• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predicting LTEg LTE Throughput Using sing Traffic Time Series

    2015-10-11 07:02:54XinDongWentaoFanandJunGu
    ZTE Communications 2015年4期

    Xin Dong,Wentao Fan,and Jun Gu

    (1.Beijing University of Posts and Telecommunications,Beijing,100876,China;2.ZTE Corporation,Shanghai 201203,China)

    Predicting LTEg LTE Throughput Using sing Traffic Time Series

    Xin Dong1,Wentao Fan1,and Jun Gu2

    (1.Beijing University of Posts and Telecommunications,Beijing,100876,China;2.ZTE Corporation,Shanghai 201203,China)

    Throughput prediction is essential for congestion control and LTE network management.In this paper,the autoregressive integrated moving average(ARIMA)model and exponential smoothing model are used to predict the throughput in a sin?gle cell and whole region in an LTE network.The experimen?tal results show that these two models perform differently in both scenarios.The ARIMA model is better than the exponen?tial smoothing model for predicting throughput on weekdays in a whole region.The exponential smoothing model is better than the ARIMA model for predicting throughput on week?ends in a whole region.The exponential smoothing model is better than the ARIMA model for predicting throughput in a single cell.In these two LTE network scenarios,throughput prediction based on traffic time series leads to more efficient resource management and better QoS.

    ARIMA;exponential smoothing method;throughput prediction

    1 Introduction

    I n recent years,there is a trend towards users accessing the Internet from a variety of applications and without restriction in terms of geographic location.This has re?sulted in an exponential increase of wireless traffic.In 2012,global wireless data traffic grew 70 percent year on year[1].Thus,mobile network operators have to make a use of limit?ed resources to meet ever?increasing traffic demands.To plan and run networks efficiently,it is important to understand the statistical characteristics of data traffic by analyzing the real traffic.

    In[2],the authors use the throughput measured from a real?work cellular network to statistically model time?varying throughput per cell and the distribution of instantaneous throughput per cell over different cells.The proposed statisti?cal models can be used to simulate the time?varying and loca?tion?varying throughput of cells.In[3],the authors analyze sev?eral widely accepted throughput network?performance indica?tors in LTE.Their analysis is based on counters and call traces of a live network.However,neither[1]nor[2]describe a sce?nario where throughput in a whole region changes over time.In[4],the authors estimate this throughput using a formula that expresses the behavior of TCP throughput.We consider throughput data as a time series that can be predicted using da?ta measured in the past.

    In this paper,we consider two practical scenarios:whole re?gion and single cell.In the first scenario,we constructed a bet?ter model than both the individual ARIMA model and exponen?tial smoothing model for predicting downlink throughput on weekdays and weekends in a whole region.In the second sce?nario,the traffic load in a single cell is uncertain and varying over time.We construct a model for predicting the instanta?neous downlink throughput in a single cell of a large urban cel?lular network.

    2 Data Set and Modeling Methodology

    2.1 Data Description

    Our data set includes records of Internet downloads and up?loads in Hong Kong.The data was collected from 1352 cell sites across the city over 21 days between February and March 2014.Each data session includes the throughput of the down?link and uplink,timestamp,and cell ID.Each cell ID is also associated with the GPS coordinates of the corresponding cell. In this paper,LTE throughput is modeled as a time series and then predicted using an ARIMA model and exponential smoothing method.

    2.2 Time Series Analysis

    Time series data is an important class of data.Any change of an attribute value as a function of time can be considered time series data.Such data may derive from the atmosphere,commodity production,geography,sensors,the stock market,or inventory control.The throughput data in an LTE network can also be viewed as a time series.Prediction of time series is based on the idea that historical data related to past behavior can be used to predict the future behavior.

    2.2.1 ARIMA Model

    The autoregressive integrated moving average(ARIMA)model was introduced by Box?Jenkins[5].ARIMA(p,d,q)is an autoregressive moving average(ARMA)model based on dif?ferenced time series data.The original time series data is dif?ferenced on the order d to make the data stationary.A station?ary time series can be modeled as an ARMA model of order(p,q),where p is the order of the AR process and q is the order ofthe MA process.ARMA?modeled current time series data is given by:

    where yt-1,yt-2...yt-pare the data at past time points,et-1,et-2...et-2are the errors at past time points,etis a pre?sent error(ARMA assumes this error is Gaussian?distributed),a1,a2,...,apare the AR coefficients,and b1,b2,...,bqare the MA model coefficients[6].

    ARIMA(p,d,q)modeling involves making the data station?ary,then identifying suitable values for the model order,then predicting the time series data from the model.

    2.2.2 Exponential Smoothing Model

    Exponential smoothing is a trend?analysis and prediction method based on the moving average method.Exponential smoothing method has three main submethods—linear expo?nential smoothing,secondary exponential smoothing and cubic exponential smoothing—that differ in terms of smoothing times[7]-[8].The most common of these methods is secondary expo?nential smoothing,given by:

    2.3 Metrics

    Root?mean?square error(RMSE)and R?squared are used to determine how well the model fits.RMSE represents the mean?squared error statistics of the output model.These statistics show the difference between the model’s predictions and real values,i.e.,the standard deviation of the residuals.The unit of measure is consistent with the original data.The RMSE is giv?en by[10]:

    R?squared[11]is the square of the correlation between the measured(empirical)value and the predicted value.A higher R?squared means a better?fitting model.The maximum R?squared value is 1.When the time series contains seasonal trends,a stationary R?squared statistic is better than a normal R?squared statistic.

    In this paper,we use stationary R?squared as the evaluation index for data with obvious seasonal trends.We use RMSE as the evaluation index for data with no obvious seasonal trend,such as throughput data from a single cell.

    3 Modeling and Results

    Here,we analyze two practical scenarios.In the first scenar?io,each cell is divided into regions,and the throughput of an entire region is predicted.In the second scenario,the through?put of a single cell is predicted according to historical data.

    The reason for creating these two scenarios is that network operators are constantly constructing,adjusting,and optimiz?ing their network,and single cell throughput prediction alone is not enough.If a new cell is built next to cell A,then the throughput of cell A is bound change,and the former data is discarded.Therefore,the first scenario is proposed.QoS can be improved by knowing the network throughput in advance.

    3.1 Throughput Prediction for a Whole Region

    We first investigate how downlink throughput in a whole re?gion changes over time.Fig.1 shows the mean throughput in a region on weekdays and weekends.The weekday mean throughput was obtained by averaging the throughput in the whole region over 10 consecutive weekdays,and the weekend mean throughput was obtained by averaging the throughput over two consecutive weekends(four days).For both weekdays and weekends,the mean throughput in the whole region was at its lowest at 05:00.On a weekday,the mean throughput peaked at 09:00 and 19:00.On the weekend,throughput peaked at 13:00.We divided the throughput in the whole re?gion in weekdays and weekends for further statistical analysis

    To analyze the throughput on weekdays,we used the hourly data of ten consecutive weekdays.Five days of this data was used for modeling,and the other five days was used to deter?mine the accuracy of the prediction.

    ▲Figure 1.Weekday and weekend mean throughput in a whole region over 24 hours.

    In Fig.2,the real throughput on weekdays in the whole re?gion is seasonal.Therefore,we use the ARIMA(2,0,1)model and exponential smoothing withα=0.600to predict through?put on weekdays in the whole region.Although there are gaps between the measured and predicted throughput in the whole region,the predictions by both models are highly accurate.The ARIMA model is more accurate in the valleys of the real throughput curve,which occur at around 05:00,11:00 and 15:00 every weekday.

    Table 1 shows the degree of fit statistics for the prediction models.Both the fit of the curve and the stationary R?squared statistic indicate that the ARIMA model is better than the expo?nential smoothing model for predicting throughput on week?days in a whole region.

    To study the throughput on weekends,we used hourly throughput data from two consecutive weekends.Two days of this data was used for modeling,and the other two days of data was used to determine the accuracy of the prediction.

    The prediction models for throughput of weekends in a whole region is ARIMA(1,0,2)and exponential smoothing method withα=0.500.Fig.3 shows predicted weekend throughput in a whole region using the ARIMA model and ex?ponential smoothing model separately.The throughput predict?ed using the exponential smoothing model is closer to actual throughput that that predicted using the ARIMA model on a weekend in a whole region(Table 2).The degree of fit statis?tics supports this.Hence,we obtain the result,that exponential smoothing method is better to predict the weekends’through? put in a whole region.

    ▲Figure 2.ARIMA model and exponential smoothing model are used to predict the throughput on weekdays in a whole region.

    ▼Table 1.Degree of fit statistics for models used to predict throughput on weekdays in a whole region

    ▲Figure 3.ARIMA model and exponential smoothing model for predicting the throughput on weekends in a whole region.

    ▼Table 2.Degree of fit statistics for models used to predict throughput on weekends in a whole region

    3.2 Throughput Prediction for a Single Cell

    A single?cell traffic time series is highly unpredictable and has no obvious seasonal trend.Even within the same cell,throughput changes greatly on different days.Although there are gaps between the real and predicted throughput curves,a time series model for a single cell still has some use in network optimization.Here,we use the throughput data of an LTE net?work over eight consecutive days.Seven days of this data is used for modeling,and the other day of data is used to deter?mine how well the model fits.

    The stationary R?squared statistic is usually used as an eval?uation index when the time series contains seasonal trends.Be?cause there is no significant seasonal trend in the throughput of a single cell,we use RMSE as an evaluation index.

    Fig.4 shows the throughput prediction for single cell.The prediction models are ARIMA(1,1,1),and exponential smoothing withα=0.100.Fig.4 shows that these two models do not accurately predict abrupt changes of throughput in the single cell.The exponential smoothing model is a little more accurate between 17:00 and 23:00.Table 3 shows the accura?cy statistics of the two models.

    ▲Figure 4.ARIMA model and exponential smoothing method for predicting the throughput of a single cell in an LTE network.

    ▼Table 3.RMSE of the prediction model(single?cell throughput)

    ▲Figure 5.RMSE statistics for throughput prediction in 100 cells.

    We chose 100 cells randomly and modeled them.Then we obtained the RMSE statistics for these cells.Fig.5 shows the distribution of RMSE for prediction using the ARIMA model and exponential smoothing model in 100 cells.The RMSE of the exponential smoothing method is mainly distributed be?tween 0 and 0.3,and that for the ARIMA model is mainly dis?tributed above 0.3.In general,the exponential smoothing mod?el is better for predicting throughput in a single cell.

    4 Conclusion

    In this paper,LTE throughput is modeled as a time series, and future values of the traffic time series are predicted using the ARIMA model and exponential smoothing model.Using different time series models,we studied throughput in both a single cell and a whole region within an LTE network.When studying throughput in a whole region,we considered weekday and weekend separately because their throughput patterns were different.The ARIMA model is better than exponential smoothing for predicting throughput on weekday in a whole re?gion,and exponential smoothing model is much better than the ARIMA model for predicting throughput on weekends in a whole region.Exponential smoothing is more accurate than the ARIMA model for predicting throughput in a single cell. Throughput prediction based on time series models can be used in the design,management,planning,and optimization of networks.

    [1]C.V.N.Index,“Global mobile data traffic forecast update,2012?2017,”Cisco White Paper,2013.

    [2]E.Nan,X.Chu,W.Guo,and J.Zhang,“User data traffic analysis for 3G cellular networks,”in Proc.CHINACOM,Guilin,China,Aug.2013,pp.469-472.doi:10.1109/ChinaCom.2013.6694641.

    [3]V.Buenestado,J.Ruiz?Aviles,M.Toril,et al.,“Analysis of Throughput Perfor?mance Statistics for Benchmarking LTE Networks,”IEEE Communications Let?ters,vol.18,no.9,pp.1607-1610,Sept.2014.

    [4]M.Mirza,J.Sommers,P.Barford,and X.Zhu,“A machine learning approach to TCP throughput prediction,”in Proc.SIGMETRICS,New York,USA,2007,pp. 97-108.

    [5]G.E.P.Box and G.M.Jenkins,Time Series Analysis Forecasting and Control,2nd ed.San Francisco,CA:Holden?Day,1976.

    [6]C.Babu and B.Reddy,“Predictive data mining on average global temperature using variants of ARIMA models”,in Proc.ICAESM,Tamil Nadu,India,2012,pp.256-260.

    [7]Q.Chen and X.Li,System Engineering?Theory and Practice.Beijing,China:Na?tional Defense Industry Press,2009.

    [8]X.Shang,W.Lin,and Y.Tang.“Development and application of a combined wa?ter quality prediction model based on exponential smoothing and GM(1,1),”En?vironmental Science&Technology,vol.34,no.1,pp.191-195,May 2011,doi:10.3969/j.issn.1003?6504.2011.01.046.

    [9]W.Sun and R.Yang,Economic Forecast.Beijing,China:Agricultural University Press,2005.

    [10]R.J.Hyndman and A.B.Koehler,“Another look at measures of forecast accu?racy,"International Journal of Forecasting,vol.22,pp.679-688,2006.

    [11]J.R.Taylor,An Introduction to Error Analysis:The Study of Uncertainties in Physical Measurements.Mill Valley,USA:Univ.Science Books,1996.

    Manuscript received:2015?07?31

    Biographies

    Xin Dong(dongxin2014@gmail.com)is pursuing her master’s degree in telecommu?nications at Beijing University of Post and Telecommunications(BUPT).Her re?search interests include data mining and time series analysis.She has previously re?searched the prediction of time serials of traffic flow.

    Wentao Fan(ffantastic@126.com)is pursuing his master’s degree in telecommuni?cations at BUPT.His research interests include data mining,and network analysis and optimization based on mobile devices.He has researched the prediction of time serials of traffic flow using the SVR method.

    Jun Gu(gu.jun@zte.com.cn)is a chief engineer of 4G radio network planning at ZTE Corporation.He has 10 years’research and field experience in network princi?ples,standardization,simulation,algorithm design,and planning and optimization.

    日日干狠狠操夜夜爽| av在线观看视频网站免费| 岛国毛片在线播放| 在线播放无遮挡| 亚洲在久久综合| 久久久久久九九精品二区国产| 国产精品一区二区在线观看99 | 2021天堂中文幕一二区在线观| 九九久久精品国产亚洲av麻豆| 日本免费a在线| 97精品久久久久久久久久精品| 男女那种视频在线观看| 国产男女超爽视频在线观看| 日韩伦理黄色片| 18禁在线播放成人免费| 在线免费观看不下载黄p国产| 精品一区二区三卡| 夫妻性生交免费视频一级片| 中文字幕av成人在线电影| 国产成人91sexporn| av在线播放精品| 久久99热6这里只有精品| 成人午夜精彩视频在线观看| 纵有疾风起免费观看全集完整版 | 嘟嘟电影网在线观看| 天堂av国产一区二区熟女人妻| 日本免费在线观看一区| 久久久久精品久久久久真实原创| 我要看日韩黄色一级片| 亚洲国产精品成人久久小说| 精品久久久噜噜| 白带黄色成豆腐渣| 久久国产乱子免费精品| 乱人视频在线观看| 97精品久久久久久久久久精品| 午夜免费观看性视频| 午夜免费观看性视频| 国产精品不卡视频一区二区| 你懂的网址亚洲精品在线观看| 一区二区三区高清视频在线| 亚洲国产欧美在线一区| 久久久久九九精品影院| 亚洲不卡免费看| 国产精品人妻久久久久久| 国产成人一区二区在线| 嫩草影院精品99| 亚洲怡红院男人天堂| 亚洲欧美精品专区久久| 三级毛片av免费| 国精品久久久久久国模美| 欧美zozozo另类| 免费观看性生交大片5| 成人漫画全彩无遮挡| 久久久久久国产a免费观看| 丰满人妻一区二区三区视频av| 久久99热这里只有精品18| 久久这里只有精品中国| 91午夜精品亚洲一区二区三区| 婷婷色综合大香蕉| 男人舔女人下体高潮全视频| 99久久精品热视频| 一级片'在线观看视频| 日韩成人av中文字幕在线观看| 亚洲内射少妇av| 精品久久久久久电影网| 色吧在线观看| 一级毛片电影观看| 乱人视频在线观看| av女优亚洲男人天堂| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲av二区三区四区| 最新中文字幕久久久久| 两个人视频免费观看高清| 青春草国产在线视频| 久久久欧美国产精品| 国内少妇人妻偷人精品xxx网站| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 美女被艹到高潮喷水动态| 1000部很黄的大片| 九色成人免费人妻av| 亚洲精品日本国产第一区| 观看免费一级毛片| 熟女电影av网| 日韩欧美三级三区| 毛片女人毛片| 中文字幕久久专区| 国产免费一级a男人的天堂| 免费不卡的大黄色大毛片视频在线观看 | 男人狂女人下面高潮的视频| 精品少妇黑人巨大在线播放| av免费观看日本| 欧美日韩视频高清一区二区三区二| 久久精品夜色国产| 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 国产亚洲最大av| 在线免费观看不下载黄p国产| 小蜜桃在线观看免费完整版高清| 国产精品国产三级专区第一集| 久久精品综合一区二区三区| 免费黄色在线免费观看| av在线亚洲专区| 人人妻人人澡欧美一区二区| 99九九线精品视频在线观看视频| 欧美3d第一页| 久久久国产一区二区| 国语对白做爰xxxⅹ性视频网站| 真实男女啪啪啪动态图| 永久免费av网站大全| a级毛片免费高清观看在线播放| 一级黄片播放器| 人妻一区二区av| 五月伊人婷婷丁香| 久久午夜福利片| av在线老鸭窝| 国产精品综合久久久久久久免费| 舔av片在线| www.av在线官网国产| 白带黄色成豆腐渣| 国产精品综合久久久久久久免费| 汤姆久久久久久久影院中文字幕 | 一二三四中文在线观看免费高清| 最近最新中文字幕大全电影3| a级一级毛片免费在线观看| 伊人久久精品亚洲午夜| 亚洲欧美一区二区三区黑人 | 精品人妻视频免费看| 亚洲精品色激情综合| 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 人妻一区二区av| 日韩不卡一区二区三区视频在线| 丰满少妇做爰视频| 久久这里有精品视频免费| av播播在线观看一区| 亚洲国产精品成人综合色| 国产综合懂色| 亚洲精品视频女| 国产黄色小视频在线观看| 免费黄网站久久成人精品| 99视频精品全部免费 在线| 亚洲av成人av| 国产精品一二三区在线看| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影| 五月天丁香电影| 欧美日本视频| 欧美bdsm另类| 国产亚洲精品久久久com| 亚洲人成网站在线观看播放| 91av网一区二区| 18禁裸乳无遮挡免费网站照片| 久久久久久久亚洲中文字幕| 国产成人精品福利久久| 成人一区二区视频在线观看| 好男人在线观看高清免费视频| 国产视频内射| 极品少妇高潮喷水抽搐| av专区在线播放| 免费av不卡在线播放| 1000部很黄的大片| 99久久精品热视频| 狂野欧美激情性xxxx在线观看| 丝袜美腿在线中文| 国产成人aa在线观看| 久久草成人影院| 人人妻人人看人人澡| 免费观看av网站的网址| 97人妻精品一区二区三区麻豆| 一级毛片久久久久久久久女| 久久人人爽人人片av| 亚洲色图av天堂| 五月玫瑰六月丁香| 午夜激情欧美在线| 久久久久久久久久久免费av| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| av天堂中文字幕网| 97在线视频观看| 国产v大片淫在线免费观看| 亚洲电影在线观看av| or卡值多少钱| 精品久久久久久久久久久久久| 午夜福利网站1000一区二区三区| 欧美日韩视频高清一区二区三区二| 精品人妻一区二区三区麻豆| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区成人| 国产色婷婷99| 精品人妻视频免费看| 亚洲精品国产av成人精品| 日韩在线高清观看一区二区三区| 99久久精品热视频| 免费黄色在线免费观看| 色网站视频免费| 午夜免费观看性视频| 伊人久久精品亚洲午夜| av在线观看视频网站免费| 天堂√8在线中文| 天天躁日日操中文字幕| 国产精品一区www在线观看| 中文字幕免费在线视频6| 欧美+日韩+精品| 亚洲精品自拍成人| 九九久久精品国产亚洲av麻豆| 国产精品日韩av在线免费观看| 一本一本综合久久| 免费看av在线观看网站| 99久久精品一区二区三区| 成年女人看的毛片在线观看| 最新中文字幕久久久久| a级毛片免费高清观看在线播放| 国产精品美女特级片免费视频播放器| 亚洲无线观看免费| 美女黄网站色视频| 男人狂女人下面高潮的视频| 边亲边吃奶的免费视频| av卡一久久| 少妇的逼水好多| 亚洲怡红院男人天堂| 国产麻豆成人av免费视频| 网址你懂的国产日韩在线| 久久久久久久午夜电影| 直男gayav资源| 亚洲激情五月婷婷啪啪| videossex国产| 国产亚洲精品av在线| 亚洲国产精品专区欧美| 欧美3d第一页| 一区二区三区高清视频在线| 亚洲婷婷狠狠爱综合网| 久久久久免费精品人妻一区二区| 97超视频在线观看视频| 蜜桃亚洲精品一区二区三区| 一区二区三区高清视频在线| 一区二区三区免费毛片| 久久久久久久久久成人| 一级a做视频免费观看| 亚洲精品乱码久久久v下载方式| 22中文网久久字幕| 一级毛片我不卡| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 精品国产三级普通话版| 中文乱码字字幕精品一区二区三区 | 日韩欧美 国产精品| 91精品伊人久久大香线蕉| 亚洲av中文字字幕乱码综合| 日本wwww免费看| 建设人人有责人人尽责人人享有的 | 精品一区二区三区视频在线| 国产精品.久久久| 久久精品综合一区二区三区| 老女人水多毛片| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 国产精品一区二区在线观看99 | 日韩视频在线欧美| 精品久久久久久电影网| 99久国产av精品| 国产精品综合久久久久久久免费| 精品久久久精品久久久| 中文资源天堂在线| 精品久久久久久久久av| 国产综合懂色| 免费播放大片免费观看视频在线观看| 麻豆乱淫一区二区| 1000部很黄的大片| 亚洲va在线va天堂va国产| 少妇熟女aⅴ在线视频| 久久久精品94久久精品| 久久久久久久亚洲中文字幕| 日本wwww免费看| 亚洲成人一二三区av| 22中文网久久字幕| 亚洲最大成人手机在线| 国产精品一区二区在线观看99 | 成年女人在线观看亚洲视频 | 99久久精品国产国产毛片| 国产一区二区三区综合在线观看 | av免费在线看不卡| 如何舔出高潮| 国产极品天堂在线| 亚洲国产色片| 欧美日韩一区二区视频在线观看视频在线 | 久久这里只有精品中国| 美女cb高潮喷水在线观看| 久久久久网色| 大香蕉97超碰在线| 日韩电影二区| 日本与韩国留学比较| 综合色丁香网| 欧美3d第一页| 女人久久www免费人成看片| 又大又黄又爽视频免费| 国精品久久久久久国模美| av线在线观看网站| 国产成人精品久久久久久| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 亚洲精品一二三| 午夜福利高清视频| 免费看美女性在线毛片视频| 如何舔出高潮| 免费av不卡在线播放| 中文精品一卡2卡3卡4更新| 99热6这里只有精品| 色综合色国产| 欧美精品国产亚洲| 国产精品麻豆人妻色哟哟久久 | 亚洲av不卡在线观看| 日日啪夜夜撸| 午夜激情福利司机影院| 国产精品综合久久久久久久免费| 老司机影院成人| 九九在线视频观看精品| 性插视频无遮挡在线免费观看| 搞女人的毛片| 亚洲av一区综合| 国产精品人妻久久久久久| 有码 亚洲区| 亚洲人成网站在线播| 亚洲熟女精品中文字幕| 免费看av在线观看网站| 美女cb高潮喷水在线观看| av福利片在线观看| 美女内射精品一级片tv| 欧美不卡视频在线免费观看| av在线播放精品| 欧美人与善性xxx| 精品一区在线观看国产| 午夜免费观看性视频| 国产av不卡久久| 国产成人精品一,二区| 一级毛片 在线播放| 亚洲精品一区蜜桃| 精品久久久久久电影网| 99久久人妻综合| 久久精品国产自在天天线| 亚洲精品日本国产第一区| 国产在视频线在精品| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品 | 国产成人免费观看mmmm| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 激情五月婷婷亚洲| 国产单亲对白刺激| 国内精品美女久久久久久| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 亚洲国产高清在线一区二区三| 最近最新中文字幕免费大全7| 亚洲av免费高清在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品,欧美精品| 欧美成人a在线观看| 国产免费又黄又爽又色| 日产精品乱码卡一卡2卡三| 久久97久久精品| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区| 美女内射精品一级片tv| 欧美97在线视频| 精华霜和精华液先用哪个| 丰满少妇做爰视频| 亚洲精华国产精华液的使用体验| 国内揄拍国产精品人妻在线| 午夜激情欧美在线| h日本视频在线播放| 午夜亚洲福利在线播放| 黄色配什么色好看| 嫩草影院入口| 美女脱内裤让男人舔精品视频| 大片免费播放器 马上看| h日本视频在线播放| 好男人视频免费观看在线| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 你懂的网址亚洲精品在线观看| 日本一二三区视频观看| 国产女主播在线喷水免费视频网站 | 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 欧美日韩国产mv在线观看视频 | 色综合色国产| 精品久久久噜噜| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线| 看十八女毛片水多多多| 久久久国产一区二区| 亚洲不卡免费看| 人人妻人人澡欧美一区二区| 亚洲四区av| 色综合色国产| 成人特级av手机在线观看| 国产乱人偷精品视频| 国产精品福利在线免费观看| 久久久色成人| 国产高清不卡午夜福利| 国产高清有码在线观看视频| a级一级毛片免费在线观看| 免费电影在线观看免费观看| 欧美成人精品欧美一级黄| freevideosex欧美| 国产精品久久久久久精品电影小说 | 久久97久久精品| 久久久久免费精品人妻一区二区| 一级片'在线观看视频| 亚洲天堂国产精品一区在线| 亚洲av.av天堂| 亚洲在线观看片| 天堂√8在线中文| 波多野结衣巨乳人妻| 欧美另类一区| 老女人水多毛片| 最新中文字幕久久久久| a级毛色黄片| 人妻夜夜爽99麻豆av| 18禁在线无遮挡免费观看视频| 特级一级黄色大片| 丰满乱子伦码专区| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 国产亚洲一区二区精品| 麻豆久久精品国产亚洲av| 亚洲高清免费不卡视频| 欧美激情国产日韩精品一区| 精品久久久久久久久av| 中文字幕人妻熟人妻熟丝袜美| 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 中文字幕久久专区| 婷婷六月久久综合丁香| 水蜜桃什么品种好| 两个人的视频大全免费| 亚洲国产精品成人综合色| 91精品一卡2卡3卡4卡| 亚洲综合色惰| 特大巨黑吊av在线直播| 亚洲精品久久久久久婷婷小说| 老司机影院成人| 插逼视频在线观看| 久久韩国三级中文字幕| 国产伦在线观看视频一区| 床上黄色一级片| 男女那种视频在线观看| 免费av毛片视频| 午夜精品国产一区二区电影 | 国产精品1区2区在线观看.| 久久精品久久精品一区二区三区| 亚洲欧美成人精品一区二区| 久久人人爽人人爽人人片va| 极品少妇高潮喷水抽搐| 男女下面进入的视频免费午夜| 嘟嘟电影网在线观看| 在线免费十八禁| 精品熟女少妇av免费看| 成年人午夜在线观看视频 | 好男人在线观看高清免费视频| 久久久午夜欧美精品| 亚洲av不卡在线观看| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| h日本视频在线播放| 亚洲四区av| 蜜臀久久99精品久久宅男| 女的被弄到高潮叫床怎么办| 国产成年人精品一区二区| 免费看不卡的av| 一二三四中文在线观看免费高清| 日本黄大片高清| 韩国高清视频一区二区三区| www.色视频.com| 成年女人在线观看亚洲视频 | 晚上一个人看的免费电影| 亚洲av男天堂| 18+在线观看网站| 欧美zozozo另类| 国产午夜福利久久久久久| 99热全是精品| 精品久久久久久电影网| av专区在线播放| 69人妻影院| 九九在线视频观看精品| 97精品久久久久久久久久精品| 3wmmmm亚洲av在线观看| 十八禁国产超污无遮挡网站| 欧美性猛交╳xxx乱大交人| 亚洲av二区三区四区| 简卡轻食公司| 看非洲黑人一级黄片| 成人美女网站在线观看视频| 免费看美女性在线毛片视频| 插逼视频在线观看| 韩国av在线不卡| 日韩精品有码人妻一区| 欧美一级a爱片免费观看看| 欧美一区二区亚洲| 亚洲成人av在线免费| 国产麻豆成人av免费视频| 26uuu在线亚洲综合色| 成人综合一区亚洲| 在线观看美女被高潮喷水网站| 精品国产露脸久久av麻豆 | 亚洲av日韩在线播放| 啦啦啦啦在线视频资源| 美女国产视频在线观看| 波多野结衣巨乳人妻| 少妇猛男粗大的猛烈进出视频 | 国产一区二区亚洲精品在线观看| 少妇熟女aⅴ在线视频| 在现免费观看毛片| 97人妻精品一区二区三区麻豆| 又黄又爽又刺激的免费视频.| 国产精品精品国产色婷婷| .国产精品久久| 三级毛片av免费| 国产精品av视频在线免费观看| 成人欧美大片| 91精品伊人久久大香线蕉| 国产爱豆传媒在线观看| 99热全是精品| 欧美日韩在线观看h| 亚洲久久久久久中文字幕| 最近最新中文字幕免费大全7| 中文字幕久久专区| 国产一区二区亚洲精品在线观看| 欧美日本视频| 日日摸夜夜添夜夜爱| 在线a可以看的网站| 久久国内精品自在自线图片| 天堂中文最新版在线下载 | 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 午夜精品一区二区三区免费看| 国产亚洲91精品色在线| 中文字幕人妻熟人妻熟丝袜美| 国产男人的电影天堂91| 免费看不卡的av| 日韩成人av中文字幕在线观看| av天堂中文字幕网| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 国产成人91sexporn| 国产伦精品一区二区三区四那| 午夜亚洲福利在线播放| 国产男女超爽视频在线观看| 亚洲国产色片| 深夜a级毛片| videos熟女内射| 麻豆av噜噜一区二区三区| 久久99蜜桃精品久久| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 欧美一级a爱片免费观看看| 日本猛色少妇xxxxx猛交久久| 久久亚洲国产成人精品v| 嫩草影院入口| 国产高潮美女av| 91精品国产九色| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 男女国产视频网站| 欧美人与善性xxx| 久久午夜福利片| 边亲边吃奶的免费视频| 亚洲欧美中文字幕日韩二区| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| 久久精品人妻少妇| 国产精品伦人一区二区| 亚洲av男天堂| 久久久久久久亚洲中文字幕| 男女国产视频网站| 99re6热这里在线精品视频| 六月丁香七月| 亚洲欧美精品自产自拍| 三级毛片av免费| 婷婷色综合大香蕉| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 老司机影院毛片| 人妻少妇偷人精品九色| 中文欧美无线码| 亚洲不卡免费看| 国产一区亚洲一区在线观看| 精品国内亚洲2022精品成人| 国国产精品蜜臀av免费| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| 亚洲天堂国产精品一区在线| 日韩三级伦理在线观看| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区成人| 天堂中文最新版在线下载 | 偷拍熟女少妇极品色| 国产精品.久久久| 大香蕉97超碰在线| 国产午夜精品久久久久久一区二区三区| av线在线观看网站| 国产成人福利小说| 99re6热这里在线精品视频|