• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection

    2015-10-09 08:08:02FanliMengHuiLiXiaoliWangGuangshengQinBjrnObackandDeshunShi

    Fanli Meng,Hui Li,Xiaoli Wang,Guangsheng Qin,Bj?rn Obackand Deshun Shi*

    Optimized production of transgenic buffalo embryos and offspring by cytoplasmic zygote injection

    Fanli Meng1,2,Hui Li1,Xiaoli Wang1,Guangsheng Qin1,Bj?rn Oback2*and Deshun Shi1*

    Abstract

    Background:Cytoplasmic injection of exogenous DNA into zygotes is a promising technique to generate transgenic livestock.However,it is still relatively inefficient and has not yet been demonstrated to work in buffalo.We sought to improve two key technical parameters of the procedure,namely i)how much linear DNA to inject and ii)when to inject it.For this,we introduced a constitutively expressed enhanced green fluorescent protein(EGFP)plasmid into buffalo zygotes.

    Results:First,we found that the proportion of EGFP-expressing blastocysts derived from zygotes injected with 20 or 50 ng/μL DNA was significantly higher than from those injected with 5 μg/mL.However,50 ng/μL exogenous DNA compromised blastocyst development compared to non-injected IVF controls.Therefore the highest net yield of EGFP-positive blastocysts was achieved at 20 ng/μL DNA.Second,zygotes injected early(7-8 h post-insemination[hpi])developed better than those injected at mid(12-13 hpi)or late(18-19 hpi)time points.Blastocysts derived from early injections were also more frequently EGFP-positive.As a consequence,the net yield of EGFP-expressing blastocysts was more than doubled using early vs late injections(16.4%vs 7.7%).With respect to blastocyst quality,we found no significant difference in cell numbers of EGFP-positive blastocysts vs non-injected blastocysts.Following embryo transfer of six EGFP-positive blastocysts into four recipient animals,two viable buffalo calves were born. Biopsied ear tissues from both buffalo calves were analyzed for transgene presence and expression by Southern blot,PCR and confocal laser scanning microscopy,respectively.This confirmed that both calves were transgenic.

    Conclusions:Our cytoplasmic injection protocol improved generation of transgenic embryos and resulted in the first transgenic buffalo calves produced by this method.

    Buffalo,Cytoplasmic injection,Plasmid,Transgenic,Zygote

    Background

    Livestock transgenesis is a tool for elucidating gene function and can also play a key role in many biotechnological applications,such as establishing genetic disease models and producing new animal products[1].In the past,transgenic farm animals have been generated by pronuclear microinjection(reviewed in[2]),somatic nuclear transfer cloning(SCNT)and lentiviral infection(reviewedin[3]).Genetransferbypronuclearmicroinjection has a low success rate for generating transgenic livestock with 100%germline transmission[4,5].It has been reported that transgene expression in bovine and porcine embryos is only approximately 3% and 20%,respectively,with the majority of embryos being mosaics[6,7].Overall,only about 1%of livestock embryos from pronuclear injection develop into transgenic founders,posing a major obstacle in transgenic animal production.Likewise,SCNT only results in about 1-5%of transgenic embryos developing into fertile live offspring,mainly owing to genetic and epigenetic abnormalities associated with the cloning procedure[8].Lentiviral infection of early embryos has increased the efficiency of transgenesis to 10-30%[9].However,these vectors have other drawbacks,including i)restrictedtransgene size,ii)silencing of viral DNA,and iii)creation of mosaic animals,in which only some cells carry the transgene[10].

    Cytoplasmic DNA injection has emerged as an alternative method to introduce foreign genes into zygotes.Compared to traditional pronuclear injection,this technique does not require visualization of the male and female pronuclei.This is an advantage for zygotes whose high lipid contents disguise the pronuclei,such as in cattle,sheep and pig[11].In these species,zygotes are centrifuged to visualize the pronuclei,an approach which may compromise their developmental capacity[5].Using cytoplasmic injection,transgenic mice[12-15],rats[16],cynomolgus monkey[17],cattle[18]and pigs[9-21]have been produced.Using condensed DNA in combination with electroporation,2.4%of injected mouse zygotes developed into transgene-expressing blastocysts[13].In order to further increase efficiency,high concentrations(625 ng/μL)of divalent cation-complexed DNA was injected,resulting in a net yield of up to 7.4%of EGFP-positive murine morulae/blastocysts[13].In cattle,injection of naked DNA into IVF zygotes did first not yield EGFP-positive blastocysts,however,by injecting DNA-liposome complexes the rate increased to 12%[22].

    In the present study,we introduced linear DNA into buffalo zygotes by cytoplasmic injection.By varying the amount of exogenous DNA and time point of injection,we achieved a doubling in the net production of transgeneexpressing blastocysts.Following blastocyst transfer into surrogate recipients,we obtained viable transgenic buffalo calves.Taken together,we established a robust technique that resulted in the first transgenic buffalo using an optimized cytoplasmic injection protocol.

    Methods

    Reagents and media

    Chemicals were purchased from Sigma-Aldrich(St.Louis,MO,USA)and all embryo manipulations were carried out on a warm stage(38.5°C),unless indicated otherwise.

    DNA preparation

    The transgenic cassette,a 4.7 kb pEGFP-N1 plasmid encoding the EGFP gene driven by the CMV promoter(GenBank Accession#U55762,Clontech,USA),was purified by using an endotoxin-free kit(QIAGEN,USA),according to the manufacturer’s instructions.The purified plasmid was digested by ApaL I at position 4361,resulting in linear molecules with similar staggered(“sticky”)ends,and the gel extract purified by using the QIAEX II Extraction Kit.DNA concentration was determined by using a NanoDrop?1000 spectrophotometer(Thermo Fisher Scientific Inc.,Waltham,MA,USA). Linearized DNA was diluted to 100 ng/μL in MilliQ? water,aliquoted and stored at-20°C until use.

    In vitro maturation(IVM)and fertilization(IVF)of embryos

    Water buffalo ovaries(Bubalus bubalis)were collected from a local abattoir within 20-30 min after slaughter and transported to the laboratory in a thermos containing phosphate-buffered saline(PBS)at 30-35°C within4-6h.Buffalocumulus-oocytecomplexes(COCs)were recovered by aspiration of buffalo follicles(diameter 2-6 mm)using a 10 mL disposable syringe with 18-gauge needle.Only oocytes with compact,non-atretic cumulus oophorus-corona radiata,and a homogenous ooplasm were selected for IVM. The IVM medium comprised TCM-199,supplemented with 26.2 mmol/L NaHCO3,5 mmol/L HEPES,5%estrous cow serum(OCS,self-preparation),2%bovine follicular fluid(BFF)and 0.1 ng/μL FSH).COCs were transferred to a 35 mm glass dish containing 1.5 mL IVM medium and cultured for 20-22 h under a humidified atmosphere of 5%CO2in air at 38.5°C. After IVM,buffalo COCs were fertilized with proven water buffalo sperm using our standard IVF procedure[23].

    Cytoplasmic injection

    Presumptive buffalo zygotes which had extruded the second polar body were selected and transferred to a 50 μL drop of culture medium in a 60 mm dish overlaid by mineral oil.pEGFP-N1 plasmid was loaded into a microinjection needle(inner tip diameter 4-5 μm).Using manual micromanipulators(NT88-V3,Narishige,Japan)and micro-injectors(CellTram?Oil,Eppendorf,Germany)mounted to an inverted microscope(Nikon T300,Japan),approximately 12 pl plasmid was injected into the zygote cytoplasm.Theestimated injectedvolume(V)was calculated from the average inner radius of the injection needle(r=4.5 μm)and length of the injected liquid column(h=200 μm)by using the formula V=πr2*h. The basic micromanipulation medium was TCM-199,supplemented with 5 mmol/L NaHCO3,5 mmol/L HEPES and 5%OCS.After injection,the zygotes were washed twice in TCM-199,supplemented with 3%OCS culture medium and transferred into culture drops.

    In vitro culture(IVC)

    Following cytoplasmic injection,10-15 zygotes were transferred to a 30 μL drop of culture medium and cocultured with primary cumulus cells.All cultures were overlaid with mineral oil and done in an incubator with 5%CO2in humidified air at 38.5°C.The culture medium was replaced every 48 h.Cleavage was evaluated 48 h after IVC,and the number of morulae and blastocysts determined on D7.

    EGFP expression in pre-implantation embryos

    EGFP expression was observed under an epifluorescence inverted microscope(NikonT300,Japan)on D7.Briefly,different stages of implantation embryos were exposed to blue light(excitation wavelength 488 nm,emission wavelength 530 nm),the EGFP expression signal was observed and fluorescent photos acquired with a CCD camera(DS-5Mc,Nikon,Japan).

    Determination of embryo cell numbers

    Embryos were stained with 1 mg/mL Hoechst 33342(B2261)for 10 min,washed twice in PBS and single blastocysts mounted into a drop of acid solution(50 mL MilliQ?H2O+100 μL 5 N HCl+50 μL Tween-20)on glass slides.Images were acquired as described above and total nuclei numbers were manually counted.

    Embryo transfer and pregnancy monitoring

    Embryo development into blastocysts was assessed seven days after insemination(D7).EGFP-positive blastocysts were identified using an inverted fluorescence microscope as described above.EGFP-positive blastocysts were scored,and morphological grade 1 and 2 blastocysts(i.e.with a symmetrical and spherical ICM of uniform size,color and density)were selected for embryo transfer.Recipient hybrid buffalo,derived from crossing local swamp buffalo breeds with Murrah river buffalos and purchased from local farmers,were synchronized as described[24].On D7 following estrus(estrus=D0=day of IVF),EGFP-positive blastocysts were transferred nonsurgically into the uterine lumen ipsilateral to the corpus luteum.The pregnancy status of recipient cows was determined on D40 of gestation by using ultrasonography(Aloka SSD-500 scanner with a 5 MHz linear rectal probe,Aloka Co Ltd,Tokyo,Japan).

    Transgene detection

    Buffalo calves were delivered after gestation.To detect the integration of exogenous genes in these transgenic buffalo calves,genomic DNA from ear tissue was extracted and used as template to set up polymerase chain reaction(PCR).EGFP-specific amplification was performed by using the following primer pair:Forward:5'-CTGGTC GAGCTGGACGGCGAC(724-744 in pEGFP-N1:within EGFP coding sequence)-3';Reverse:5'-CTACAAAT GTGGTATGGCTGA-(1443-1423 in pEGFP-N1:between EGFP coding sequence and SV40 poly A)3′;PCR conditions were:pre-denature 95°C for 5 min,and then 95°C for 45 s,60°C for 45 s,72°C for 45 s for 35 cycles,and a last extension at 72°C for 7 min;the PCR product size was 720 bp.

    Integration of the EGFP gene was also determined by Southern blot.Briefly,20 μg of genomic DNA from ear tissue was digested with BamH I,separated on a 1% agarose gel and blotted onto a nylon membrane.An EGFP probe fragment was amplified by using the same primers as for PCR.Genomic DNA extracted from nontransgenic buffalo ear tissue was used as a negative control.Random-primed DIG-11-dUTP labeling of the DNA probe was carried out using the‘High Prime DNA Labeling and Detection Starter Kit II’(Roche,USA),according to the manufacturer’s instructions.

    Detection of EGFP expression

    Buffalo ear tissue was harvested by removing the hairs with a scalpel blade,rinsing thoroughly in cold PBS,and fixing the cells in 4%fresh paraformaldehyde at 4°C overnight.The tissues were washed and perfused in gradient concentration of sucrose solution(5%,10%,15%,30%)at 4°C,before embedding in CRYO-OCT Tissue-Tek?(FisherScientific,USA).Cryo-sections were cut at 15 μm thickness and observed under a confocallaserscanningmicroscope(ZeissLSM 510META,Germany)to identify EGFP expression. Images were acquired with an AxioCam(Zeiss),keeping allmicroscopeandlasersettingskeptconstant between different groups and replicates.Brightfield and fluorescent images were digitally enhanced for brightness and contrast in Corel Paint Shop Pro XI(‘Histogram adjustment’).The same settings were used for images of all three groups.

    Statistical analysis

    Statistical significance was accepted at P<0.05 and determined using the two-tailed Fisher exact test for independence in 2 x 2 tables for developmental data and transgene expression(Tables 1,2)or the paired twotailed Student t-test for cell counts.All values are presented as mean±SD,unless indicated otherwise.

    Results and discussion

    We focused on two parameters for optimization,namely i)DNA concentration and ii)injection time point.

    Optimizing amount of injected DNA

    In principle,higher amounts of exogenous DNA should favor DNA integration into the genome.Accordingly,we observed an increase in EGFP-positive blastocysts with increasing DNA concentrations.For the dose-response test,5,20 and 50 ng/μL exogenous linear DNA(corresponding to~1x104,~4x104and~1x105copies,respectively)were introduced into buffalo zygotes 7-8 h after IVF.For a similar size plasmid,this represents~100-fold more injected DNA molecules than in a comparable mouse study[14].Following seven days of IVC,embryo development and EGFP expression were determined(Table 1,F(xiàn)ig.1a).The rate of EGFP-positive blastocysts was significantly higher in both 20 ng/μL and 50 ng/μLcompared to 5 ng/μL(68.2±5.8%or 80.0±18.0%vs. 28.6±5.6%,P<0.05).These findings are comparable to the 44-71%fluorescent blastocysts previously achieved by injecting 10 ng/μL plasmid into bovine zygotes[25]. However,embryo development was compromised at 50 ng/μL compared to non-injected IVF controls(14.2± 3.8%vs.31.6±4.1%,P<0.05).A similar inverse relationship between efficiency of transgenesis and embryo development was previously observed in mouse pronuclear[26]and cytoplasmic injection[12].We therefore used 20 ng/μL DNA for optimizing the injection time point in the next set of experiments.

    Table 1 Effect of injected DNA concentration on embryo development and transgene expression

    Optimizing time point of injection

    For efficient transgene integration,the embryonic genome has to be accessible to the exogenous DNA.Therefore,the timing of DNA injection with respect to the period of pronuclear formation and chromatin remodeling is critical.We next compared different time points of injection with respect to embryo development and frequency of transgene expression(Table 2).Buffalo zygotes were cytoplasmically injected at 7-8 hpi,12-13 hpi and 18-19 hpi.In analogy to bovine,these time points should roughly correspond to early(pronuclei stages PN1-3),medium(PN3-6)and late(PN5-6)pronuclei formation,respectively[27].Non-injected IVF zygotes served as control.There were no significant differences in cleavage rates between these time points. Blastocyst development tended to be better at earlier time points but these differences were not significant.Accordingly,the proportion of EGFP-positive blastocysts was significantly higher at 7-8 hpi vs 18-19 hpi(63.3±5.9%vs 37.5±2.9%,P<0.05)and their net yield was more than doubled between these two time points(16.4±5.9%vs 7.7±2.9%,P=0.12).A similar increase in EGFP-positive blastocysts was previously observed when DNA-liposome complexes were injected into bovine oocytes vs zygotes at 16 hpi,resulting in net efficiencies of 0%vs 12%,respectively[22].Our finding is consistent with the chronology of early subcellular events following fertilization.At the earliest injection time point,both maternal and paternal genomes are not yet fully enclosed by their respective pronuclear membranes and therefore accessible.The male genome is also undergoing chromatin de-condensation,protamine removal and histone exchange[27-29].Collectively,these events should facilitate transgene insertion. At the latest time point,when pronuclear membranes have fully formed and the pronuclei have reached their maximal size,access to the genome will be more restricted and the chances of integration reduced.Post-replicative transgene insertion into S-phase chromatin at this stage will result in mosaicism if only one of the two daughter cells inherits the transgenic chromosomes,whereas transgene insertion prior to DNA replication will decrease the likelihood of mosaicism.Taken together,we settled on injecting 20 ng/μL DNA at 7-8 hpi as optimized conditions for subsequent experiments.

    Cell counts of transgene-expressing blastocysts

    We next characterized the morphological quality of blastocysts derived from our optimized injection conditions.There was no significant difference between randomlyselectedEGFP-positiveandnon-injected IVF blastocysts with respect to total cell counts(70±10 vs.74±8,P>0.05,F(xiàn)ig.1b).This indicated that transgene-expressingblastocystswerenotcompromised in terms of overall morphological quality.

    Table 2 Effect of injection timing on embryo development and transgene expression

    Fig.1 Characterization of EGFP-positive buffalo blastocysts.a.Microscopic evaluation by brightfield(a)and wide-field epifluorescence(a’);scale bar=100 μm.b.Nuclei numbers in EGFP-positive and non-injected IVF blastocysts.c.Mixed-sex twin buffalo calves born in December 2010

    Embryo transfer and detection of transgenic buffalo calves

    To determine their in vivo viability and capacity for full term development,six EGFP-positive blastocysts were transferred into the uterine horns of four cross-bred buffalo recipients(Table 3).One recipient was pregnant at D40 and two buffalo calves,one male and one female,were born on 2 December 2010(Table 3,F(xiàn)ig.1c).Since the GFP expression in embryos could reflect transient transcription of non-integrated DNA,both animals were analyzed for EGFP gene integration(Fig.2a).Genomic DNA,extracted from ear biopsies of the two calves and a wild-type control calf,was used as a template.Both PCR and Southern blot specifically detected presence of the EGFP transgene in the two buffalo calves that developed from EGFP-positive blastocysts(Fig.2b,c).For single-copy integration,the minimal size of the resulting BamH I fragment recognized by the Southern probewould be 3.7 kb.For multi-copy integrations(head-tohead,head-to-tail or mixed),the next bigger fragment size would be 3.7+1.0=4.7 kb.Multi-copy insertion would also result in increased signal intensity.The observed fragment sizes and signal intensities are consistent with head-to-head multi-copy and single-copy integration in the male and female calf,respectively(Fig.2c).

    Table 3 Embryo transfer summary

    We further used confocal laser scanning microscopy to directly observe EGFP expression in transgenic buffalo ear tissue cultures.EGFP signal was specifically observed in all cells from presumptive transgenic primary tissue cultures,indicating that the randomly integrated transgene was expressed and functional(Fig.2d).

    The male and female transgenic calves were born after twin embryo transfer.In cattle,the majority of females from mixed-sex dizygotic twin pregnancies are freemartins[30].This condition is due to exchange of cellular material and hormones between the vasculary connected twin placentas.As a result,over 90%of female twins have abnormally masculinized reproductive organs and are infertile.This phenomenon also occurs in buffalo[31].In our case,the female transgenic calf was diagnosed as freemartin by ultrasound analysis,precluding it from subsequent mating.The male calf has so far not been mated and analyzed for transgene segregation in the offspring.

    Conclusions

    Fig.2 Characterization of transgenic buffalo calves derived from cytoplasmic zygote injection.a.Main features of injected pEGFP-N1 plasmid,showing restriction positions(in brackets),PCR primer binding sites(single arrows),Southern probe location(double block arrow)and expected amplicon sizes.p=promoter,pA=polyA site,R=resistance;b,c.Detection of EGFP by PCR(b)and Southern blot(c)in genomic DNA extracted from biopsied ear tissues of transgenic buffalo calves(male,female)and wild-type buffalo ear tissue(WT).Water provided a no template control. d.Ear tissue sections from transgenic calves(male,female)and wild-type control calf(WT)observed by confocal laser scanning microscopy(Brightfield,EGFP and merged images,respectively)

    We demonstrate that injecting 20 ng/μL exogenous DNA into buffalo zygotes at 7-8 hpi reproducibly results in>15%transgene-expressing blastocysts.This net efficiency compares favorably to studies in mice and other livestock species,perhaps in part due to species-specific differences that affect stability and processing of exogenous DNA[32].Using these optimized parameters,we produced the first transgenic buffalos from cytoplasmic injection.This technique would also be applicable to non-reporter transgenes,which could be detected on biopsies prior to embryo transfer[33,34].

    Abbreviations

    IVM:In vitro maturation;IVF:In vitro fertilization;hpi:Hours post-insemination.

    Competing interests

    All authors declare that they have no conflict of interest that could inappropriately influence,or be perceived to influence,the submitted work.

    Authors’contributions

    FM executed the microinjection experiments,analyzed the data and drafted the manuscript.HL performed the PCR and Southern analyses,XW took confocal images,GQ performed the embryo transfers,BO analyzed the data,performed the statistical analysis and revised the manuscript.DS conceived the study and participated in its design.All authors read and approved the final manuscript.

    Acknowledgements

    We thank Dr Jingwei Wei for help with drafting the manuscript,Dr Stefan Wagner for help with Southern blot analysis and Drs Fenghua Lu and Qingyou Li for preparing the media and EGFP plasmids,respectively.This work was supported by the National Transgenic Project(2009ZX08007-009B,2011ZX08007-003),Guangxi natural science funding(2012GXNSFCB053002)and funding of State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(KSL-CUSAb-2012-02).BO was supported by AgResearch core funding.

    References

    1.Laible G,Wei J,Wagner S.Improving livestock for agriculture-technological progress from random transgenesis to precision genome editing heralds a new era.Biotechnol J.2015;10(1):109-20.

    2.Wall RJ.Pronuclear microinjection.Cloning Stem Cells.2001;3(4):209-20.

    3.Clark J,Whitelaw B.A future for transgenic livestock.Nat Rev Genet. 2003;4(10):825-33.

    4.Eyestone W.Production and breeding of transgenic cattle using in vitro embryo production technology.Theriogenology.1999;51(2):509-17.

    5.Hammer RE,Pursel VG,Rexroad Jr CE,Wall RJ,Bolt DJ,Ebert KM,et al. Production of transgenic rabbits,sheep and pigs by microinjection.Nature. 1985;315(6021):680-3.

    6.Kubisch H,Hernandez-Ledezma J,Larson M,Sikes J,Roberts R.Expression of two transgenes in in vitro matured and fertilized bovine zygotes after DNA microinjection.J Reprod Fertil.1995;104(1):133-9.

    7.Kubisch H-M,Larson M,F(xiàn)unahashi H,Day B,Roberts R.Pronuclear visibility,development and transgene expression in IVM/IVF-derived porcine embryos.Theriogenology.1995;44(3):391-401.

    8.Oback B.Climbing mount efficiency-small steps,not giant leaps towards higher cloning success in farm animals.Reprod Domest Anim.2008;43 Suppl 2:407-16.

    9.Hofmann A,Kessler B,Ewerling S,Weppert M,Vogg B,Ludwig H,et al.Efficient transgenesis in farm animals by lentiviral vectors.EMBO Rep.2003;4(11):1054-60.

    10.Ritchie WA,King T,Neil C,Carlisle AJ,Lillico S,McLachlan G,et al.Transgenic sheep designed for transplantation studies.Mol Reprod Dev.2009;76(1):61-4.

    11.McEvoy T,Coull G,Broadbent P,Hutchinson J,Speake B.Fatty acid composition of lipids in immature cattle,pig and sheep oocytes with intact zona pellucida.J Reprod Fertil.2000;118(1):163-70.

    12.Page RL,Butler SP,Subramanian A,Gwazdauskas FC,Johnson JL,Velander WH.Transgenesis in mice by cytoplasmic injection of polylysine/DNA mixtures.Transgenic Res.1995;4(6):353-60.

    13.Schmotzer CA,Butler SP,Pearson RE,Velander WH,Gwazdauskas FC.Assessment of DNA Expression Following Cytoplasmic Microinjection of Condensed DNA into Murine Embryos Using Electropulsation.Transgenics.2003;4(1):55-63.

    14.Brinster RL,Chen HY,Trumbauer ME,Yagle MK,Palmiter RD.Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs.Proc Natl Acad Sci U S A.1985;82(13):4438-42.

    15.Dunlap-Brown M,Butler SP,Velander WH,Gwazdauskas FC.Murine embryo development following cytoplasmic injection of linear and condensed DNA. Open J Anim Sci.2012;2(4):244-52.

    16.Ma Y,Zhang X,Shen B,Lu Y,Chen W,Ma J,et al.Generating rats with conditional alleles using CRISPR/Cas9.Cell Res.2014;24(1):122-5.

    17.Niu Y,Shen B,Cui Y,Chen Y,Wang J,Wang L,et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Cell.2014;156(4):836-43.

    18.Bevacqua R,Canel N,Hiriart M,Sipowicz P,Rozenblum G,Vitullo A,et al.Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos.Theriogenology.2013;80(2):104-13.e29.

    19.Garrels W,Mátés L,Holler S,Dalda A,Taylor U,Petersen B,et al.Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome.PLoS One.2011;6(8),e23573.

    20.Ivics Z,Garrels W,Mátés L,Yau TY,Bashir S,Zidek V,et al.Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons.Nature Protoc.2014;9(4):810-27.

    21.Li Z,Zeng F,Meng F,Xu Z,Zhang X,Huang X,et al.Generation of Transgenic Pigs by Cytoplasmic Injection of piggyBac Transposase Based pmGENIE-3 Plasmids.Biol Reprod.2014;90(5):93.

    22.Vichera G,Moro L,Salamone D.Efficient transgene expression in IVF and parthenogenetic bovine embryos by intracytoplasmic injection of DNA-liposome complexes.Reprod Domest Anim.2011;46(2):214-20.

    23.Shi D,Avery B,Greve T.Effects of temperature gradients on in vitro maturation of bovine oocytes.Theriogenology.1998;50(4):667-74.

    24.Yang CY,Pang CY,Yang BZ,Li RC,Lu YQ,Liang XW.Optimization of cryopreservation of buffalo(Bubalus bubalis)blastocysts produced by in vitro fertilization and somatic cell nuclear transfer.Theriogenology. 2012;78(7):1437-45.

    25.Iqbal K,Barg-Kues B,Broll S,Bode J,Niemann H,Kues W.Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos.Biotechniques.2009;47(5):959-68.

    26.Wu GY,Wu CH.Receptor-mediated in vitro gene transformation by a soluble DNA carrier system.J Biol Chem.1987;262(10):4429-32.

    27.Xu K,Greve T.A detailed analysis of early events during in-vitro fertilization of bovine follicular oocytes.J Reprod Fertil.1988;82(1):127-34.

    28.McLay DW,Clarke HJ.Remodelling the paternal chromatin at fertilization in mammals.Reproduction.2003;125(5):625-33.

    29.Liu L,Yang X.Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes.Biol Reprod.1999;61(1):1-7.

    30.Padula AM.The freemartin syndrome:an update.Anim Reprod Sci. 2005;87(1-2):93-109.

    31.Iannuzzi L,Di Meo GP,Perucatti A,Ciotola F,Incarnato D,Di Palo R,et al. Freemartinism in river buffalo:clinical and cytogenetic observations. Cytogenet Genome Res.2005;108(4):355-8.

    32.Powell DJ,Galli C,Moor RM.The fate of DNA injected into mammalian oocytes and zygotes at different stages of the cell cycle.J Reprod Fertil. 1992;95(1):211-20.

    33.Hyttinen JM,Peura T,Tolvanen M,Aalto J,Alhonen L,Sinervirta R,et al. Generation of transgenic dairy cattle from transgene-analyzed and sexed embryos produced in vitro.Biotechnology(N Y).1994;12(6):606-8.

    34.Chen SH,Vaught TD,Monahan JA,Boone J,Emslie E,Jobst PM,et al. Efficient production of transgenic cloned calves using preimplantation screening.Biol Reprod.2002;67(5):1488-92.

    *Correspondence:bjorn.oback@agresearch.co.nz;ardsshi@gxu.edu.cn

    2Present address:AgResearch Ltd.,Ruakura Research Centre,Reproductive Technologies,10 Bisley Road,Private Bag 3123,Hamilton,New Zealand

    1Animal Reproduction Institute,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,Guangxi University,75 Xiuling Road,Nanning 530005,P.R China

    ?2015 Meng et al.Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/)applies to the data made available in this article,unless otherwise stated.

    8 June 2015 Accepted:29 September 2015

    九草在线视频观看| 成人黄色视频免费在线看| 在线 av 中文字幕| av又黄又爽大尺度在线免费看| 中文字幕人妻丝袜制服| 新久久久久国产一级毛片| 亚洲精品国产av成人精品| 成人国语在线视频| 在线看a的网站| 老女人水多毛片| 五月天丁香电影| 91精品伊人久久大香线蕉| 亚洲精品国产色婷婷电影| 99热网站在线观看| 69精品国产乱码久久久| 交换朋友夫妻互换小说| 亚洲精品视频女| 亚洲国产日韩一区二区| 成年动漫av网址| 国产精品久久久av美女十八| 中文字幕亚洲精品专区| 建设人人有责人人尽责人人享有的| 成人漫画全彩无遮挡| 777米奇影视久久| av福利片在线| 国产欧美亚洲国产| 天天影视国产精品| 欧美成人精品欧美一级黄| 亚洲欧美日韩另类电影网站| 王馨瑶露胸无遮挡在线观看| 国产一区二区三区av在线| 亚洲第一av免费看| 丰满饥渴人妻一区二区三| 夜夜骑夜夜射夜夜干| 制服人妻中文乱码| 亚洲伊人久久精品综合| 国产福利在线免费观看视频| 十八禁网站网址无遮挡| 久久精品国产鲁丝片午夜精品| 咕卡用的链子| 桃花免费在线播放| av有码第一页| 亚洲,欧美精品.| 热99久久久久精品小说推荐| 国产精品久久久av美女十八| 91成人精品电影| 老司机影院成人| 日韩成人av中文字幕在线观看| 国产精品偷伦视频观看了| 免费高清在线观看日韩| 精品人妻在线不人妻| 亚洲国产最新在线播放| 国产在线视频一区二区| 国产精品麻豆人妻色哟哟久久| 男人爽女人下面视频在线观看| 日本爱情动作片www.在线观看| 性少妇av在线| 欧美日韩视频精品一区| 久久99蜜桃精品久久| 亚洲欧美精品自产自拍| 人妻一区二区av| 午夜影院在线不卡| 国产野战对白在线观看| 久久久久久久国产电影| 亚洲欧美清纯卡通| 久久影院123| freevideosex欧美| 永久网站在线| 亚洲第一区二区三区不卡| 九草在线视频观看| 国产成人精品福利久久| 精品视频人人做人人爽| 国产无遮挡羞羞视频在线观看| av国产久精品久网站免费入址| 男女边吃奶边做爰视频| 色婷婷av一区二区三区视频| 亚洲熟女精品中文字幕| 美女大奶头黄色视频| 夫妻性生交免费视频一级片| 久热这里只有精品99| 久久精品国产鲁丝片午夜精品| 97人妻天天添夜夜摸| 丰满少妇做爰视频| 国产综合精华液| 搡老乐熟女国产| 亚洲av.av天堂| 日韩人妻精品一区2区三区| 制服丝袜香蕉在线| 美女高潮到喷水免费观看| 亚洲人成网站在线观看播放| 午夜影院在线不卡| 最近2019中文字幕mv第一页| 精品久久久精品久久久| 黄色怎么调成土黄色| 久久久久久久精品精品| 大片免费播放器 马上看| 亚洲欧美一区二区三区国产| 国产亚洲最大av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品久久久久久婷婷小说| 亚洲av中文av极速乱| 国产成人精品福利久久| videos熟女内射| 在线亚洲精品国产二区图片欧美| 久久久久国产精品人妻一区二区| 国产精品国产三级国产专区5o| 天堂8中文在线网| 国产成人免费观看mmmm| 免费在线观看黄色视频的| 国产精品 国内视频| 免费女性裸体啪啪无遮挡网站| 亚洲成av片中文字幕在线观看 | 精品一区二区三卡| 999精品在线视频| 在线观看www视频免费| 免费黄色在线免费观看| 久久人人爽av亚洲精品天堂| 精品第一国产精品| 国产成人av激情在线播放| 中国国产av一级| 亚洲欧洲精品一区二区精品久久久 | 成人影院久久| 大码成人一级视频| 99热网站在线观看| 日本wwww免费看| 久久精品国产自在天天线| 中文欧美无线码| 交换朋友夫妻互换小说| 精品国产露脸久久av麻豆| 久久久久久久久久久免费av| 热99久久久久精品小说推荐| 狂野欧美激情性bbbbbb| 男女高潮啪啪啪动态图| 精品一品国产午夜福利视频| 飞空精品影院首页| 女人被躁到高潮嗷嗷叫费观| 高清欧美精品videossex| 免费日韩欧美在线观看| 啦啦啦在线免费观看视频4| 看免费av毛片| 看免费av毛片| 91精品国产国语对白视频| 91在线精品国自产拍蜜月| av国产精品久久久久影院| 亚洲内射少妇av| 国产精品三级大全| 亚洲国产精品一区三区| 中国国产av一级| 91国产中文字幕| 国产精品欧美亚洲77777| 国产综合精华液| a级毛片黄视频| 欧美 日韩 精品 国产| 精品一品国产午夜福利视频| 老熟女久久久| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 在线观看美女被高潮喷水网站| 麻豆乱淫一区二区| 亚洲国产精品999| 伊人亚洲综合成人网| 亚洲av成人精品一二三区| 色视频在线一区二区三区| 国产成人aa在线观看| 青春草视频在线免费观看| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 久久影院123| 777久久人妻少妇嫩草av网站| 伊人久久国产一区二区| 在线精品无人区一区二区三| 只有这里有精品99| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 亚洲成人一二三区av| 久久精品aⅴ一区二区三区四区 | 午夜福利在线免费观看网站| 亚洲精品久久久久久婷婷小说| 波野结衣二区三区在线| 飞空精品影院首页| 伊人久久国产一区二区| 久久毛片免费看一区二区三区| 国产一区二区三区综合在线观看| 色网站视频免费| 亚洲美女黄色视频免费看| 精品福利永久在线观看| 亚洲人成电影观看| 欧美精品国产亚洲| 精品一区在线观看国产| 国产视频首页在线观看| 久久久精品94久久精品| www.熟女人妻精品国产| av在线播放精品| 9热在线视频观看99| 激情视频va一区二区三区| videos熟女内射| 亚洲精品美女久久久久99蜜臀 | 最新的欧美精品一区二区| 国产精品国产三级专区第一集| 哪个播放器可以免费观看大片| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 国产日韩一区二区三区精品不卡| 日本av手机在线免费观看| 欧美日韩国产mv在线观看视频| 久久精品夜色国产| 韩国精品一区二区三区| 精品人妻在线不人妻| 亚洲成av片中文字幕在线观看 | 波野结衣二区三区在线| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 黄片无遮挡物在线观看| 看非洲黑人一级黄片| 亚洲欧美成人综合另类久久久| 可以免费在线观看a视频的电影网站 | 久久亚洲国产成人精品v| 日韩精品免费视频一区二区三区| 91精品三级在线观看| 成人亚洲精品一区在线观看| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 国产一区二区三区av在线| 美女国产视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产免费视频播放在线视频| 少妇人妻精品综合一区二区| 久久精品国产a三级三级三级| 18禁国产床啪视频网站| 亚洲精品美女久久av网站| 久久久久久久久久久免费av| 永久免费av网站大全| 国产一区二区三区av在线| 成人国产麻豆网| 国产国语露脸激情在线看| 亚洲国产精品一区三区| 狂野欧美激情性bbbbbb| 精品亚洲成a人片在线观看| 性高湖久久久久久久久免费观看| 午夜福利在线免费观看网站| 一级,二级,三级黄色视频| 日韩不卡一区二区三区视频在线| 一级片'在线观看视频| 人人澡人人妻人| 美女国产高潮福利片在线看| 狠狠精品人妻久久久久久综合| 男人添女人高潮全过程视频| 日本黄色日本黄色录像| 亚洲精品视频女| 在线观看三级黄色| 日本av手机在线免费观看| 欧美精品亚洲一区二区| 伊人久久大香线蕉亚洲五| 日本欧美视频一区| videosex国产| 波多野结衣一区麻豆| 一级毛片 在线播放| 在线观看国产h片| 亚洲av免费高清在线观看| 18禁动态无遮挡网站| 久久毛片免费看一区二区三区| 国产精品一区二区在线观看99| 亚洲精品,欧美精品| 日本wwww免费看| 久久综合国产亚洲精品| videossex国产| 啦啦啦啦在线视频资源| 国产xxxxx性猛交| 看免费成人av毛片| a级毛片在线看网站| 久久精品久久久久久噜噜老黄| 免费久久久久久久精品成人欧美视频| 亚洲,一卡二卡三卡| 高清欧美精品videossex| 涩涩av久久男人的天堂| 国产一区二区三区综合在线观看| 亚洲精品aⅴ在线观看| 一级毛片 在线播放| 亚洲精品av麻豆狂野| 女性被躁到高潮视频| 中文字幕制服av| 考比视频在线观看| 久久久久国产网址| 亚洲精品视频女| 成人国产av品久久久| av在线播放精品| 99热全是精品| 国产av一区二区精品久久| 亚洲经典国产精华液单| 精品国产露脸久久av麻豆| 亚洲人成77777在线视频| 美女脱内裤让男人舔精品视频| 免费观看在线日韩| 久久精品国产自在天天线| 男女边吃奶边做爰视频| 国产精品久久久久成人av| av线在线观看网站| 免费在线观看完整版高清| 国产极品天堂在线| 在线观看三级黄色| 日本欧美国产在线视频| tube8黄色片| 人人妻人人澡人人爽人人夜夜| 日韩制服骚丝袜av| 天美传媒精品一区二区| 不卡av一区二区三区| 精品亚洲乱码少妇综合久久| 午夜福利在线免费观看网站| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 亚洲精品日本国产第一区| 午夜影院在线不卡| 久久久久久久久久人人人人人人| 成人手机av| 亚洲情色 制服丝袜| 少妇人妻精品综合一区二区| 两个人免费观看高清视频| 欧美精品人与动牲交sv欧美| 午夜激情久久久久久久| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 久久精品国产亚洲av高清一级| 亚洲伊人久久精品综合| 久久精品久久精品一区二区三区| 中文字幕精品免费在线观看视频| 亚洲国产成人一精品久久久| 日韩精品免费视频一区二区三区| 一级毛片黄色毛片免费观看视频| 成人国产麻豆网| 国精品久久久久久国模美| 麻豆乱淫一区二区| 亚洲第一av免费看| 国产白丝娇喘喷水9色精品| 午夜av观看不卡| 精品一区在线观看国产| 男人爽女人下面视频在线观看| 国产亚洲精品第一综合不卡| 亚洲成色77777| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 在线免费观看不下载黄p国产| 午夜影院在线不卡| 日本免费在线观看一区| 极品人妻少妇av视频| 中文字幕最新亚洲高清| 国产成人aa在线观看| 美女中出高潮动态图| 日本-黄色视频高清免费观看| 少妇的丰满在线观看| 不卡av一区二区三区| 91成人精品电影| 最近中文字幕2019免费版| 观看av在线不卡| 久久97久久精品| 乱人伦中国视频| 一级黄片播放器| 男女午夜视频在线观看| 久久鲁丝午夜福利片| 欧美日韩一级在线毛片| 啦啦啦视频在线资源免费观看| 国产在线一区二区三区精| 久久久久久久久久人人人人人人| 亚洲综合色网址| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 街头女战士在线观看网站| 啦啦啦视频在线资源免费观看| 日韩制服丝袜自拍偷拍| av.在线天堂| 有码 亚洲区| 一区二区三区激情视频| 欧美激情极品国产一区二区三区| 欧美日韩精品成人综合77777| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 亚洲精品美女久久av网站| 看非洲黑人一级黄片| 亚洲,一卡二卡三卡| 蜜桃国产av成人99| 91精品三级在线观看| 人人妻人人澡人人看| 久久精品国产综合久久久| 精品亚洲成国产av| 两性夫妻黄色片| 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 99精国产麻豆久久婷婷| 国产男人的电影天堂91| 精品少妇一区二区三区视频日本电影 | 大香蕉久久成人网| 91精品伊人久久大香线蕉| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 成年女人在线观看亚洲视频| 精品福利永久在线观看| 91久久精品国产一区二区三区| 一级a爱视频在线免费观看| 18禁国产床啪视频网站| 国产精品成人在线| 精品少妇久久久久久888优播| 久久久久久免费高清国产稀缺| 午夜福利,免费看| 日本av免费视频播放| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 久久精品国产亚洲av涩爱| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| 国产亚洲精品第一综合不卡| 永久网站在线| xxx大片免费视频| 少妇人妻精品综合一区二区| 亚洲国产精品999| 看非洲黑人一级黄片| 午夜老司机福利剧场| 久久精品熟女亚洲av麻豆精品| 午夜日本视频在线| 国产综合精华液| 精品99又大又爽又粗少妇毛片| 波野结衣二区三区在线| 国产一区亚洲一区在线观看| 亚洲欧美一区二区三区国产| 亚洲国产精品999| 亚洲国产av影院在线观看| 在现免费观看毛片| 日韩一区二区视频免费看| 91国产中文字幕| 国产成人a∨麻豆精品| 国产日韩欧美在线精品| 国产一区二区三区av在线| 久久精品国产综合久久久| 精品一品国产午夜福利视频| 国产免费现黄频在线看| 日韩三级伦理在线观看| 一二三四在线观看免费中文在| 国产成人午夜福利电影在线观看| 制服诱惑二区| a级毛片黄视频| 亚洲人成77777在线视频| 国产人伦9x9x在线观看 | 啦啦啦在线观看免费高清www| 亚洲av在线观看美女高潮| 成人免费观看视频高清| 爱豆传媒免费全集在线观看| a 毛片基地| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人看| 又黄又粗又硬又大视频| 亚洲人成网站在线观看播放| 欧美bdsm另类| 亚洲av免费高清在线观看| 欧美老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 亚洲国产精品成人久久小说| 亚洲精品美女久久久久99蜜臀 | 纯流量卡能插随身wifi吗| 中文字幕人妻丝袜制服| 国产精品一区二区在线不卡| 久久久久久人妻| 丝袜美腿诱惑在线| 高清av免费在线| 超碰97精品在线观看| videosex国产| 一边亲一边摸免费视频| 国产无遮挡羞羞视频在线观看| 国产高清不卡午夜福利| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 欧美精品人与动牲交sv欧美| 久久97久久精品| 精品国产一区二区三区四区第35| 国产精品无大码| 2021少妇久久久久久久久久久| 国产一区二区三区综合在线观看| 免费不卡的大黄色大毛片视频在线观看| 天堂俺去俺来也www色官网| 伦理电影大哥的女人| 啦啦啦在线观看免费高清www| 婷婷成人精品国产| 欧美激情高清一区二区三区 | 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 大香蕉久久网| 夫妻午夜视频| 中文字幕制服av| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频| 成年动漫av网址| 成人国产麻豆网| 亚洲精品成人av观看孕妇| 成人亚洲欧美一区二区av| 中国国产av一级| 久久久久久久亚洲中文字幕| 国产精品成人在线| 欧美国产精品va在线观看不卡| 国产在线视频一区二区| 啦啦啦在线观看免费高清www| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看 | 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| 国产成人av激情在线播放| 男人添女人高潮全过程视频| 精品国产一区二区久久| 九色亚洲精品在线播放| 精品国产露脸久久av麻豆| 天美传媒精品一区二区| 国产精品香港三级国产av潘金莲 | 青春草国产在线视频| 熟女电影av网| 国产成人av激情在线播放| 日韩视频在线欧美| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 视频在线观看一区二区三区| 一二三四在线观看免费中文在| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 宅男免费午夜| 日韩中文字幕视频在线看片| 欧美 日韩 精品 国产| 亚洲av国产av综合av卡| 老司机亚洲免费影院| 亚洲人成77777在线视频| 免费观看性生交大片5| 欧美人与善性xxx| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品| 亚洲av男天堂| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 国产精品久久久久成人av| 国产免费现黄频在线看| 亚洲色图综合在线观看| 国产成人午夜福利电影在线观看| 色吧在线观看| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 精品亚洲成国产av| 看非洲黑人一级黄片| 超碰97精品在线观看| 婷婷色麻豆天堂久久| 亚洲国产精品成人久久小说| 亚洲成人av在线免费| 免费观看无遮挡的男女| 国产成人一区二区在线| 男女边吃奶边做爰视频| 免费少妇av软件| 一级毛片 在线播放| 午夜精品国产一区二区电影| 伊人亚洲综合成人网| 午夜老司机福利剧场| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 午夜福利,免费看| 黑人猛操日本美女一级片| 亚洲国产看品久久| 啦啦啦在线观看免费高清www| 高清在线视频一区二区三区| 亚洲av.av天堂| 老熟女久久久| 极品人妻少妇av视频| 国产精品一二三区在线看| 一级,二级,三级黄色视频| 五月天丁香电影| 久久精品国产亚洲av高清一级| 99久久综合免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一级毛片 在线播放| 91成人精品电影| 99久久中文字幕三级久久日本| 久久国产精品男人的天堂亚洲| 色婷婷av一区二区三区视频| 精品一区二区三卡| 国产视频首页在线观看| 久久精品国产亚洲av涩爱| 久久综合国产亚洲精品| 成年动漫av网址| 亚洲国产欧美在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 大片电影免费在线观看免费| 另类亚洲欧美激情| 久久ye,这里只有精品| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| 中文字幕另类日韩欧美亚洲嫩草| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 欧美成人精品欧美一级黄| 中国三级夫妇交换| 天天影视国产精品| 精品一区在线观看国产| 久久鲁丝午夜福利片| 一本大道久久a久久精品| 美女大奶头黄色视频| 男女国产视频网站| 晚上一个人看的免费电影| 亚洲天堂av无毛| 精品亚洲成国产av| 国产视频首页在线观看| 精品酒店卫生间| 99久国产av精品国产电影| 欧美xxⅹ黑人| 亚洲四区av| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 成人国产麻豆网| 国产免费又黄又爽又色| 久久午夜综合久久蜜桃| 亚洲精华国产精华液的使用体验| 91在线精品国自产拍蜜月| 免费大片黄手机在线观看|