yang3,and Zhengyuan Li1

    (1.Gansu Electric Power Research Institute,State Grid Gansu Electric Power Company,Lanzhou 730050,China;2.Institute of Water Resources and Hydro-Electric Engineering,Xi'an University of Technology Xi'an 710048,China;3.College of International Communications,China Three Gorges University,Yichang 443000,China)

    Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods,a back-propagation artificial neural network(BP-ANN)based method for short-term load forecasting is presented in this paper.The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data.Then the short-term load forecasting model of Shanxi Power Grid(China)based on BP-ANN method and correlation analysis is established.The simulation model matches well with practical power system load,indicating the BP-ANN method is simple and with higher precision and practicality.

    BP-ANN;short-term load forecasting of power grid;multiscale entropy;correlation analysis

    1 Introduction

    T he short-term load forecasting is an important component of the power system generation projects,which supports the economic and stable power system operation[1].Increasing the forecasting precision of power grid load has been a major concern all over the world.Recently,many short-term load forecasting methods have been studied,such as regression analysis method[2],exponential smoothing model[3],random time series model,grey forecasting model,support vector machine and its improved model[4]-[6],neural network and its improved model and combination forecasting model[7],[8].Most of these methods can be divided into two types according to the utilized data,one takes the weather factors into account,while the other does not involve weather data.The two types both have advantages and apply to different situations.The type without weather impact mainly uses historical data,which has easy model and calculation,but the precision is relatively low.The other type includes weather and many impact factors,but most of these impact factors are predictive data,which introduce bigger errors in load forecasting model,not to mention that some weather factors are difficult to obtain.Therefore,it is significant to find a precise load forecasting method with few impact factors.

    In this paper a back-propagation artificial neural network(BP-ANN)based load forecasting method is presented,to balance the problem of precision and impact factors.Firstly we pick historical load data and employ multiscale entropy analysis.Then we build the BP-ANN load forecasting model based on the screened historical data.The load forecasting model is applied to practical load prediction and compares with two literature forecasting methods,in order to verify its superiority and high precision.

    2 BP-ANN Basic Principles

    BP network is one of the most commonly used neural network modes,which owns several advantages:1)has simple structures and operability;2)can realize any complicated nonlinear mapping since basically it is nonlinear mapping from input to output;3)has self-study ability for further improvement and development.Based on these advantages of BP network,we employ the 3-layer BP network to dynamically evaluate the Muskingum model parameters.Fig.1 gives out the topological structure of the 3-layer BP network.We divide the 3-layer BP network into input layer,hidden layer and output layer,the point numbers of each layer are n,p,m,respectively.Wij(i=1,2,...,n;j=1,2,...,p)represents the weight between the input layer and hidden layer,while Vij(i=1,2,...,p;j=1,2,...,m)represents the weight between the hidden layer and output layer.The threshold values of the hidden and output layers areθi(i=1,2,...,p)andμi(i=1,2,...,m),respectively. The self-study processes of the BP network have been thoroughly discussed in literatures[1].

    ▲Figure 1.The structure of BP-ANN.

    According to the basic principles of BP-ANN method,the precondition of BP network forecasting is determining the input and hidden layers.As for the power load forecasting,i.e.,use historical data to forecast the load of a future moment,the input layer plays the key role,since yet there is few effective method to determine the hidden layer parameters.

    3 Multiscale Entropy of Load Data

    3.1 Basic Principles of Multiscale Entropy

    The entropy has been widely used to characterize the complexity of information,and is the measurement of the system randomness.The Kolmogorov-Sinai(KS)entropy can characterize the complexity of the signals by calculating the average generation rate of new information.The approximate entropy(Ap-En)originates from KS entropy,and applies well in the complexity analysis of short-term time series.The sample entropy(sampEn)is the further modification of the ApEn.

    3.1.1 Sample Entropy

    The similar data comparison of the ApEn calculation contains the comparison with its own data part,which causes result errors.The sampEn is the precise value of the average natural logarithm of conditional probability,and avoids the comparison with its own data.Thus the sampEn calculation does not depend on the data length,showing better consistence than ApEn.

    Set the initial time series as x(1),x(2),...,x(N),the sampEn of the series is calculated as follows:

    1)Construct a m-dimension vector X(i)=[x(i),x(i+1),...,x(i+ m-1)],i=1,2,...,N-m+1;

    2)Define the distance between X(i)and X(j)as d[X(i),X(j)]= max[|x(i+k)-x(j+k)|],k=0,1,...,m-1;

    3)Give the number of threshold values r and obtain the ratio Cim(r)=[the number of all d[X(i),X(j)]<r]/(N-m),i=1,2,...,N-m+1;

    4)Calculate the average value of Cim(r)for all i,Cm(r)=Cim(r)/(N-m+1),i=1,2,...,N-m+1;

    5)Add the dimension to m+1,then repeat processes 1-4 to get Cm+1(r);

    6)SampEn of this series sampEn(m,r,N)=-ln Cim(r)/Cim(r).

    Apparently the values of m,r are very important to the sampEn results.Generally we choose m=2,r=0.1-0.2 SD,where SD is the standard deviation of the initial data x(i),i=1,2,…,N,and the series length N is required to be larger than 1000.

    3.1.2 Multiscale Entropy

    The parameters of ApEn,sampEn are determined by the system step finite difference(Hn+1-Hn),which is based on the single scale analysis and does not contain the system characters of high scale>1.The multiscale entropy analysis is calculated as following processes,in whichτis the scale index,whenτ= 1 the time series yj(τ)is the initial time series.

    Set the initial data as{x(1),x(2),...,x(N)},now we construct the coarse-graining series{y(τ)}:

    1)yj(τ)=x(i)/τ,i=(j-1)(τ+1),...,jτ,j=1,2,...,N/τ.The length of each time series equals the ratio of the initial time series length to scale indexτ.

    2)Calculate the sampEn of the coarse-grained series for differentτ.

    3.2 Load Analysis by Multiscale Entropy

    Researchers generally use the adjacent data points before the predictive data point as the input data in the BP-ANN model for load forecasting[9],[10],because it is usually believed that the predictive points only relate to the changing trend of recent and adjacent data.In this paper we calculate the correlation coefficients of predictive points and adjacent points,which are illustrated in Fig.2 All data come from the daily load of Shanxi Grid in 2004.

    Fig.2.shows the changing trend of the predictive points and 4 adjacent points.The p(t)represents the predictive load point value,and p(t-1)represents the previous load point value before the predictive load point,and so on.Clearly,it is found that the correlation coefficients between predictive points and adjacent points gradually descend.

    ▲Figure 2.Correlation coefficient of calculating point and adjacent point.

    Then we utilize the multiscale entropy to evaluate the calcu-lation error introduced by adjacent data points in BP-ANN model.We pick the daily load data of Shanxi Grid(from 2003.1.1 to 2009.12.31)as the database,and calculate the entropy of load data through the above method in chapter 2.1,with parameters m=3,r=0.1 SD.The calculating results are demonstrated in Fig.3.The entropy of load data decreases with the increment of scale index.Note that the entropy changes rapidly between scale 1 and scale 2,indicating that adjacent points introduce strong chaos.Combining with Fig.2,it is clear that adjacent data points definitely affect the forecasting precision in BP-ANN load forecasting model.As a result,the forecasting model should be established based on nonadjacent data points to increase precision.

    4 Building BP-ANN Model for Short-Term Load Forecasting

    Start from the correlation coefficients discussed above,we set up the BP-ANN model for short-term load forecasting.Firstly we pick the most relevant load data series with the predictive data series,as the input of the BP-ANN model.The correlation coefficients between the predictive point p(t)and historical data is illustrated in Fig.4.We find that the predictive load point p(t)not only shows strong correlation with the adjacent two load points p(t-1)and p(t-2),also periodically correlates to long-term historical data.Thus these periodically correlated historical data can also be used to build the forecasting model as well.We choose 8 historical data points with the strongest correlation with p(t)in Fig.4 as the input of neural network.The parameter of hidden layer is 4,and the output is the predictive load data p(t)of next hour.As a result,we build the 8-4-1 BP-ANN load forecasting model,which is schematically shown in Fig.5.

    ▲Figure 3.Entropy of load data under different scale.

    ▲Figure 4.Correlation coefficient of prediction set and history set.

    5 Application Examples of Shanxi Grid

    Shanxi Grid mainly serves Shanxi Province and includes both hydropower and thermal power.The short-term load forecasting is of great significance for Shanxi Grid,which directly determines the operation mode of hydropower and thermal power.In this paper we use 24 short-term load data points from the year of 2003 to 2008 as the database,and employ the presented BP-ANN model for prediction.The results are verified with the load data of 2009.Also,we use the methods of literatures[10],(named as Method 1 and Method 2,respectively)to obtain predictive results,and compare the results of three methods through mean absolute error,error quadratic sum,and average relative error.The results are shown in Table 1.The result of the presented BP-ANN method in this paper has the lowest errors for all three evaluation index,which indicates its superiority and high precision.

    The presented BP-ANN method applies well to the shortterm load forecasting of Shanxi Grid for its operability and stability.We predict one day load of Shanxi Grid in 2009 through the BP-ANN method,and give out the result in Fig.6.We find that the predictive load data is in good accordance with the observed load data.The highly matched results imply that the simple presented BP-ANN method is with high precision and practical for short-term load forecasting in Shanxi Grid.This method opens another simple and accurate way to forecast short -term grid load,which owns great prospects for its feasibilityand precision.

    ▲Figure 5.BP-ANN model for load prediction.

    ▼Table 1.Comparison of 3 prediction methods

    ▲Figure 6.Load prediction result of 2009.

    6 Conclusion

    This paper presents a simple and accurate BP-ANN method for the short-term load forecasting.We use the multiscale entropy to analyze the load data.The BP-ANN model using adjacent data points greatly affect forecasting precision.And the predictive load data not only shows strong correlation with the adjacent load data,also with periodic long-term data points. Therefore,we employ adjacent data correlation method to screen the input layer parameters of BP-ANN model,and establish the short-term load forecasting BP-ANN method.We apply the model and method to the short-term load forecasting of Shanxi Grid,and compare it with other two forecasting methods in previous literatures.The predictive results of the presented BP-ANN method owns the lowest average relative error 0.11%among three methods,and matches very well with the observed load data,which indicates the extremely high precision.Thus this method serves as a simple and feasible approach to realize precise short-term grid load forecasting.

    [1]I.Drezga and S.Rahman,“Short-term load forecasting with local ANN predictors,”IEEE Transaction Power System,vol.14,no.3,pp.844-850,2002.doi: 10.1109/59.780894.

    [2]CH Hsien,“Grey neural network and its application to short term load forecasting problem,”IEICE Transaction Information System,no.3,pp.897-902,2002.

    [3]X.Yao,M.Fischer,and G.Brown,“Neural network ensembles and their application to traffic flow rediction in telecommunications networks,”International Joint Conference on Neural Networks,Washington,USA,2001,pp.693-698.

    [4]L.C.Ying and M.C.Pan,“Using adaptive network based fuzzy inference system to forecast regional electricity loads,”Energy Conversion and Management,vol. 49,no.2,pp.205-211,2008.

    [5]P.J.Santos,A.G.Martins,and A.J.Pires,“Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems,”Electrical Power and Energy Systems,vol.29,no.4,pp.338-347,2007.

    [6]S.M.Pincus,“Approximate entropy as a measure of system complexity,”Proceedings of the National Academy of Sciences,vol.1,no.8,pp.2297-2301,1991.[7]S.M.Pincus,“Approximate entropy as a complexity measure,”Chaos,vol.5,no. 1,pp.110-117,1995.

    [8]J.S.Richman,and J.R.Moorman,“Physiological time-series analysis using approximate entropy and sample entropy,”American Journal of Physiolog Heart,vol.1,no.23,pp.2039-2040,2000.

    [9]H.S.Hippert,C.E.Pereira,and S.R.Castro,“Neural networks for short-term load forecasting:a review and evaluation,”IEEE Transaction Power System,vol. 16,no.4,pp.44-45,2001.doi:10.1109/59.910780.

    [10]I.Dreaga,and S.Rhaman,“Input variable selection for ANN-based short-term load forecasting,”IEEE Transaction Power System,vol.13,no.11,pp.1238-1344,1998.doi:10.1109/59.736244.

    Manuscript received:2015-04-13

    Biographies

    Xia Hua(kevinxhua@163.com)received the bachelor degree in physics from Shanghai Jiao Tong University in 2009.He received his PhD degree in semiconductor physics from the Department of Physics and Astronomy,Shanghai Jiao Tong University from the Department of Physics and Astronomy,Shanghai Jiao Tong University in 2014.He is currently working in the Gansu Electric Power Research Institute,Lanzhou,China.His research interest focuses on new energy and photovoltaic systems.

    Gang Zhang(zhanggang3463003@xaut.edu.cn)received his PhD degree in water resources and hydrology from Xi′an University of Technology in 2013.He is currently working in the Institute of Water Resources and Hydro-electric Engineering,Xi′an University of Technology.His research interest focuses on new energy and power saving.

    Jiawei Yangis currently pursuing the bachelor's degree in Electrical Engineering and automation.His current interests include smart grid systems.

    Zhengyuan Liis currently working in the Gansu Electric Power Research Institute,Lanzhou,China.His research interest focuses on power system protection.

    午夜精品国产一区二区电影 | 国产成人一区二区在线| 尤物成人国产欧美一区二区三区| 老师上课跳d突然被开到最大视频| av黄色大香蕉| 国产日韩欧美在线精品| 啦啦啦观看免费观看视频高清| 久久人人爽人人爽人人片va| 爱豆传媒免费全集在线观看| 国国产精品蜜臀av免费| 日韩强制内射视频| 69av精品久久久久久| 男插女下体视频免费在线播放| 简卡轻食公司| 亚洲精品456在线播放app| 亚洲第一电影网av| 中文字幕久久专区| 亚洲国产日韩欧美精品在线观看| 国内精品一区二区在线观看| 人人妻人人澡人人爽人人夜夜 | 91aial.com中文字幕在线观看| 麻豆久久精品国产亚洲av| 在线天堂最新版资源| 国产高潮美女av| av在线蜜桃| 在线观看av片永久免费下载| 神马国产精品三级电影在线观看| 欧美又色又爽又黄视频| 久久人人精品亚洲av| 3wmmmm亚洲av在线观看| 高清日韩中文字幕在线| АⅤ资源中文在线天堂| 欧美一区二区精品小视频在线| 成人亚洲精品av一区二区| 国产69精品久久久久777片| 97热精品久久久久久| 神马国产精品三级电影在线观看| 91av网一区二区| 日本与韩国留学比较| 永久网站在线| 亚洲中文字幕一区二区三区有码在线看| 在线a可以看的网站| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品日产1卡2卡| 久久久久久伊人网av| 99国产极品粉嫩在线观看| 精品一区二区免费观看| 嫩草影院精品99| 丝袜美腿在线中文| 国产真实乱freesex| 亚洲国产精品久久男人天堂| 啦啦啦观看免费观看视频高清| 免费看av在线观看网站| 久久草成人影院| 国产精品久久电影中文字幕| 久久午夜福利片| 在现免费观看毛片| 国产精品嫩草影院av在线观看| 毛片女人毛片| 日本欧美国产在线视频| 可以在线观看的亚洲视频| 午夜激情福利司机影院| 亚洲天堂国产精品一区在线| 天堂av国产一区二区熟女人妻| 日韩在线高清观看一区二区三区| 国产精品1区2区在线观看.| 久久久午夜欧美精品| 日韩欧美三级三区| 天天躁日日操中文字幕| 非洲黑人性xxxx精品又粗又长| 国产成人aa在线观看| 可以在线观看的亚洲视频| 欧美高清性xxxxhd video| 亚洲国产日韩欧美精品在线观看| 三级国产精品欧美在线观看| 久久精品国产自在天天线| 精品国产三级普通话版| 长腿黑丝高跟| 搡老妇女老女人老熟妇| 国国产精品蜜臀av免费| 春色校园在线视频观看| 毛片一级片免费看久久久久| 久久国内精品自在自线图片| 欧美丝袜亚洲另类| 国产精品久久视频播放| 久久午夜亚洲精品久久| 一进一出抽搐动态| 又爽又黄a免费视频| 亚洲丝袜综合中文字幕| 国产黄片美女视频| 日本黄色视频三级网站网址| 精品一区二区三区人妻视频| www日本黄色视频网| 国产精品久久久久久精品电影| 青青草视频在线视频观看| 麻豆成人午夜福利视频| 国产69精品久久久久777片| 人妻少妇偷人精品九色| 插阴视频在线观看视频| 亚洲欧美日韩卡通动漫| 欧美成人一区二区免费高清观看| 亚洲aⅴ乱码一区二区在线播放| 禁无遮挡网站| 日韩 亚洲 欧美在线| 一级av片app| 国产乱人偷精品视频| 成人综合一区亚洲| 国产午夜精品论理片| 小说图片视频综合网站| 亚洲精品乱码久久久久久按摩| 色噜噜av男人的天堂激情| 观看美女的网站| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区| 亚洲av免费在线观看| 在线免费十八禁| 高清在线视频一区二区三区 | av专区在线播放| 大型黄色视频在线免费观看| 国产高清有码在线观看视频| 国产综合懂色| 26uuu在线亚洲综合色| 美女xxoo啪啪120秒动态图| 桃色一区二区三区在线观看| 国产精品一区二区在线观看99 | 欧美人与善性xxx| 国产一区二区在线观看日韩| 精品欧美国产一区二区三| 啦啦啦韩国在线观看视频| 91久久精品电影网| 哪里可以看免费的av片| 一级av片app| 亚洲国产精品合色在线| 亚洲18禁久久av| 成人性生交大片免费视频hd| 久久久久久久久久成人| 国产精品av视频在线免费观看| 久久久久久大精品| 舔av片在线| ponron亚洲| 欧美日韩在线观看h| 哪个播放器可以免费观看大片| 特级一级黄色大片| 欧美日韩综合久久久久久| 看非洲黑人一级黄片| 床上黄色一级片| 久久久久九九精品影院| 中文字幕免费在线视频6| 国产综合懂色| 亚洲欧美日韩东京热| av在线蜜桃| 国产亚洲91精品色在线| 18禁在线播放成人免费| 69av精品久久久久久| 中文字幕精品亚洲无线码一区| 欧美一级a爱片免费观看看| 国产老妇女一区| av国产免费在线观看| 亚洲av成人av| 中国国产av一级| 丝袜美腿在线中文| 一级毛片我不卡| 97热精品久久久久久| 精品免费久久久久久久清纯| 久久6这里有精品| 日本av手机在线免费观看| 18禁在线无遮挡免费观看视频| 校园人妻丝袜中文字幕| 免费大片18禁| 能在线免费看毛片的网站| 免费看美女性在线毛片视频| 床上黄色一级片| 变态另类丝袜制服| АⅤ资源中文在线天堂| 12—13女人毛片做爰片一| .国产精品久久| 亚洲精品456在线播放app| 国产精品久久久久久亚洲av鲁大| av在线蜜桃| 久久久a久久爽久久v久久| 国产日本99.免费观看| 插阴视频在线观看视频| 国产伦精品一区二区三区视频9| 在线观看免费视频日本深夜| 成人二区视频| 国产视频内射| 国产乱人偷精品视频| 亚洲欧美日韩高清在线视频| 久久久欧美国产精品| 久久鲁丝午夜福利片| 国产午夜精品论理片| 国产成人一区二区在线| 精品久久久噜噜| 色5月婷婷丁香| 91久久精品电影网| 亚洲av成人av| 美女cb高潮喷水在线观看| 狂野欧美白嫩少妇大欣赏| 国产日韩欧美在线精品| 久久久久久久久久成人| 熟女电影av网| 九九久久精品国产亚洲av麻豆| 中国美女看黄片| 性欧美人与动物交配| 免费观看精品视频网站| 欧美激情久久久久久爽电影| 久久人人精品亚洲av| 男女边吃奶边做爰视频| 久久久色成人| 国产高清三级在线| 精品熟女少妇av免费看| 精品免费久久久久久久清纯| 99精品在免费线老司机午夜| 我的女老师完整版在线观看| 人妻系列 视频| 九九在线视频观看精品| 日日干狠狠操夜夜爽| 精品国内亚洲2022精品成人| 久久久久久伊人网av| 国产日本99.免费观看| 熟女电影av网| 免费人成视频x8x8入口观看| 国产成人午夜福利电影在线观看| 国产精品人妻久久久影院| 国产69精品久久久久777片| 天堂中文最新版在线下载 | 国产精品美女特级片免费视频播放器| 日本成人三级电影网站| 亚洲av熟女| 免费观看精品视频网站| 婷婷色综合大香蕉| 国产精品一区www在线观看| 国产精品.久久久| 久久精品综合一区二区三区| 亚洲在线自拍视频| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 在线播放无遮挡| 久久中文看片网| 久久久国产成人精品二区| 日本黄色视频三级网站网址| 六月丁香七月| 国产伦一二天堂av在线观看| 免费av毛片视频| 亚洲一区高清亚洲精品| 天天躁夜夜躁狠狠久久av| 亚洲五月天丁香| 91精品一卡2卡3卡4卡| 色吧在线观看| 晚上一个人看的免费电影| 12—13女人毛片做爰片一| 美女xxoo啪啪120秒动态图| 亚洲av成人精品一区久久| eeuss影院久久| 51国产日韩欧美| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 人人妻人人看人人澡| av免费在线看不卡| 九九爱精品视频在线观看| 日本五十路高清| 亚洲欧美日韩高清专用| 免费观看在线日韩| 久久午夜福利片| 两性午夜刺激爽爽歪歪视频在线观看| 一级二级三级毛片免费看| 联通29元200g的流量卡| 日韩三级伦理在线观看| 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 日韩人妻高清精品专区| 成人av在线播放网站| 99视频精品全部免费 在线| а√天堂www在线а√下载| a级一级毛片免费在线观看| 色吧在线观看| 国产在视频线在精品| 深夜a级毛片| 久久精品夜色国产| 欧美精品一区二区大全| 亚洲av免费高清在线观看| www.av在线官网国产| 国产精品精品国产色婷婷| 国产色婷婷99| 欧美精品国产亚洲| 亚洲在线观看片| 精品一区二区免费观看| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 中文字幕制服av| 国产亚洲5aaaaa淫片| 能在线免费观看的黄片| 一区二区三区高清视频在线| 欧美色视频一区免费| 小说图片视频综合网站| 能在线免费看毛片的网站| 欧美激情久久久久久爽电影| av视频在线观看入口| 中文资源天堂在线| 舔av片在线| 国产伦精品一区二区三区四那| 黑人高潮一二区| av黄色大香蕉| 久久精品国产自在天天线| 啦啦啦啦在线视频资源| 2022亚洲国产成人精品| 久久人人爽人人片av| 欧美一区二区精品小视频在线| 午夜免费激情av| 欧美最新免费一区二区三区| 久久午夜福利片| 色综合色国产| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| 听说在线观看完整版免费高清| 国产伦精品一区二区三区四那| 亚洲18禁久久av| 国产综合懂色| 亚洲av免费在线观看| 级片在线观看| 亚洲一级一片aⅴ在线观看| 蜜桃久久精品国产亚洲av| 国产一区二区三区av在线 | 一区福利在线观看| 成人亚洲精品av一区二区| 精品人妻视频免费看| 国产视频内射| 国产一区二区三区av在线 | 日日撸夜夜添| 国产在视频线在精品| 99久久精品热视频| 国产在视频线在精品| 国产伦精品一区二区三区视频9| 成熟少妇高潮喷水视频| 国产一区二区在线观看日韩| 成年av动漫网址| 看非洲黑人一级黄片| 极品教师在线视频| 日韩中字成人| 亚洲国产精品久久男人天堂| 99热网站在线观看| 真实男女啪啪啪动态图| 亚洲国产欧洲综合997久久,| 99热精品在线国产| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 色综合站精品国产| 亚洲精华国产精华液的使用体验 | 国产精品电影一区二区三区| 久久这里只有精品中国| 精品99又大又爽又粗少妇毛片| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| 亚洲国产精品合色在线| 毛片一级片免费看久久久久| 美女脱内裤让男人舔精品视频 | 久久精品国产亚洲av涩爱 | 国产极品精品免费视频能看的| 日韩高清综合在线| 日本黄色视频三级网站网址| 99在线视频只有这里精品首页| 日本-黄色视频高清免费观看| 国产精华一区二区三区| 寂寞人妻少妇视频99o| 久久九九热精品免费| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| 99国产极品粉嫩在线观看| 麻豆乱淫一区二区| 亚洲欧美日韩无卡精品| 精品日产1卡2卡| 国产不卡一卡二| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 亚洲美女搞黄在线观看| 久久久成人免费电影| 国产精品永久免费网站| avwww免费| 亚洲图色成人| 国产精品国产三级国产av玫瑰| 国产亚洲av片在线观看秒播厂 | 国内精品美女久久久久久| 1024手机看黄色片| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 久久亚洲精品不卡| 级片在线观看| 国产av不卡久久| 成人综合一区亚洲| 日韩强制内射视频| 天天一区二区日本电影三级| 美女内射精品一级片tv| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆| 亚洲av免费在线观看| 99热精品在线国产| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 久久97久久精品| 精品酒店卫生间| 99九九在线精品视频| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 热re99久久精品国产66热6| 婷婷色综合大香蕉| 精品亚洲成a人片在线观看| 成人国产av品久久久| 一级毛片 在线播放| 一区二区三区免费毛片| 亚洲欧美一区二区三区黑人 | 亚洲精品国产av成人精品| 国产男女超爽视频在线观看| 性色avwww在线观看| 欧美xxⅹ黑人| 韩国av在线不卡| 成人黄色视频免费在线看| 中文字幕免费在线视频6| 亚洲av男天堂| 青春草视频在线免费观看| 男女国产视频网站| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 国产免费福利视频在线观看| 久久人人爽人人片av| 蜜臀久久99精品久久宅男| 欧美丝袜亚洲另类| 亚洲国产av影院在线观看| 亚洲国产毛片av蜜桃av| 亚洲欧洲精品一区二区精品久久久 | 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久久久免| 一级毛片 在线播放| 精品视频人人做人人爽| 天堂8中文在线网| videosex国产| 国产老妇伦熟女老妇高清| 亚洲激情五月婷婷啪啪| 特大巨黑吊av在线直播| 最近最新中文字幕免费大全7| 免费人成在线观看视频色| 在线观看国产h片| 看免费成人av毛片| 精品人妻熟女毛片av久久网站| 国产av国产精品国产| 免费av不卡在线播放| 一本一本综合久久| 国产精品偷伦视频观看了| 中文字幕制服av| 成人国语在线视频| 18+在线观看网站| xxxhd国产人妻xxx| 日本免费在线观看一区| 狂野欧美激情性bbbbbb| 日本色播在线视频| 精品亚洲成国产av| 久久ye,这里只有精品| 黄色配什么色好看| 国产亚洲精品久久久com| 亚洲精品视频女| 亚洲av不卡在线观看| 亚洲国产av影院在线观看| 夜夜爽夜夜爽视频| 美女xxoo啪啪120秒动态图| 久久久国产精品麻豆| 2021少妇久久久久久久久久久| 婷婷色麻豆天堂久久| 亚洲精品国产av蜜桃| 国产精品人妻久久久影院| 欧美老熟妇乱子伦牲交| 亚洲婷婷狠狠爱综合网| 久久久亚洲精品成人影院| 香蕉精品网在线| 少妇人妻久久综合中文| 欧美变态另类bdsm刘玥| 在线观看免费高清a一片| 寂寞人妻少妇视频99o| 天堂俺去俺来也www色官网| 国产精品秋霞免费鲁丝片| 亚洲三级黄色毛片| 人人妻人人添人人爽欧美一区卜| 高清午夜精品一区二区三区| 亚洲五月色婷婷综合| 国产国语露脸激情在线看| 成人综合一区亚洲| 亚洲精品久久午夜乱码| 亚洲欧美精品自产自拍| 在线观看www视频免费| 日本vs欧美在线观看视频| 人妻 亚洲 视频| 日日摸夜夜添夜夜爱| 免费观看av网站的网址| 在线观看www视频免费| 美女国产视频在线观看| 热99久久久久精品小说推荐| 大片免费播放器 马上看| 母亲3免费完整高清在线观看 | 天堂8中文在线网| 色网站视频免费| 少妇人妻精品综合一区二区| 国产精品秋霞免费鲁丝片| 日韩一区二区视频免费看| 精品少妇久久久久久888优播| 插逼视频在线观看| 日韩一区二区三区影片| 亚洲av.av天堂| 欧美变态另类bdsm刘玥| 亚洲高清免费不卡视频| 亚洲精品视频女| 久久精品国产亚洲av天美| 九色成人免费人妻av| 免费大片黄手机在线观看| 中文乱码字字幕精品一区二区三区| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 青青草视频在线视频观看| 肉色欧美久久久久久久蜜桃| 免费看av在线观看网站| 精品午夜福利在线看| 99国产精品免费福利视频| 大香蕉97超碰在线| 男人操女人黄网站| 男人添女人高潮全过程视频| 高清不卡的av网站| 日韩一本色道免费dvd| 高清毛片免费看| 国产精品三级大全| 国产精品一区二区在线观看99| 久久精品夜色国产| 精品国产一区二区久久| 久久久欧美国产精品| 嫩草影院入口| 国产精品国产三级专区第一集| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 麻豆精品久久久久久蜜桃| 成人国语在线视频| 午夜视频国产福利| 99九九线精品视频在线观看视频| 亚洲精品美女久久av网站| 亚洲国产精品成人久久小说| 少妇丰满av| 国产日韩欧美亚洲二区| 2018国产大陆天天弄谢| 亚洲国产精品999| 大香蕉97超碰在线| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| 一区二区三区四区激情视频| 母亲3免费完整高清在线观看 | 亚洲综合精品二区| 欧美日韩视频精品一区| 亚洲丝袜综合中文字幕| 好男人视频免费观看在线| 午夜日本视频在线| 丝袜喷水一区| 天美传媒精品一区二区| 中文天堂在线官网| 老熟女久久久| 亚洲av电影在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲av综合色区一区| 一级片'在线观看视频| 日韩熟女老妇一区二区性免费视频| 免费黄色在线免费观看| 女人精品久久久久毛片| 免费看光身美女| 国产精品99久久99久久久不卡 | 亚洲精华国产精华液的使用体验| 亚洲欧美清纯卡通| 国产精品一国产av| 秋霞伦理黄片| 午夜老司机福利剧场| 免费高清在线观看视频在线观看| 国产成人精品一,二区| 啦啦啦视频在线资源免费观看| 亚洲精品视频女| 久久久a久久爽久久v久久| av在线播放精品| 亚洲精品亚洲一区二区| tube8黄色片| 中文字幕av电影在线播放| 国产黄色免费在线视频| 国产成人精品一,二区| 久久韩国三级中文字幕| 在线观看免费日韩欧美大片 | 在线观看美女被高潮喷水网站| 纵有疾风起免费观看全集完整版| 黑人巨大精品欧美一区二区蜜桃 | 91精品国产九色| 欧美少妇被猛烈插入视频| 日本免费在线观看一区| 久久久久久久国产电影| 国产高清国产精品国产三级| 免费观看在线日韩| 自线自在国产av| 免费大片18禁| 母亲3免费完整高清在线观看 | 亚洲精品日本国产第一区| 国产精品秋霞免费鲁丝片| 麻豆成人av视频| 国产精品99久久99久久久不卡 | 国产精品99久久久久久久久| 成年人午夜在线观看视频| 亚洲国产精品专区欧美|