• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shear strength behavior of geotextile/geomembrane interfaces Belén M.Bacasa,*,Jorge Ca?izalb,Heinz Konietzkyc

    2015-10-09 07:09:54TerrsolumGeotechniclEngineeringTechnologyDevelopmentCenterofUniversityofCntbriCDTUCSntnderSpin

    Terrsolum S.L.Geotechnicl Engineering,Technology Development Center of University of Cntbri(CDTUC),Sntnder,Spin

    bSchool of Civil Engineering,University of Cantabria,Santander,Spain

    cGeotechnical Institute,TU Bergakademie Freiberg,F(xiàn)reiberg,Germany

    Shear strength behavior of geotextile/geomembrane interfaces Belén M.Bacasa,*,Jorge Ca?izalb,Heinz Konietzkyc

    aTerrasolum S.L.Geotechnical Engineering,Technology Development Center of University of Cantabria(CDTUC),Santander,Spain

    bSchool of Civil Engineering,University of Cantabria,Santander,Spain

    cGeotechnical Institute,TU Bergakademie Freiberg,F(xiàn)reiberg,Germany

    A R T I C L E I N F O

    Article history:

    in revised form 8 July 2015

    Accepted 5 August 2015

    Available online xxx

    Geotextiles

    Geomembranes

    Landfills

    Fiber length

    Roughness

    Shear strength

    Friction angle

    A B S T R A C T

    This paper aims to study the shear interaction mechanism of one of the critical geosynthetic interfaces, the geotextile/geomembrane,typically used for lined containment facilities such as landfills.A large direct shear machine is used to carry out 90 geosynthetic interface tests.The test results show a strain softening behavior with a very small dilatancy(<0.5 mm)and nonlinear failure envelopes at a normal stress range of 25-450 kPa.The influences of the micro-level structure of these geosynthetics on the macro-level interface shear behavior are discussed in detail.This study has generated several practical recommendations to help professionals to choose what materials are more adequate.From the three geotextiles tested,the thermally bonded monofilament exhibits the best interface shear strength under high normal stress.For low normal stress,however,needle-punched monofilaments are recommended. For the regular textured geomembranes tested,the space between the asperities is an important factor. The closer these asperities are,the better the result achieves.For the irregular textured geomembranes tested,the nonwoven geotextiles made of monofilaments produce the largest interface shear strength.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by

    Elsevier B.V.All rights reserved.

    1.Introduction

    The main functions of a municipal solid waste(MSW)landfill are to permit the maximum accumulation of waste in the smallest possible space and to isolate the waste from the natural surroundings.Besides,a MSW has to maintain security and provide a future usage after its closure.Landfill liner and cover systems are mainly formed by geosynthetic protection layers, which interact on geosynthetic/geosynthetic and geosynthetic/ soil interfaces.

    An important subject with respect to the landfill stability is the interface shear strength,which has been investigated thoroughly in the last decade(e.g.Fox and Kim,2008;McCartney et al.,2009;Palmeira,2009;Eid,2011;Fox and Ross,2011;Brachman and Sabir, 2013;Thielmann et al.,2013).

    The geotextile/geomembrane interfaces can be used for both liner and cover systems of the landfills.Geomembranes are typically used as a hydraulic barrier and geotextiles protect it from damages that may occur in some situations,such as high normal stressesandangularsoilparticles.Geotextile/geomembrane interfaces have previously been studied by Giroud et al.(1990), Koutsourais et al.(1991),Giroud and Darrasse(1993),Gilbert and Byrne(1996),Stark et al.(1996),Jones and Dixon(1998),Wasti and ?zdüzgün(2001),Hebeler et al.(2005),Bergado et al.(2006)and Pitanga et al.(2009).

    The objective of this paper is to study the interface shear behavior of the geotextile/geomembrane,providing a deeper understanding of how the structure of these geosynthetics at a microlevel influences the interface shear behavior at a macro-level.The interface shear behavior is studied by means of the direct shear tests on 18 different interfaces using 8 different geosynthetic materials.The guidelines of ASTM D5321(2014)are followed during the direct shear test on different types of geosynthetic interfaces. The means to grip the different geosynthetics and the suitable test parameters(shear displacement rate,consolidation time,hydration time)are established based on the studies from Stark and Poeppel(1994),Stark et al.(1996),Fox et al.(1997,1998),Gilbert et al.(1997),Jones and Dixon(1998),Eid et al.(1999),Triplett and Fox(2001),Zornbergetal.(2005),Sharmaetal.(2007)and McCartney et al.(2009).The following relationships are analyzed in this study:interface shear strength vs.shear displacement,shear displacementvs.normaldisplacement,andinterfaceshear strength vs.normal stress.

    This paper provides a useful and practical application for both researches and practitioners who use these materials in the field, helping them to make a decision about what geosynthetic material could work better in a particular loading condition.

    2.Experimental work

    2.1.Materials

    The characteristics of geosynthetics used for the direct shear tests are listed in Table 1 and described as follows:

    (1)Three nonwoven geotextiles:GT1(500 g/m2)is made of needle-punched monofilaments;GT2(500 g/m2)is made of needle-punched staple fibers;and GT3(335 g/m2)is made of thermally bonded monofilaments.

    (2)Five geomembranes of 1.5 mm thickness:GMs has smooth surfaces;GMr1 and GMr4 have irregular heavy textured surfaces smaller than 1 mm;GMr2s1 and GMr3 show regular, evenly spread asperities greater than 1 mm;GMr2s2 exhibits regular spread asperities smaller than 1 mm.

    Table 2 summarizes the geotextile/geomembrane interfaces tested as well as the testing conditions.

    2.2.Testing equipment

    The tests on geosynthetics are carried out with a large direct shear machine,whose shear box is 300 mm long and 300 mmwide and therefore fulfills the minimum requirements.The tests are performed at a constant shear displacement rate and fixed normal stress.The shear box is divided intoa moving lowerpart anda static upper part.The geotextile is fastened to the lower box,while the geomembrane is fastened to the upper box.The following gripping systems are used for the different types of geosynthetics:

    (1)Geotextiles are gripped with a double-side adhesive tape.This system works well for the range of normal stresses tested.

    (2)Based on the studies of Fox et al.(1997,1998),a particularly textured plate is designed for gripping the drainage geocomposites,the geomembranes and the geosynthetic clay liner(GCL).Thedimensionsofthisplateare 300 mm×285 mm×10 mm.The plate has 210 drainage holes of 2 mm diameter and 1680 pyramids of 1 mm height,which protrudes fromthe topside,as shown in Fig.1a.The bottom side has channels to allow for water flow,as shown in Fig.1b.This plate is screwed onto a metal support that is placed into the direct shear box.The topside is in contact with the geosynthetic and the bottom side is in contact with the metal support.

    2.3.Test procedure

    The shear test is carried out according to ASTM D5321(2014). The geotextile/geomembrane interfaces are tested under wet conditions with the following parameters:

    (1)Hydration time is 24 h for the geotextiles and the geomembranes were not hydrated.The geotextile samples are submerged into tap water inside a humidity chamber(temperature of 21°C,humidity of 96%).

    (2)Consolidation time inside the machine is 10 min.

    (3)Constant shear rate is 5 mm/min.Stark et al.(1996)and Triplett and Fox(2001)found out that the shear rate does not significantly affect the peak and post-peak strengths.

    The normal stress is applied to the loading platen above the upper metal support.After 10 min of consolidation,the lower shear box moves inparallel direction tothe shear forceat a constant shear rate.The maximum shear displacement is 50 mm.The shear displacement,shear force and vertical displacement are recorded during the test.The shear force is measured using a suitable dynamometric ring.Two linear variable differential transformers(LVDTs)are used to measure the shear and vertical displacements.

    3.Constitutive model on geosynthetic interfaces

    All interfaces tested exhibit frictional behavior,which is modeled by Mohr-Coulomb's equationτ=ca+σntanδ,whereτ andσnare the interface shear strength and normal stress acting on the failure plane,respectively;cais the adhesion;andδis the interface friction angle.Linear regression of the plot ofτvs.σnis used to identify the best-fit shear strength parameters.The shear strength of most interfaces tested in this study presents important friction angles and negligible adhesion.

    4.Direct shear test results

    As mentioned above,the geotextile/geomembrane interfaces are tested under wet conditions(Table 2).However,the water content does not affect significantly the interface shear strength,as shown in Fig.2 as well as proven by Mitchell and Mitchell(1992)and Bergado et al.(2006).The range of normal stresses applied is 25-450 kPa.The peak interface shear strength is usually reached at shear displacement of 4-10 mm and the post-peak strength is obtained at shear displacement around 50 mm.

    Table 1 Type of geosynthetics.

    Table 2 Geosynthetic interfaces tested and testing conditions.

    Fig.1.Textured plate for gripping textured geomembranes.(a)Topside and(b)Bottom side.

    Fig.3 presents the typical interface shear strength behavior for nonwoven geotextile/textured geomembrane interfaces.The shear strength-shear displacement curves in Fig.3a show strain softening behavior,i.e.the interface shear strength decreases with increasing shear displacement(Byrne,1994;Stark et al.,1996;Jones and Dixon,1998).The higher the normal stress,the higher the strain softening behavior.This phenomenon is observed in rock joints but contrary to geosynthetic interfaces,the higher the normal stress in this case,the lower the strain softening behavior. Based on this fact,Bacas et al.(2011)proposed a new shear constitutive model for this type of interface.

    In this study,approximately 60%of the tests reveal nonlinear failure envelopes whereas 40%are linear envelopes.Fig.3b shows nonlinear peak and post-peak failure envelopes(continuous lines). However,the straight envelopes,passing through the origin(dashed lines)with peak and post-peak friction angles of 24°and 12°,respectively,also show a good fit(R2>0.9).

    In line with Giroud et al.(1990),Koutsourais et al.(1991),Stark et al.(1996),Hebeler et al.(2005)and McCartney et al.(2009),the interaction mechanisms during the shear tests on nonwoven geotextile/texturedgeomembraneinterfacesshowthefollowing behaviors:

    Fig.2.Geotextile/geomembrane interface shear strength in wet and dry conditions.

    (1)At low normal stress(<50 kPa),the interaction between

    nonwoven geotextiles and the textured geomembranes consists of two mechanisms:(i)one is the interlocking(hook and loop)between the superficial filaments of the geotextile and the asperities of the geomembrane,(ii)the other is the friction between the materials.Both take place on a superficial level.

    (2)As the normal stress increases(>50 kPa),the geotextile is compressed and the asperities are introduced into the geotextile matrix,which is called interbedding factor.Thus,the friction and interlocking interactions take place on a matrix level.

    Fig.4 illustrates how the peak interface shear strength is reached fora small sheardisplacement(peak displacement),during which the friction angle is mobilized first and then the hook and loop interact,causing the shear strength to reach its peak.After the peak,the hook and loop mechanism degrades since the filaments are pulled out,torn and untangled from the geotextile until the residual interface shear strength is reached.

    Bacas et al.(2011)developed an interface shear model based on rock joint theories,quantifying the interbedding and the interlocking(hook and loop)factors,which depend mainly on the type of geotextile and the asperities of the geomembrane.Their respective ranges are 1-3 for the interbedding factor and 2-8 for the interlocking factor.The higher the asperity height,the higher the interlocking factor.Besides,the larger the hollows of the geotextile,the higher the interbedding factor.An example for such a geotextile would be one made of staple fibers.

    Fig.3.Typical interface shear strength behavior for nonwoven geotextile/textured geomembrane interfaces.(a)Shear strength vs.shear displacement curves,and(b)Peak and post-peak failure envelopes.

    5.Influence of roughness characteristics of geomembranes on interface shear strength

    5.1.Effect of roughness patterns

    The differences between the various roughness patterns are analyzed through the interface shear strength vs.shear displacement curves of the nonwoven needle-punched geotextile,GT1. Fig.5a presents the GT1/GMr1,GT1/GMr2s1 and GT1/GMr3 results. GMr1 has a rough,irregular texturing while GMr2s1 and GMr3 have regular asperities,as shown in Fig.6,which presents microscope images of roughness.Interface shear strength presents similar values at normal stress lower than 50 kPa and depends neither on the roughness pattern nor on the asperity height.At normal stress higher than 50 kPa,regular texturing normallyshows larger interface shear strength and strain softening behavior than irregular texturing.The downward stepping post-peak curves of GMr3 and GMr2s1 with their successive peaks(mini-peaks)are caused by the deterioration of the geotextile fiber weft,as can be observed at normal stress of 300 kPa.The separation between the mini-peaks matches the separation between the asperities.GMr3 and GMr2s1 have asperities spaced at 6 mm and 9 mm in staggered rows,respectively.Therefore,the GMr3 presents larger peak and post-peak interface shear strengths than GMr2s1.This means that the closer the asperities are,the better the result achieves but without becoming too close,because the surface could become uniform.One has to bear in mind,however,that until 100 kPa,the shear results of GMr3 and GMr2s1 show similar values.

    Fig.5b illustrates the results of three different geomembranes with different roughness patterns and different asperity heights less than 1 mm.GMr2s2 has regular asperities spaced at 4 mm,and GMr1 and GMr4 have rough irregular texturing,however GMr1 is rougher than GMr4(Fig.6).The curves at normal stress of 50 kPa are similar,but at normal stress higher than 50 kPa,the differences between roughness patterns affect the interface shear strength. GMr1 and GMr2s2 show an increased frictional performance compared with GMr4.The post-peak curves are uniform without any successive steps,even though the GMr2s2 has regular asperities,but these are too close.

    Fig.4.Illustration of the decomposition of strain softening behavior.

    5.2.Effect of asperity height

    Fig.7 presents the interface friction angles vs.asperity heights. The following important aspects are observed:

    (1)The smaller values of interface friction angle belong to the smooth geomembrane(GMs).Shear strength is purely frictional;hence the geotextile/GMs interfaces present similar peak and post-peak friction angles.

    (2)The higher the geomembrane roughness,the higher the peak interface shear strength(Ivy,2003;McCartney et al.,2005). Therefore,GMr2s1 and GMr3 show the greatest peak values while GMr4 presents the smallest peak friction angle.

    (3)The geomembranes with an asperity height larger than 1 mm present greater post-peak interface strength loss due to their high capacity of damaging the geotextile fiber wefts.

    (4)The post-peak values do not show a clear trend related to the size of the asperity,but they do show dependency on the type of geotextile(McCartney et al.,2005).

    6.Influence of fiber characteristics of geotextile on interface shear strength

    6.1.Effect of fiber length

    The influence of the geotextile fibers'length on the interface shear strength is observed through comparing the nonwoven needle-punched geotextiles GT1 and GT2 in Fig.8.They are made of monofilament and staple fibers,respectively,as shown in Fig.9a and b,which are microscope plots of the fibers.At normal stress lower than 100 kPa,GT1 presents larger peak values than GT2.This is because the length of the fibers greatly affects the interface shear strength at low normal stress,as can be observed in Fig.10a,which depicts the interface shear strength vs.shear displacement curves at normal stress of 50 kPa.GT2 presents a smaller interface shear strength,because on a superficial level,the staple fibers do not develop the interlocking mechanism as much as the monofilament of GT1 does.However,at normal stress higher than 100 kPa,thepeak values are closer for both materials(Fig.8).The lower postpeak values belong to the GT2 because its staple fibers are easier todamagethanthemonofilamentsweft,whicharemore intertwined.

    Fig.5.Comparison of different roughness patterns:(a)regular(GMr3,GMr2s1)and irregular(GMr1)texturing,(b)irregular texturing with asperity height less than 1 mm.

    6.2.Effect of geotextile manufacture

    The influence of the manufacture of the geotextiles can be observedthroughcomparingthenonwovenmonofilament geotextiles GT1 and GT3.The former is a needle-punched fabric and the latter is a thermally bonded one.Fig.9a and c prove that GT1 has looser filaments and larger hollows than GT3.The latter shows a higher interlocking leading to a higher interface shear strength,as shown in Figs.7 and 8a.An exception to this is presented in Fig.8b, where the GT3/GMr3 interface presents the lowest interface shear strength.The asperities cannot penetrate the geotextile matrix deeply enough because of the smaller hollows.Moreover,the regular texturing creates linear tracks through the geotextile which acts like a plow,stretching the superficial filaments,as can be observed in Fig.11a which shows the samples after testing.Fig.11b indicates that the interaction between GMr1 and GT3 leads to higher interlocking(hook and loop)due to the greater entanglement between the filaments and the irregular roughness.This behavior is also observed at low normal stress(see Fig.10b).

    Fig.7.Friction angles of geotextile/geomembrane interfaces tested in wet conditions.

    Fig.6.Scanning electron microscope(SEM)images of roughness of geomembrane.Asperity average height:(a)GMr3:~1.3 mm,(b)GMr2s1:~1.2 mm,(c)GMr2s2:~0.8 mm,(d)GMr1:~0.5 mm,(e)GMr4:~0.25 mm.

    The post-peak interface shear strengths mainly depend on the type of geotextile.Usually,GT3 presents the largest post-peak values,because thermally bonded monofilaments are stretched and very tangled during the shear,causing a higher resistance as the geomembrane slides over the geotextile.However,the needlepunched monofilaments of the GT1 are stretched and brushed in shear direction,facilitating the geomembrane to slide over the geotextile's surface.Finally,GT2 normally presents the lowest post-peak values because its staple fibers are stretched and brushed most easily.

    Fig.8.Comparison of interface shear strength between 3 nonwoven geotextiles.(a)Geotextile/GMr1,and(b)Geotextile/GMr3.

    The conclusion from these analyses is that the manufacturing process of the geotextile influences both the peak and the post-peak interface shear strengths.If the roughness of the geomembrane is irregular and dense,we recommend using thermally bonded monofilaments,because the interlocking mechanism has a major influence on interface shear strength.If,however,the roughness is regular and uniform,we rather recommend using needle-punched filaments,especially for high normal stress levels,where the interbedding factor has higher influence on the interlocking mechanism and thereby on the interface shear strength.Finally,for cover systems of the landfills subject to low ranges of normal stresses(<100 kPa),it is recommended using monofilament rather than staple fibers,because the former mobilizes the interlocking mechanism at lower normal stresses better than the latter.

    Fig.10.Comparison of interface shear strength at low normal stress for(a)needlepunched geotextile(GT1,GT2)/GMr,(b)needle-punched geotextile(GT1)/GMr and thermally bonded geotextile(GT3)/GMr.

    7.Conclusions

    The study of large direct shear tests conducted on geotextile/ geomembrane leads to the following main conclusions:

    (1)The interface interaction mechanisms depend on normal stress. At low normal stress(<50 kPa),interlocking and friction develop at a superficial level.At high normal stress(>50 kPa), interlocking and friction develop at a matrix level.

    (2)If the roughness of the geomembrane is irregular and dense,it is recommended using the nonwoven geotextile made of monofilaments,because it develops larger interlocking mechanism causing the shear strength to increase.

    Fig.9.SEM images of nonwoven geotextiles.(a)GT1:needle-punched monofilament,(b)GT2:needle-punched staple fibers,(c)GT3:thermally bonded monofilament.

    Fig.11.Thermally bonded geotextile after testing at normal stress of 300 kPa.(a)GT3/ GMr3,and(b)GT3/GMr1.

    (3)If the roughness of the geomembrane is regular and evenly spread,it is recommended using the nonwoven geotextile with needle-punched filaments,especially for high normal stresses(≥100 kPa),where the interbedding factor has larger influence on the interlocking mechanism and thus on the shear strength.

    (4)For cover systems of the landfills subject to low normal stresses(<100 kPa),it is recommended using monofilaments rather than staple fibers,since the former mobilize the interlocking mechanism at lower normal stresses.

    (5)For regular textured geomembranes,the space between the asperities is an important factor.The closer these asperities are, the better the result achieves.Nevertheless,they should not be too close because the surface could become uniform,thereby decreasing the interlocking mechanism.

    Conflict of interest

    The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgments

    This work was derived from an extensive research project sponsored by the Company Ferrovial S.A.(Spain)conducted by the Geotechnical Group at the School of Civil Engineering,the University of Cantabria(Spain).The facilities provided for this research project are gratefully acknowledged.Moreover,the authors are grateful to Deutscher Akademischer Austausch Dienst(DAAD, Germany)for the research fellowship received,as well as the facilities provided by the Chair for Rock Mechanics at the Geotechnical Institute,the TU Bergakademie Freiberg(Germany).

    References

    ASTM D5321.Standard test method for determining the shear strength of soilgeosynthetic and geosynthetic-geosynthetic interfaces by direct shear.West Conshohocken,PA,USA:ASTM International;2014.

    Bacas BM,Konietzky H,Ca?izal J,Sagaseta C.A new constitutive model for textured geomembrane/geotextile interfaces.Geotextiles and Geomembranes 2011;29(2):137-48.

    Bergado DT,Ramana GV,Sia HI,Varun.Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand.Geotextiles and Geomembranes 2006;24(6):371-93.

    Brachman RWI,Sabir A.Long-term assessment of a layered-geotextile protection layer for geomembranes.Journal of Geotechnical and Geoenvironmental Engineering 2013;139(5):752-64.

    Byrne RJ.Design issues with strain-softening interfaces in landfill liners.In:Proceedings of waste technology;1994.Charleston,South Carolina,Session 4, Paper 4.

    Eid HT,Stark TD,Doerfler CK.Effect of shear displacement rate on internal shear strength of a reinforced geosynthetic clay liner.Geosynthetics International 1999;6(3):219-39.

    Eid HT.Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes.Geotextiles and Geomembranes 2011;29(3):335-44.

    Fox PJ,Kim RH.Effect of progressive failure on measured shear strength of geomembrane/GCL interface.Journal of Geotechnical and Geoenvironmental Engineering 2008;134(4):459-69.

    Fox PJ,Ross JD.Relationship between NP GCL internal and HDPE GMX/NP GCL interface shear strengths.Journal of Geotechnical and Geoenvironmental Engineering 2011;137(8):743-53.

    Fox PJ,Rowland MG,Scheithe JR,Davis KL,Supple MR,Crow CC.Design and evaluation of a large direct shear machine for geosynthetic clay liners.Geotechnical Testing Journal 1997;20(3):279-88.

    Fox PJ,Rowland MG,Scheithe JR.Internal shear strength of three geosynthetic clay liners.JournalofGeotechnicalandGeoenvironmentalEngineering 1998;124(10):933-44.

    Gilbert RB,Byrne RJ.Strain-softening behavior of waste containment system interfaces.Geosynthetics International 1996;3(2):181-202.

    Gilbert RB,Scranton HB,Daniel DE.Shear strength testing for geosynthetic clay liners.In:Testing and acceptance criteria for geosynthetic clay liners.Conshohocken,PA,USA:ASTM International;1997.

    Giroud JP,Darrasse J.Hyperbolic expression for soil-geosynthetics or geosyntheticsgeosyntheticinterfaceshearstrength.GeotextilesandGeomembranes 1993;12(3):275-86.

    Giroud JP,Swan RH,Richer PJ,Spooner PR.Geosynthetic landfill cap:laboratory and field tests,design and construction.In:Geotextiles,geomembranes and related products.Rotterdam,Netherlands:A.A.Balkema;1990.p.493-8.

    Hebeler GL,Frost JD,Myers AT.Quantifying hook and loop interaction in textured geomembrane-geotextile systems.Geotextiles and Geomembranes 2005;23(1):77-105.

    Ivy N.Asperity height variability and effects.GFR 2003;21(8):28-9.

    Jones DRV,Dixon N.Shear strength properties of geomembrane/geotextile interfaces.Geotextiles and Geomembranes 1998;16(1):45-71.

    Koutsourais MM,Sprague CJ,Pucetas RC.Interfacial friction study of cap and liner components for landfill design.Geotextiles and Geomembranes 1991;10(5-6):531-48.

    McCartney JS,Zornberg JG,Swan RH.Analysis of a large database of GCL-geomembrane interface shear strength results.Journal of Geotechnical and Geoenvironmental Engineering 2009;135(2):209-23.

    McCartney JS,Zornberg JG,Swan RH.Effect of geomembrane texturing on GCL-geomembrane interface shear strength.In:Proceedings of GeoFrontiers 2005. Reston,VA,USA:American Society of Civil Engineers(ASCE);2005.p.1-11.

    Mitchell RA,Mitchell JK.Stability evaluation of waste landfills.In:Proceedings of stability and performance of slopes and embankments II.Geotechnical Special Publication No.31.Reston,VA,USA:American Society of Civil Engineers(ASCE);1992.p.1152-87.

    Palmeira EM.Soil-geosynthetic interaction:modelling and analysis.Geotextiles and Geomembranes 2009;27(5):368-90.

    Pitanga HN,Gourc JP,Vilar OM.Interface shear strength of geosynthetics:evaluation and analysis of inclined plane tests.Geotextiles and Geomembranes 2009;27(6):435-46.

    Sharma JS,Fleming IR,Jogi MB.Measurement of unsaturated soil-geomembrane interfaceshear-strengthparameters.CanadianGeotechnicalJournal 2007;44(1):78-88.

    Stark TD,Poeppel AR.Landfill liner interface strengths from torsional-ring-shear tests.Journal of Geotechnical Engineering 1994;120(3):597-615.

    Stark TD,Williamson TA,Eid HT.HDPE geomembrane/geotextile interface shear strength.Journal of Geotechnical Engineering 1996;122(3):197-203.

    Thielmann SS,Fox PJ,Athanassopoulos C.Interface shear testing of GCL liner systems for very high normal stress conditions.In:Proceedings of Geo-Congress2013:stability and performance of slopes and embankments III.California. Reston,VA,USA:American Society of Civil Engineers(ASCE);2013.p.63-71.

    Triplett EJ,Fox PJ.Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces.JournalofGeotechnicalandGeoenvironmentalEngineering 2001;127(6):543-52.

    Wasti Y,?zdüzgün ZB.Geomembrane geotextile interface shear properties as determined by inclined board and direct shear box tests.Geotextiles and Geomembranes 2001;19(1):45-57.

    Zornberg JG,McCartney JS,Swan RH.Analysis of a large database of GCL internal shear strength results.Journal of Geotechnical and Geoenvironmental Engineering 2005;131(3):367-80.

    Belén M.Bacas obtained a M.Sc.and a Ph.D.degree from University of Cantabria,Spain.She is geotechnical engineer in Terrasolum S.L.and assistant professor of Mechanics of Continuous Media at the University of Cantabria.She has been involved in geotechnical research,consulting and education for the last 10 years.She is co-author of 6 scientific papers.She has worked on a series of mining and geotechnical projects,both at home and abroad.In recent years,she has been collaborated in two European Projects:COGAN and GEOAPPS,Apps for geotechnical field work.

    5 May 2015

    *Corresponding author.Tel.:+34 942272685.

    E-mail address:bacasb@terrasolum.es(B.M.Bacas).

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.08.001

    在线观看一区二区三区激情| 午夜福利视频精品| 视频中文字幕在线观看| 亚洲精品中文字幕在线视频 | 久久久久久久久大av| 九九久久精品国产亚洲av麻豆| 久久久午夜欧美精品| 久久久色成人| 精品少妇久久久久久888优播| 国精品久久久久久国模美| 大片免费播放器 马上看| 精品一区二区三区视频在线| 久久久久久久国产电影| 欧美97在线视频| 熟女av电影| 人妻制服诱惑在线中文字幕| 人人妻人人澡人人爽人人夜夜| 伦理电影大哥的女人| 身体一侧抽搐| 婷婷色综合大香蕉| 在线观看三级黄色| 久久久国产一区二区| 久久久精品94久久精品| 男男h啪啪无遮挡| 51国产日韩欧美| 美女高潮的动态| 国产色婷婷99| 搞女人的毛片| 内射极品少妇av片p| 亚洲精华国产精华液的使用体验| 亚洲经典国产精华液单| 国产在线男女| 黄色欧美视频在线观看| 成人免费观看视频高清| 夜夜看夜夜爽夜夜摸| 亚洲在线观看片| 亚洲国产精品国产精品| 99久久人妻综合| 国产精品麻豆人妻色哟哟久久| 欧美潮喷喷水| 伊人久久精品亚洲午夜| 国产av码专区亚洲av| 婷婷色麻豆天堂久久| 97人妻精品一区二区三区麻豆| 看非洲黑人一级黄片| 一级a做视频免费观看| 久久久久久久精品精品| 国内精品宾馆在线| 国产精品嫩草影院av在线观看| 最近的中文字幕免费完整| 简卡轻食公司| 女的被弄到高潮叫床怎么办| 中文字幕人妻熟人妻熟丝袜美| 成人综合一区亚洲| 国产高清三级在线| 国产综合懂色| 97超碰精品成人国产| 岛国毛片在线播放| 免费观看在线日韩| av网站免费在线观看视频| 日韩人妻高清精品专区| 纵有疾风起免费观看全集完整版| 亚洲精品久久久久久婷婷小说| 91aial.com中文字幕在线观看| 美女主播在线视频| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影| 欧美国产精品一级二级三级 | 内地一区二区视频在线| 特大巨黑吊av在线直播| 国产成人a区在线观看| av专区在线播放| 国产精品人妻久久久久久| 欧美人与善性xxx| 亚洲色图av天堂| 男的添女的下面高潮视频| 我的女老师完整版在线观看| 精品少妇久久久久久888优播| 午夜福利视频1000在线观看| 中文字幕制服av| 观看免费一级毛片| 国产伦在线观看视频一区| 制服丝袜香蕉在线| 亚洲成人精品中文字幕电影| 国产精品一及| av在线天堂中文字幕| av国产久精品久网站免费入址| 亚洲国产精品成人久久小说| 极品教师在线视频| 国产成人精品一,二区| 久久精品国产亚洲av涩爱| av.在线天堂| 三级国产精品欧美在线观看| 亚洲精品自拍成人| 亚洲成人中文字幕在线播放| 国产亚洲91精品色在线| 欧美性感艳星| 国产精品熟女久久久久浪| 99热这里只有精品一区| 91精品一卡2卡3卡4卡| av.在线天堂| av在线观看视频网站免费| 久久精品久久久久久噜噜老黄| 久久精品综合一区二区三区| 最近中文字幕高清免费大全6| 春色校园在线视频观看| 91精品国产九色| 男女那种视频在线观看| 五月开心婷婷网| 黄片wwwwww| 麻豆国产97在线/欧美| 久久久色成人| 观看免费一级毛片| 国产精品不卡视频一区二区| 免费大片黄手机在线观看| 伦精品一区二区三区| 三级经典国产精品| 国产av码专区亚洲av| 亚洲精品,欧美精品| 国产精品国产三级国产av玫瑰| 国产高清有码在线观看视频| 在线免费十八禁| 少妇 在线观看| 成人亚洲精品av一区二区| 直男gayav资源| 人妻一区二区av| 亚洲精品,欧美精品| 一本色道久久久久久精品综合| 一级片'在线观看视频| 亚洲,一卡二卡三卡| 国产淫片久久久久久久久| 国产日韩欧美亚洲二区| 在线a可以看的网站| 亚洲成人中文字幕在线播放| 国产av不卡久久| 日韩免费高清中文字幕av| 国产成人aa在线观看| 高清在线视频一区二区三区| 国产毛片a区久久久久| 亚洲激情五月婷婷啪啪| 日日撸夜夜添| 久久97久久精品| 一级黄片播放器| 波多野结衣巨乳人妻| 久久精品久久精品一区二区三区| 在现免费观看毛片| 联通29元200g的流量卡| 国产女主播在线喷水免费视频网站| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 亚洲欧美清纯卡通| 成人亚洲精品av一区二区| 欧美老熟妇乱子伦牲交| 日韩欧美 国产精品| 亚洲综合色惰| a级毛片免费高清观看在线播放| 好男人视频免费观看在线| 亚洲成人一二三区av| 国产伦理片在线播放av一区| 制服丝袜香蕉在线| av免费在线看不卡| 免费观看无遮挡的男女| 免费在线观看成人毛片| 成人美女网站在线观看视频| 色综合色国产| 久久久久精品久久久久真实原创| 色视频在线一区二区三区| 色视频www国产| 欧美人与善性xxx| 国产精品成人在线| 国产男人的电影天堂91| 99久国产av精品国产电影| 三级国产精品片| 18+在线观看网站| 1000部很黄的大片| 亚洲欧美成人综合另类久久久| 听说在线观看完整版免费高清| 亚洲精品第二区| 亚洲av中文字字幕乱码综合| 亚洲欧美一区二区三区黑人 | 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 尤物成人国产欧美一区二区三区| 国产一区二区三区综合在线观看 | 午夜免费观看性视频| 熟女电影av网| 日韩欧美精品v在线| 一级毛片电影观看| 色婷婷久久久亚洲欧美| 亚洲国产精品国产精品| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 一本色道久久久久久精品综合| 国产精品一区www在线观看| 日韩成人伦理影院| 久久久久久伊人网av| 国产片特级美女逼逼视频| 国产又色又爽无遮挡免| 99热网站在线观看| 五月天丁香电影| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 97超碰精品成人国产| 国产一区二区在线观看日韩| 国产人妻一区二区三区在| 麻豆成人av视频| 又大又黄又爽视频免费| 久久久久精品性色| 国产白丝娇喘喷水9色精品| 国产一区亚洲一区在线观看| 欧美3d第一页| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 精品人妻一区二区三区麻豆| 免费高清在线观看视频在线观看| 精品久久久久久久末码| 亚洲精华国产精华液的使用体验| 黄片wwwwww| 99久国产av精品国产电影| 亚洲精华国产精华液的使用体验| av免费在线看不卡| 少妇人妻精品综合一区二区| 三级经典国产精品| 久久久精品欧美日韩精品| 亚洲国产成人一精品久久久| 中文字幕av成人在线电影| 啦啦啦中文免费视频观看日本| 高清在线视频一区二区三区| 日本与韩国留学比较| 在线观看免费高清a一片| 夜夜爽夜夜爽视频| 少妇丰满av| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 一级毛片 在线播放| 美女高潮的动态| 大话2 男鬼变身卡| 一区二区三区免费毛片| 国产伦在线观看视频一区| av又黄又爽大尺度在线免费看| 一级av片app| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 欧美日本视频| 国产亚洲午夜精品一区二区久久 | 2018国产大陆天天弄谢| 老女人水多毛片| 97人妻精品一区二区三区麻豆| 人妻少妇偷人精品九色| 亚洲av日韩在线播放| 色播亚洲综合网| 亚洲人成网站在线观看播放| 大片电影免费在线观看免费| tube8黄色片| 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 麻豆久久精品国产亚洲av| 国精品久久久久久国模美| 欧美变态另类bdsm刘玥| 成人国产av品久久久| 日韩欧美 国产精品| 嫩草影院入口| 黄色配什么色好看| 超碰av人人做人人爽久久| 成年女人在线观看亚洲视频 | 午夜视频国产福利| 一边亲一边摸免费视频| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 三级国产精品片| 成人毛片60女人毛片免费| 色播亚洲综合网| 99久久精品国产国产毛片| 又爽又黄a免费视频| 亚洲精品,欧美精品| 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 欧美日本视频| 国产高清国产精品国产三级 | 亚洲av不卡在线观看| 婷婷色综合www| 高清毛片免费看| 全区人妻精品视频| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| a级毛色黄片| 国产毛片a区久久久久| 又大又黄又爽视频免费| 精品久久久精品久久久| 中文字幕久久专区| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 亚洲天堂国产精品一区在线| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 成人二区视频| .国产精品久久| xxx大片免费视频| 国产视频内射| 精品酒店卫生间| 黑人高潮一二区| 国产精品国产三级国产专区5o| 国产精品.久久久| 亚洲av福利一区| 欧美丝袜亚洲另类| 三级男女做爰猛烈吃奶摸视频| 午夜激情久久久久久久| 成人美女网站在线观看视频| 亚洲自偷自拍三级| 别揉我奶头 嗯啊视频| 国产真实伦视频高清在线观看| 最近的中文字幕免费完整| 三级国产精品欧美在线观看| 老司机影院成人| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 欧美激情久久久久久爽电影| 亚洲,一卡二卡三卡| 久久久久久久久久成人| 午夜亚洲福利在线播放| 内射极品少妇av片p| 在线观看国产h片| 午夜免费观看性视频| 777米奇影视久久| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| xxx大片免费视频| 亚洲天堂国产精品一区在线| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 26uuu在线亚洲综合色| 国产精品久久久久久精品古装| 亚洲精品视频女| 乱系列少妇在线播放| 国产精品一区二区性色av| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 欧美区成人在线视频| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 欧美日韩国产mv在线观看视频 | 欧美精品人与动牲交sv欧美| 国产美女午夜福利| 我的老师免费观看完整版| 2021少妇久久久久久久久久久| 人体艺术视频欧美日本| 禁无遮挡网站| 纵有疾风起免费观看全集完整版| 国产 精品1| 国产高潮美女av| 五月天丁香电影| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 成年女人看的毛片在线观看| 男人爽女人下面视频在线观看| 麻豆久久精品国产亚洲av| 久久久色成人| 日韩人妻高清精品专区| a级毛色黄片| 自拍偷自拍亚洲精品老妇| 少妇熟女欧美另类| 国产 一区精品| 成人二区视频| 日韩精品有码人妻一区| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 又黄又爽又刺激的免费视频.| 成人国产av品久久久| 亚洲av成人精品一二三区| 九九爱精品视频在线观看| 一区二区av电影网| 久久久a久久爽久久v久久| 亚洲av免费在线观看| 国产免费又黄又爽又色| 久久久久久国产a免费观看| 久热这里只有精品99| 欧美国产精品一级二级三级 | 中文在线观看免费www的网站| 最近最新中文字幕免费大全7| 极品少妇高潮喷水抽搐| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 亚洲自偷自拍三级| 80岁老熟妇乱子伦牲交| 久久影院123| 人妻一区二区av| 日韩成人av中文字幕在线观看| 天天一区二区日本电影三级| 毛片一级片免费看久久久久| 国产熟女欧美一区二区| 国产片特级美女逼逼视频| 22中文网久久字幕| 久久99热6这里只有精品| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 国产精品久久久久久精品电影| 在线观看人妻少妇| 国产黄a三级三级三级人| 80岁老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 国模一区二区三区四区视频| 麻豆久久精品国产亚洲av| 精品人妻熟女av久视频| 中文欧美无线码| 18禁动态无遮挡网站| 亚洲美女视频黄频| tube8黄色片| 少妇的逼好多水| 欧美变态另类bdsm刘玥| 天美传媒精品一区二区| 免费av不卡在线播放| 最后的刺客免费高清国语| 欧美xxⅹ黑人| 一级黄片播放器| 精品人妻视频免费看| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 亚洲人成网站高清观看| 国产亚洲最大av| 午夜视频国产福利| 最近中文字幕高清免费大全6| 网址你懂的国产日韩在线| 亚洲综合精品二区| 国产高潮美女av| 亚洲人与动物交配视频| 永久网站在线| 好男人视频免费观看在线| 国产一级毛片在线| 亚洲天堂国产精品一区在线| 日产精品乱码卡一卡2卡三| 少妇猛男粗大的猛烈进出视频 | 街头女战士在线观看网站| 免费观看的影片在线观看| 免费大片黄手机在线观看| a级毛片免费高清观看在线播放| 又黄又爽又刺激的免费视频.| 又大又黄又爽视频免费| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 春色校园在线视频观看| 极品少妇高潮喷水抽搐| 日韩欧美精品v在线| 秋霞在线观看毛片| 亚洲av欧美aⅴ国产| 国产亚洲精品久久久com| av天堂中文字幕网| 69av精品久久久久久| 国产成人freesex在线| 99九九线精品视频在线观看视频| 日韩欧美一区视频在线观看 | 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 欧美激情国产日韩精品一区| 精品久久久久久久久av| 熟女人妻精品中文字幕| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 熟女人妻精品中文字幕| 男女边摸边吃奶| 嫩草影院入口| 国产又色又爽无遮挡免| 久久久久久伊人网av| 人妻系列 视频| 最近中文字幕2019免费版| 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 老司机影院成人| 三级男女做爰猛烈吃奶摸视频| 男女国产视频网站| 在线亚洲精品国产二区图片欧美 | 国产精品爽爽va在线观看网站| 另类亚洲欧美激情| 亚洲精品国产色婷婷电影| 国产精品国产av在线观看| 激情五月婷婷亚洲| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区三区| 看黄色毛片网站| 综合色av麻豆| 亚洲欧美成人精品一区二区| 久久影院123| 人妻一区二区av| 色视频在线一区二区三区| 国产探花极品一区二区| 国产免费视频播放在线视频| .国产精品久久| 亚洲精品影视一区二区三区av| 亚洲国产日韩一区二区| 亚洲av一区综合| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 亚洲内射少妇av| 男女无遮挡免费网站观看| 亚洲精品色激情综合| tube8黄色片| 99久久中文字幕三级久久日本| 乱码一卡2卡4卡精品| 色吧在线观看| 国产高清三级在线| 爱豆传媒免费全集在线观看| 日本一本二区三区精品| 黑人高潮一二区| 国产成人a区在线观看| 国产一区亚洲一区在线观看| 又黄又爽又刺激的免费视频.| 亚州av有码| 成人综合一区亚洲| 一边亲一边摸免费视频| 人妻 亚洲 视频| 综合色av麻豆| 欧美日本视频| 日韩成人av中文字幕在线观看| 日韩,欧美,国产一区二区三区| 久久97久久精品| 午夜福利在线观看免费完整高清在| 少妇熟女欧美另类| 国产成人免费观看mmmm| 尾随美女入室| 一级毛片我不卡| 蜜臀久久99精品久久宅男| 久久精品国产亚洲av天美| 久久久久久国产a免费观看| 看十八女毛片水多多多| 51国产日韩欧美| 99久久精品热视频| 亚洲精华国产精华液的使用体验| 午夜老司机福利剧场| 一区二区三区精品91| 最近最新中文字幕大全电影3| 欧美性感艳星| 亚洲欧美一区二区三区黑人 | 久久精品夜色国产| 国产成人91sexporn| 熟女av电影| 日韩欧美精品免费久久| 国产极品天堂在线| 伊人久久国产一区二区| 国产精品爽爽va在线观看网站| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久伊人网av| 日韩成人伦理影院| 2021少妇久久久久久久久久久| 亚洲熟女精品中文字幕| 成年女人在线观看亚洲视频 | 91久久精品电影网| 日本三级黄在线观看| 久久ye,这里只有精品| 插逼视频在线观看| 一级av片app| 日韩av免费高清视频| 伦理电影大哥的女人| 免费黄色在线免费观看| 免费电影在线观看免费观看| 国产探花极品一区二区| 午夜爱爱视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品不卡视频一区二区| 毛片女人毛片| 久久精品久久久久久噜噜老黄| 欧美变态另类bdsm刘玥| av在线播放精品| av福利片在线观看| 老司机影院成人| 中文字幕av成人在线电影| 亚洲精品成人av观看孕妇| 亚洲自拍偷在线| av在线app专区| 国产男女内射视频| 亚洲欧美日韩东京热| 丰满少妇做爰视频| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 国产精品一区二区性色av| 亚洲国产精品成人久久小说| 亚洲精品乱码久久久久久按摩| 三级国产精品片| 日本wwww免费看| 国产高清三级在线| 久久久久久久午夜电影| 欧美人与善性xxx| 国产成人a∨麻豆精品| 午夜福利在线观看免费完整高清在| 最近的中文字幕免费完整| 国产 一区精品| 观看免费一级毛片| 国产一区亚洲一区在线观看| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区三区| 欧美人与善性xxx| 亚洲精品影视一区二区三区av| 国产成人精品久久久久久| 狂野欧美激情性bbbbbb| 蜜臀久久99精品久久宅男| 秋霞在线观看毛片| 最新中文字幕久久久久| 最近最新中文字幕大全电影3| 亚洲精品国产成人久久av| 看免费成人av毛片| 禁无遮挡网站| 日产精品乱码卡一卡2卡三|