劉蒼宇,辛仁臣
(中國地質(zhì)大學(xué)(北京)海洋學(xué)院,北京100083)
ΔlgR方法在深水沉積物層序分析中的應(yīng)用
——以松遼盆地古龍凹陷古57井青山口組為例
劉蒼宇,辛仁臣
(中國地質(zhì)大學(xué)(北京)海洋學(xué)院,北京100083)
為了探討深水沉積體系地層單元層序界面及體系域的識(shí)別和劃分方法,以松遼盆地古龍凹陷古57井的電阻率和聲波時(shí)差測井資料為基礎(chǔ),采用ΔlgR方法,計(jì)算了古57井青山口組的TOCR值,在此基礎(chǔ)上,討論了在海平面變化周期內(nèi)TOCR值的變化規(guī)律,其與層序地層單元的發(fā)育具有較好的對應(yīng)關(guān)系。在古57井青山口組識(shí)別出4個(gè)三級(jí)層序旋回,9個(gè)四級(jí)層序旋回,并進(jìn)一步劃分出水進(jìn)體系域和高位體系域。結(jié)果表明,TOCR值在水進(jìn)體系域沉積期逐漸增大,到最大湖泛面處達(dá)到極大值;在高位體系域沉積期逐漸減小,到三級(jí)和四級(jí)層序界面處達(dá)到極小值。
ΔlgR方法;層序地層分析;青山口組;松遼盆地
建立全盆地高精度等時(shí)地層格架是油氣儲(chǔ)層和隱蔽圈閉預(yù)測的基礎(chǔ)[1-4]。淺水沉積體系位于浪基面之上,常為砂泥巖互層,旋回性明顯,層序地層單元的劃分和對比方法已比較成熟[5-7],而位于浪基面之下的深水沉積體系,巖性以暗色泥巖為主,與前者相比旋回性不明顯,采用巖性組合特征劃分和對比地層單元比較困難。因此,深水沉積體系地層單元的劃分和對比就成為盆地整體高精度等時(shí)地層格架研究的難點(diǎn)。
層序地層學(xué)能夠?yàn)槭偷刭|(zhì)分析提供準(zhǔn)確的等時(shí)地層格架[8-10]。建立全盆地可靠的層序地層格架需要綜合利用地震、露頭、巖心、測井、生物地層和地球化學(xué)等資料[11-13]。然而,在盆地的深水沉積區(qū),缺少露頭資料;巖心、生物和地球化學(xué)資料均較少,且數(shù)據(jù)不連續(xù);地震資料的分辨率較低,且多以平行與亞平行反射為主,很難見到地震剖面上的上超、頂超及削截現(xiàn)象。測井資料分辨率高,縱向數(shù)據(jù)連續(xù),因此其是深水沉積層序地層分析最重要的資料。利用測井資料進(jìn)行深水沉積層序地層分析是沉積學(xué)研究的熱點(diǎn)之一[11]。
1.1層序地層格架中TOC的變化規(guī)律
前人對海相烴源巖和開闊湖泊相烴源巖的研究發(fā)現(xiàn),地層中總有機(jī)碳(TOC)與沉積環(huán)境的水體深度有關(guān)。如果沉積環(huán)境水體相對較深,陸源沉積物供應(yīng)速率較低,則TOC值很高;隨著相對基準(zhǔn)面下降,水體深度減小,沉積物進(jìn)積,則TOC值較?。?,14-15]。因此,可以通過TOC值的垂相變化,分析沉積環(huán)境水體深度的變化,進(jìn)而劃分層序地層單元。
一個(gè)沉積層序的構(gòu)成和地層疊置樣式常受構(gòu)造沉降、全球海平面升降、沉積物供給速率和氣候等4個(gè)基本因素的綜合影響[16-19]。深水沉積層序中的TOC值,除了受上述因素的影響外,還受有機(jī)質(zhì)來源和保存條件差異的影響[20]。
TOC值取決于有機(jī)質(zhì)聚集場所的氧化-還原性質(zhì)和沉積速率,而沉積速率與相對水平面有關(guān)[圖1(a)][15]??v向上,在層序邊界(SB)處,相對水平面處于較低的位置,地層大面積遭受暴露并剝蝕,沉積物的供給速率較大,這個(gè)時(shí)期水體相對較淺,在有機(jī)質(zhì)聚集場所不易形成還原環(huán)境。一般地,氧氣只在沉積物最表層的幾厘米內(nèi)存在[21],雖然快速埋藏利于有機(jī)質(zhì)的保存,但局部較高的沉積速率可降低有機(jī)質(zhì)的含量,可能導(dǎo)致TOC值較小。隨著相對水平面的上升(A—C),物源供給逐漸減小,可容納空間迅速增大,常出現(xiàn)欠補(bǔ)償沉積,沉積速率逐漸減小,而且水體較深容易形成還原環(huán)境,這有利于有機(jī)質(zhì)的保存,且TOC值呈增大趨勢。在最大湖泛面(mfs)處,常可見TOC為極大值。隨著相對水平面繼續(xù)上升(C—E),物源供應(yīng)也隨之增加,可容納空間變小[圖1(b)],沉積速率逐漸增大,碎屑物質(zhì)增多,有機(jī)質(zhì)含量降低,TOC值呈減小的趨勢。橫向上,圖1中③→①表示有機(jī)質(zhì)向盆地方向有逐漸富集的趨勢。在盆地邊緣附近(③處),陸源沉積供給速率較大,水體相對較淺,不利于有機(jī)質(zhì)的埋藏,所以僅B—C段見有機(jī)質(zhì)沉積;在盆地中心附近(①處),一般發(fā)育半深湖—深湖亞相,水體相對較深,受陸源沉積影響較小,利于有機(jī)質(zhì)的保存,有機(jī)質(zhì)較為富集,A—F段皆可見有機(jī)質(zhì)。
圖1 層序地層格架內(nèi)有機(jī)質(zhì)含量剖面示意圖Fig.1 Cross-section of organic content in the sequence stratigraphic framework
1.2TOC評(píng)價(jià)方法
目前,評(píng)價(jià)地層中TOC含量有2種方法:①實(shí)測地層中的TOC含量,但測試費(fèi)高且獲得的數(shù)據(jù)不連續(xù);②測井方法,以ΔlgR方法[聲波時(shí)差(AC)與電阻率(RLLD)曲線重疊法]使用最多、最廣泛[22-24],該方法評(píng)價(jià)得到的TOC值與實(shí)測結(jié)果具有較好的相關(guān)性[25-27]。
ΔlgR方法是??松‥xxon)公司于1979年開發(fā)的一種烴源巖有機(jī)質(zhì)含量測井預(yù)測方法[28-29],其以深度為縱坐標(biāo),以聲波時(shí)差(線性坐標(biāo))和電阻率(對數(shù)坐標(biāo))為橫坐標(biāo)。移動(dòng)聲波時(shí)差曲線或電阻率曲線,使電阻率曲線的最小值和聲波時(shí)差曲線的最大值重合,并將該點(diǎn)作為泥巖基點(diǎn)。2條曲線移動(dòng)的幅度差即為ΔlgR,其可以反映出地層中TOC值的變化[圖1(c)]。為了與實(shí)測的TOC值區(qū)別,將ΔlgR方法得到的TOC值,記作TOCR。
青山口組沉積期,松遼盆地發(fā)生大規(guī)模湖侵[30-33],齊家-古龍凹陷青山口組為半深湖—深湖沉積[34-35][圖2(a)]。以古57井為例,青山口組的巖性以暗色泥巖為主,夾褐色油頁巖和介形蟲層[圖2(b)]。測井響應(yīng)以中自然伽馬、低聲波時(shí)差和中低電阻率為特征,測井曲線為低幅值齒化曲線,依據(jù)測井和錄井資料均難以直接進(jìn)行層序地層單元的劃分。基于此,筆者采用ΔlgR方法進(jìn)行層序地層學(xué)分析。
圖2 松遼盆地青山口組沉積相(a)及古57井原始的巖性柱狀圖(b)Fig.2 Sedimentary facies of Qingshankou Formation(a)and primary lithologic log of Gu 57 well(b)in Songliao Basin
2.1ΔlgR方法計(jì)算TOCR公式
TOCR的計(jì)算公式[28,36]為
式中:TOCR為預(yù)測的總有機(jī)碳含量,%;R為實(shí)測電阻率,Ω·m;Δt為實(shí)測聲波時(shí)差,μs/m;Rb為泥巖基點(diǎn)的電阻率,Ω·m;Δtb為泥巖基點(diǎn)的聲波時(shí)差值,μs/m;Ro為鏡質(zhì)體反射率,%;ΔTOCbg為區(qū)域背景校正值[37],%。
在泥巖基點(diǎn)處,計(jì)算得到的ΔlgR值為0,若不加上ΔTOCbg值,由此計(jì)算得到的TOCR值也為0。實(shí)際上,泥巖的TOC值很難為0,因此要得到每個(gè)深度下的TOCR值,就必須加上泥巖基點(diǎn)處的TOC值(ΔTOCbg)。使用ΔlgR方法劃分層序時(shí),只需考慮目的層段TOCR值垂向變化趨勢及其相對數(shù)值,ΔTOCbg值加與不加只相當(dāng)于將曲線左右平移,不影響TOCR值的相對大小,因此,可將式(2)精簡為
2.2Ro的計(jì)算
由式(3)可知,計(jì)算不同深度的TOCR值,必須考慮相應(yīng)深度下的Ro值。前人研究均表明[38-39],松遼盆地中生界的Ro與埋藏深度有較好的相關(guān)性(圖3),Ro與埋藏深度的回歸方程為
圖3 松遼盆地Ro與深度的關(guān)系(據(jù)文獻(xiàn)[38]修改)Fig.3 Relationship between Roand depth in Songliao Basin
式中:h為深度,m。
利用式(4),筆者計(jì)算了青山口組不同埋藏深度的Ro值。
2.3TOCR值的計(jì)算結(jié)果
TOCR值是依據(jù)泥巖的電阻率和聲波測井?dāng)?shù)據(jù)計(jì)算得到的,因此,在計(jì)算TOCR值的過程中,需要對原始電阻率和聲波時(shí)差測井?dāng)?shù)據(jù)進(jìn)行處理,剔除非泥巖層的異常電阻率和聲波時(shí)差測井?dāng)?shù)據(jù)。古57井青山口組的非泥巖主要是介形蟲層和泥灰?guī)r。
古57井的RLLD值在井深為1 947.4 m處最小,將該點(diǎn)作為泥巖基點(diǎn),疊合聲波時(shí)差曲線和電阻率曲線。泥巖基點(diǎn)的電阻率Rb為2.731 2 Ω·m,聲波時(shí)差Δtb為98.0443 μs/m,將其代入式(1),再代入每個(gè)深度下的實(shí)測電阻率值和實(shí)測聲波時(shí)差值,即可計(jì)算出對應(yīng)深度下的ΔlgR值。將ΔlgR值和利用式(4)計(jì)算得到的Ro值代入式(3),即可得到TOCR隨埋藏深度的變化曲線(圖4)。
圖4 古57井青山口組基于TOCR曲線的層序劃分Fig.4 Sequence division of Qingshankou Formation in Gu 57 well based on TOCRcurve
古57井青山口組的TOCR值具有向上變大又變小的明顯的多級(jí)次旋回性,不同級(jí)次旋回是不同級(jí)別層序的響應(yīng)。
根據(jù)TOCR曲線出現(xiàn)的幅度和形態(tài)的驟變,劃分出4個(gè)與三級(jí)層序[40-41]級(jí)別相當(dāng)?shù)男兀上孪蛏弦来蚊麨镾Qqn1,SQqn2,SQqn3和SQqn4(參見圖4)。SQqn1三級(jí)層序旋回(2 357.0~2 440.0 m),巖性為黑色泥巖,TOCR值為0.28~0.95,平均為0.58,曲線形態(tài)表現(xiàn)為雙峰形不對稱旋回,以向上變大的半旋回為主。SQqn2三級(jí)層序旋回(2 153.4~2 357.0 m),巖性為深灰色泥巖,TOCR值為0.02~0.91,平均為0.48,曲線形態(tài)表現(xiàn)為多峰形近對稱旋回。SQqn3三級(jí)層序旋回(2 033.8~2 153.4m),巖性為深灰色泥巖,TOCR值為0.02~1.09,平均為0.47,曲線形態(tài)表現(xiàn)為多峰形不對稱旋回。SQqn4三級(jí)層序旋回(1 945.3~2 033.8 m),巖性為深灰色泥巖,TOCR值為0~1.05,平均為0.34,曲線形態(tài)表現(xiàn)為單峰形近對稱旋回。
下面以古57井SQqn4三級(jí)層序?yàn)槔?,剖析TOCR值在層序內(nèi)部的變化特征(圖5)。SQqn4三級(jí)層序旋回可劃分為2個(gè)與四級(jí)層序[41]級(jí)別相當(dāng)?shù)男兀–8和C9)。
圖5 古57井SQqn4層序地層分析Fig.5 Sequence stratigraphic analysis of SQqn4 of Gu 57 well
C8四級(jí)層序厚度為62.1 m,為水進(jìn)域(TSTC8,51.1 m)占絕對優(yōu)勢的不對稱旋回。底界面(SB8)處的TOCR值為0.15,其最大湖泛面(mfsC8)處的TOCR值為1.05,水進(jìn)域(TSTC8)TOCR平均值為0.3,高位域(HSTC8,11.0 m)TOCR平均值為0.47。C8四級(jí)層序由16個(gè)準(zhǔn)層序疊加而成,正旋回準(zhǔn)層序略占優(yōu)勢,反映了7次以上升略占優(yōu)勢的湖平面升降。
C9四級(jí)層序厚度為28.5 m,為水進(jìn)域(TSTC9,13.8 m)和高位域(HSTC9,14.7m)近對稱旋回。底界面(SB9)處的TOCR值為0.14,其最大湖泛面(mfsC9)處的TOCR值為0.74,水進(jìn)域TOCR平均值為0.39,高位域TOCR平均值為0.3。C9四級(jí)層序由6個(gè)準(zhǔn)層序疊加而成,早期正旋回略占優(yōu)勢,晚期反旋回略占優(yōu)勢,反映了湖平面先上升后下降,整個(gè)沉積期湖平面在某一穩(wěn)定界面附近波動(dòng)的變化過程。
C8四級(jí)層序的水進(jìn)域構(gòu)成了SQqn4三級(jí)層序的水進(jìn)域(TSTqn4),C8四級(jí)層序的高位域和C9四級(jí)層序構(gòu)成了SQqn4三級(jí)層序的高位域(HSTqn4)??梢奡Qqn4主要發(fā)育TOCR值向上增大的正旋回三級(jí)準(zhǔn)層序,反映了此時(shí)期以湖平面相對上升稍占優(yōu)勢的湖平面升降。
由TOCR曲線形態(tài)可知,SQqn1三級(jí)層序?yàn)殡p峰形不對稱型旋回(參見圖4),以水進(jìn)域半旋回為主,反映湖平面以相對上升為主;SQqn2三級(jí)層序?yàn)槎喾逍尾粚ΨQ旋回,以高位域半旋回為主,反映湖平面以相對下降為主;SQqn3三級(jí)層序?yàn)槎喾逍谓鼘ΨQ旋回,高位域半旋回略占優(yōu)勢,反映湖平面繼續(xù)下降;SQqn4三級(jí)層序?yàn)閱畏逍谓鼘ΨQ旋回,水進(jìn)域半旋回略占優(yōu)勢,反映此沉積期湖平面以相對上升為主。
(1)古57井青山口組TOCR值由下向上表現(xiàn)為低→高→低的9個(gè)旋回。
(2)古57井青山口組共劃分出4個(gè)三級(jí)層序,對應(yīng)于9個(gè)TOCR值旋回,劃分出9個(gè)四級(jí)層序,并進(jìn)一步劃分出水進(jìn)體系域和高位體系域。
(3)青山口組沉積期,松遼盆地深水區(qū)經(jīng)歷了相對湖平面先上升再下降后上升的變化過程。
(References):
[1]鄭榮才,彭軍,彭光明,等.高分辨率層序分析在油藏開發(fā)工程中的應(yīng)用——以百色盆地侖35塊那二段油藏為例[J].沉積學(xué)報(bào),2003,21(4):654-662. Zheng Rongcai,Peng Jun,Peng Guangming,et al.Analysis of highresolution sequence stratigraphy of the second member of Nadu formation in Lun-35 block of Baise basin and its application in development of oil reservoir[J].Acta Sedimentologica Sinica,2003,21(4):654-662.
[2]廖計(jì)華,王華,孫志鵬,等.瓊東南盆地深水區(qū)長昌凹陷構(gòu)造演化及其對層序樣式的控制[J].中南大學(xué)學(xué)報(bào):自然科學(xué)版,2012,43(8):3121-3132. Liao Jihua,Wang Hua,Sun Zhipeng,et al.Tectonic evolution and its controlling on sequence pattern of Chang-chang sag,deepwater area of Qiongdongnan basin,South China Sea[J].Journal of Central South University:Science and Technology,2012,43(8):3121-3132.
[3]李延平,于坤,姜耀儉,等.松遼盆地泉四段扶余油層地層層序新認(rèn)識(shí)[J].中國海洋大學(xué)學(xué)報(bào),2007,37(6):977-982. Li Yanping,Yu Kun,Jiang Yaojian,et al.A new explanation forthe stratigraphical sequence of Quan 4th member of the Fuyu oil layer in the Songliao basin[J].Periodical of Ocean University of China,2007,37(6):977-982.
[4]趙翰卿.高分辨率層序地層對比與我國的小層對比[J].大慶石油地質(zhì)與開發(fā),2005,24(1):5-9. Zhao Hanqing.High-resolution sequential stratigraphy correlation and Chinese subzone correlation[J].Petroleum Geology&Oilfield Development in Daqing,2005,24(1):5-9.
[5]李雪,祝傳林,操應(yīng)長.深水沉積的層序地層單元?jiǎng)澐址椒ㄌ接憽詵|營凹陷牛38井為例[J].江漢石油學(xué)院學(xué)報(bào),2004,26(2):15-17. Li Xue,Zhu Chuanlin,Cao Yingchang.Methods for dividing sequence stratigraphic units of deep-water deposition—By taking well Niu 38 for example[J].Journal of Jianghan Petroleum Institute,2004,26(2):15-17.
[6]孫鈺,鐘建華,姜在興,等.松遼盆地南部坳陷期層序地層研究[J].中國石油大學(xué)學(xué)報(bào):自然科學(xué)版,2006,30(5):1-7. Sun Yu,Zhong Jianhua,Jiang Zaixing,et al.Study of sequence stratigraphy of depression period in southern Songliao basin[J].Journal of China University of Petroleum:Edition of Natural Sciences,2006,30(5):1-7.
[7]劉招君,孫平昌,賈建亮,等.陸相深水環(huán)境層序識(shí)別標(biāo)志及成因解釋:以松遼盆地青山口組為例[J].地學(xué)前緣,2011,18(4):171-180. Liu Zhaojun,Sun Pingchang,Jia Jianliang,et al.Distinguishing features and their genetic interpretation of stratigraphic sequences in continental deep water setting:A case from Qingshankou formation in Songliao basin[J].Earth Science Frontiers,2011,18(4):171-180.
[8]石萬忠,李舉子,李夢溪,等.時(shí)-頻分析在高分辨率層序地層學(xué)中的應(yīng)用[J].石油與天然氣地質(zhì),2001,22(3):234-237. Shi Wanzhong,Li Juzi,Li Mengxi,et al.Application of time-frequency analysis to high resolution sequence stratigraphy[J].Oil& Gas Geology,2001,22(3):234-237.
[9]孫致學(xué),凌慶珍,鄧虎成,等.高分辨率層序地層學(xué)在油田深度開發(fā)中的應(yīng)用[J].石油學(xué)報(bào),2008,29(2):239-245. Sun Zhixue,Ling Qingzhen,Deng Hucheng,et al.Application of high-resolution sequence stratigraphy in deep development of oilfield[J].Acta Petrolei Sinica,2008,29(2):239-245.
[10]李思田,楊士恭,林暢松.論沉積盆地的等時(shí)地層格架和基本建造單元[J].沉積學(xué)報(bào),1992,10(4):11-22. Li Sitian,Yang Shigong,Lin Changsong.On the chronostratigraphic framwork and basic budilding blocks of sedimentary basin[J].Acta Sedimentologica Sinica,1992,10(4):11-22.
[11]Catuneanu O,Abreu V,Bhattacharya J P,et al.Towards the standardization of sequence stratigraphy[J].Earth-Science Reviews,2009,92:1-33.
[12]林暢松,張燕梅,劉景彥,等.高精度層序地層學(xué)和儲(chǔ)層預(yù)測[J].地學(xué)前緣,2000,7(3):111-117. Lin Changsong,Zhang Yanmei,Liu Jingyan,et al.High resolution sequence stratigraphy and reservoir prediction[J].Earth Science Frontiers,2000,7(3):111-117.
[13]楊小萍,劉桂俠,馬文杰.層序地層學(xué)研究現(xiàn)狀及發(fā)展趨勢[J].西北地質(zhì),2001,34(2):16-20. Yang Xiaoping,Liu Guixia,Ma Wenjie.Current situation and developing tendency of sequence stratigraphy[J].Northwestern Geology,2001,34(2):16-20.
[14]楊玉峰,王占國,張維琴.松遼盆地湖相泥巖地層有機(jī)碳分布特征及層序分析[J].沉積學(xué)報(bào),2003,21(2):340-344. Yang Yufeng,Wang Zhanguo,Zhang Weiqin.The pattern of total organic carbon and sequences within mudstone formation,Songliao basin[J].Acta Sedimentologica Sinica,2003,21(2):340-344.
[15]Creaney S,Passey Q R.Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework[J].AAPG Bulletin,1993,77(3):386-401.
[16]馮有良,李思田,解習(xí)農(nóng).陸相斷陷盆地層序形成動(dòng)力學(xué)及層序地層模式[J].地學(xué)前緣,2000,7(3):119-132. Feng Youliang,Li Sitian,Xie Xinong.Dynamics of sequence generation and sequence stratigraphic model in continental rift-subsidence basin[J].Earth Science Frontiers,2000,7(3):119-132.
[17]郭川,李國蓉,楊瑩瑩,等.四川通江-南江-巴中地區(qū)長興組層序地層特征及演化模式[J].沉積與特提斯地質(zhì),2011,31(3):28-32. Guo Chuan,Li Guorong,Yang Yingying,et al.Sequence stratigraphy and evolutionary models for the Changxing formation in the Tongjiang-Nanjiang-Bazhong zone,Sichuan[J].Sedimentary Geology and Tethyan Geology,2011,31(3):28-32.
[18]李延平,郝艷春,王慶考,等.陸相河流—湖泊沉積體系準(zhǔn)層序識(shí)別原理[J].大慶石油地質(zhì)與開發(fā),2013,32(5):7-11. Li Yanping,Hao Yanchun,Wang Qingkao,et al.Identifying principle of the subsequences for continental fluvial-lacustrine sedimentary system[J].Petroleum Geology and Oilfield Development in Daqing,2013,32(5):7-11.
[19]王琪,陳國俊,薛蓮花,等.塔里木盆地西部層序地層格架控制下的石炭系沉積成巖演化特征[J].石油實(shí)驗(yàn)地質(zhì),2003,25(1):39-44. Wang Qi,Chen Guojun,Xue Lianhua,et al.Evolutionary characteristics of the carboniferous sedimentation and diagenesis controlled by the sequence stratigraphic framework of the West Tarim basin[J].Petroleum Geology&Experiment,2003,25(1):39-44.
[20]李美俊,李思田,楊龍,等.層序地層地球化學(xué)及其在油氣勘探中的作用[J].地學(xué)前緣,2005,12(3):219-226. Li Meijun,Li Sitian,Yang Long,et al.Sequence stratigraphic geochemistry and its application to hydrocarbon exploration[J].Earth Science Frontiers,2005,12(3):219-226.
[21]Sweerts J P,Rudd J W M,Kelly C A.Metabolic activities in flocculent surface sediments and underlying sandy littoral sediments[J].Limnol Oceanogr,1986,31(2):330-338.
[22]袁東山,王國斌,湯澤寧,等.測井資料評(píng)價(jià)烴源巖方法及其進(jìn)展[J].石油天然氣學(xué)報(bào)(江漢石油學(xué)院學(xué)報(bào)),2009,31(4):192-194. Yuan Dongshan,Wang Guobin,Tang Zening,et al.Methods for evaluating source rocks by well-logging data and its progress[J]. Journal of Oil and Gas Technology(Journal of Jianghan PetroleumInstitute),2009,31(4):192-194.
[23]張志偉,張龍海.測井評(píng)價(jià)烴源巖的方法及其應(yīng)用效果[J].石油勘探與開發(fā),2000,27(3):84-87. Zhang Zhiwei,Zhang Longhai.A method of source rock evaluation by well-logging and its application result[J].Petroleum Exploration and Development,2000,27(3):84-87.
[24]熊鐳,張超謨,張沖,等.A地區(qū)頁巖氣儲(chǔ)層總有機(jī)碳含量測井評(píng)價(jià)方法研究[J].巖性油氣藏,2014,26(3):74-78. Xiong Lei,Zhang Chaomo,Zhang Chong,et al.Research on logging evaluation method of TOC content of shale gas reservoir in A area[J].Lithologic Reservoirs,2014,26(3):74-78.
[25]稅蕾蕾,張曉玲,郭龍.烴源巖固體有機(jī)質(zhì)測井響應(yīng)及應(yīng)用研究[J].石油天然氣學(xué)報(bào),2012,34(9):101-104. Shui Leilei,Zhang Xiaoling,Guo Long.Well logs response of solid organic matter in source rocks and its application[J].Journal of Oil and Gas Technology,2012,34(9):101-104.
[26]王艷茹,劉洛夫,楊麗萍,等.鄂爾多斯盆地長7烴源巖有機(jī)碳測井評(píng)價(jià)[J].巖性油氣藏,2013,25(4):78-82. Wang Yanru,Liu Luofu,Yang Liping,et al.Logging evaluation of organic carbon content of Chang 7 source rocks in Ordos basin[J]. Lithologic Reservoirs,2013,25(4):78-82.
[27]曲彥勝,鐘寧寧,劉巖,等.烴源巖有機(jī)質(zhì)豐度的測井計(jì)算方法及影響因素探討[J].巖性油氣藏,2011,23(2):80-83. Qu Yansheng,Zhong Ningning,Liu Yan,et al.Using logging methods to calculate organic matter abundance of source rocks and its influencing factors[J].Lithologic Reservoirs,2011,23(2):80-83.
[28]林霖.烴源巖測井評(píng)價(jià)在銀額盆地天草凹陷的應(yīng)用[J].吐哈油氣,2012,17(3):212-217. Lin Lin.Application of logging evaluation of hydrocarbon source rocks in Tiancao sag of Yin’e basin[J].Tuha Oil&Gas,2012,17(3):212-217.
[29]Passey Q R,Creaney S,Kulla J B,et al.Practical model for organic richness from porosity and resistivity logs[J].AAPG Bulletin,1990,74(12):1777-1794.
[30]侯啟軍,馮志強(qiáng),馮子輝,等.松遼盆地陸相石油地質(zhì)學(xué)[M].北京:石油工業(yè)出版社,2009:181-182. Hou Qijun,F(xiàn)eng Zhiqiang,F(xiàn)eng Zihui,et al.Nonmarine Petroleum geology of Songliao Basin[M].Beijing:Petroleum Industry Press,2009:181-182.
[31]柳波,王蕃,冉清昌,等.松遼盆地北部青一段含油泥頁巖儲(chǔ)集特征淺析[J].巖性油氣藏,2014,26(5):64-68. Liu Bo,Wang Fan,Ran Qingchang,et al.Characteristics of shale reservoir of the first member of Qingshankou formation in northern Songliao basin[J].Lithologic Reservoirs,2014,26(5):64-68.
[32]汪海燕,張順,付秀麗.松遼盆地泉頭組四段沉積充填與成藏響應(yīng)[J].大慶石油地質(zhì)與開發(fā),2010,29(6):18-23. Wang Haiyan,Zhang Shun,F(xiàn)u Xiuli.Depositional filling and reservoir-forming response of No.4 member in Quantou formation in Songliao Basin[J].Petroleum Geology and Oilfield Development in Daqing,2010,29(6):18-23.
[33]陳曉東,盧雙舫,張世廣,等.松遼盆地紅崗階地青山口組地層層序和沉積特征[J].大慶石油地質(zhì)與開發(fā),2012,31(3):41-46. Chen Xiaodong,Lu Shuangfang,Zhang Shiguang,et al.Stratigraphic sequences and sedimentary features of Qingshankou formation in Honggang terrace[J].Petroleum Geology and Oilfield Development in Daqing,2012,31(3):41-46.
[34]張順,付秀麗,張晨晨.松遼盆地泉頭組及青山口組沉積演化與成藏響應(yīng)[J].石油天然氣學(xué)報(bào)(江漢石油學(xué)院學(xué)報(bào)),2011,33(1):6-10. Zhang Shun,F(xiàn)u Xiuli,Zhang Chenchen.The sedimentary evolution and response to hydrocarbon accumulation of Quantou and Qingshankou Formation in Songliao basin[J].Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institue),2011,33(1):6-10.
[35]Feng Zhiqiang,Jia Chengzao,Xie Xinong,et al.Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin,northeast China[J].Basin Research,2010,22:79-95.
[36]許曉宏,黃海平,盧松年.測井資料與烴源巖有機(jī)碳含量的定量關(guān)系研究[J].江漢石油學(xué)院學(xué)報(bào),1998,20(3):8-12. Xu Xiaohong,Huang Haiping,Lu Songnian.A quantitative relationship between well logging information and organic carbon content[J].Journal of Jianghan Petroleum Institute,1998,20(3):8-12.
[37]趙杰,李霞,楊雪冰.古龍地區(qū)青山口組泥巖裂縫有效儲(chǔ)層識(shí)別方法[J].大慶石油地質(zhì)與開發(fā),2013,32(4):147-150. Zhao Jie,Li Xia,Yang Xuebing.Identifying method of the effective shale-fractured reservoirs in Qingshankou formation of Gulong area[J].Petroleum Geology and Oilfield Development in Daqing,2013,32(4):147-150.
[38]逯曉喻,黃志龍,王斌,等.松遼盆地肇源地區(qū)石炭系—二疊系熱演化史研究[J].天然氣地球科學(xué),2013,24(3):548-554. Lu Xiaoyu,Huang Zhilong,Wang Bin,et al.Research of Carboniferous-Permian thermal history in Zhaoyuan area of Songliao basin[J].Natural Gas Geoscience,2013,24(3):548-554.
[39]任戰(zhàn)利,蕭德銘,遲元林,等.松遼盆地基底石炭-二疊系熱演化史[J].石油與天然氣地質(zhì),2011,32(3):430-439. Ren Zhanli,Xiao Deming,Chi Yuanlin,et al.Restoration of thermal history of the Permo-Carboniferous basement in the Songliao basin[J].Oil&Gas Geology,2011,32(3):430-439.
[40]梁江平,辛仁臣,王樹恒,等.松遼盆地中部含油組層序地層格架及介形類特征的響應(yīng)[J].地層學(xué)雜志,2005,29(4):405-409. Liang Jiangping,Xin Renchen,Wang Shuheng,et al.Sequencestratigraphic framework and its response to cypridea of the middle oil-bearing beds of the Songliao basin[J].Journal of Stratigraphy,2005,29(4):405-409.
[41]辛仁臣,王樹恒,梁江平,等.松遼盆地北部西斜坡青山口組三段四級(jí)層序格架內(nèi)沉積微相分布[J].現(xiàn)代地質(zhì),2014,28(4):782-790. Xin Rinchen,Wang Shuheng,Liang Jiangping,et al.Sedimentary microfacies distribution under the 4th-order sequence stratigraphic framework of the third member of Qingshankou formation in west slope of the northern part of Songliao basin[J].Geoscience,2014,28(4):782-790.
(本文編輯:李在光)
Application of ΔlgR method in sequence stratigraphy analysis of deep-water sediments:A case study from Qingshankou Formation of Gu 57 well in Gulong Depression,Songliao Basin
Liu Cangyu,Xin Renchen
(School of Marine Sciences,China University of Geosciences,Beijing 100083,China)
Inordertodiscussthemethodofidentifyingandclassifyingsequenceboundaryandsystemtract indeep-water sedimen-tary system,this paper calculated the values of TOCRof Qingshankou Formation with ΔlgR method on the basis of resistivity and sonic logging data of Gu 57 well in Songliao Basin.With the curve of TOCR,the variation characteristics of TOCRcorrelate well with the development of sequence stratigraphy units during the sea level change cycle.4 third-order sequences and 9 fourth-order sequences were recognized in Qingshankou Formation of Gu 57 well,and they were further divided into transgression and highstand system tracts.The result shows that the values of TOCRgradually increase during the TST period and the maximum value is in the maximum flooding surface,and that they gradually decrease during the HST period and the minimal value is in the forth-order and third-order sequence boundaries. Key words:ΔlgR method;stratigraphysequence analysis;Qingshankou Formation;SongliaoBasin
P539.2
A
1673-8926(2015)05-0030-07
2015-05-20;
2015-07-09
國家重大科技專項(xiàng)“巖性地層油氣藏成藏規(guī)律、關(guān)健技術(shù)及目標(biāo)評(píng)價(jià)”(編號(hào):2011ZX05001002)資助
劉蒼宇(1990-),男,中國地質(zhì)大學(xué)(北京)在讀碩士研究生,研究方向?yàn)槌练e學(xué)。地址:(100083)北京市海淀區(qū)學(xué)院路29號(hào)中國地質(zhì)大學(xué)(北京)校區(qū)。E-mail:1026344174@qq.com
辛仁臣(1964-),男,博士,副教授,主要從事沉積學(xué)、層序地層學(xué)與石油地質(zhì)學(xué)方面的教學(xué)和科研工作。E-mail:xinrenchen@163.com。