• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strict greedy design paradigm applied to the stochastic multi-armed bandit problem

    2015-09-01 06:54:30JoeyHong
    機(jī)床與液壓 2015年6期

    At each decision, the environment state provides the decision maker with a set of available actions from which to choose. As a result of selecting a particular action in the state, the environment generates an immediate reward for the decision maker and shifts to a different state and decision. The ultimate goal for the decision maker is to maximize the total reward after a sequence of time steps.

    This paper will focus on an archetypal example of reinforcement learning, the stochastic multi-armed bandit problem. After introducing the dilemma, I will briefly cover the most common methods used to solve it, namely the UCB andεn-greedy algorithms. I will also introduce my own greedy implementation, the strict-greedy algorithm, which more tightly follows the greedy pattern in algorithm design, and show that it runs comparably to the two accepted algorithms.

    1 Introduction

    Reinforcement learning involves the optimization of the exploration of higher-reward options in the future based on the exploitation of knowledge of past rewards. Exploration-exploitation tradeoff is most thoroughly studied through the multi-armed bandit problem. The problem receives its name because of its application to the decisions facing a casino gambler when determining which slot machine, colloquially called “one-armed bandit,” to play.

    The K-armed bandit problem consists ofKslot machines, each machine having an unknown stationary mean reward value in [0,1]. The observed reward of playing each machine is defined by the variableXi,n, where 1 ≤i≤Kis the index of the machine andn≥ 1 is the decision time step index. Successive plays of machineiyield rewards,Xi,1,Xi,2,… that are independent but distributed accordingtthe unknown mean valueμi. The problem proceeds as follows:

    For each roundn=1, 2, …

    1) The gambler chooses machinei∈ {1,…,K}.

    2) The environment returns rewardXi,naccording to meanμibut independent of past rewards.

    2 Background

    A policy or allocation strategy is an approach that chooses the next machine based on the results of previous sequences of plays and rewards.

    Let

    or the mean value of the optimal machine.

    IfTi(n) is the number of times machineihas been played, the expected loss of the policy afternplays can be written as

    We also define

    Lai and Robbins (1985) proved that under policies where the optimal machine is played exponentially more than sub-optimal ones, the number of plays of sub-optimal machinejis asymptotically bounded by

    wheren→ ∞ and

    is the Kullback-Leibler divergence between machinej’s reward densitypjand the optimal machine’sp*. Therefore, the best possible regret is shown to be logarithmic tonin behavior.

    3 Algorithms

    The following policies work by associating each machine with an upper confidence index. Each index acts as an estimate for the expected reward of the corresponding machine, allowing the policy to play the machine with the current highest index. We define the current average reward from machineito bewi/ni, wherewiis the total reward from machinei.

    3.1 Upper confidence bounds (UCB)

    The UCB policy, the most prevalent solution to the multi-armed bandit problem, is a variant of the index-based policy that achieves logarithmic regret uniformly rather than merely asymptotically. The UCB policy constructs an upper confidence bound on the mean of each arm and consequently, chooses the arm that appears most favorable under these estimates.

    DeterministicPolicy:UCBInitialization:PlayeachmachineonceMain:Foreachroundn=1,2,…-Playmachinejwithmaximumxj+2lnnnjwherexjisthecurrentaveragerewardfrommachinej,njisthenumberoftimesmachinejhasbeenplayed,andnisthedecisionindexthusfar.

    3.2 εn-greedy

    Theεn-greedy heuristic is widely used because of its obvious generalizations to other sequential decision processes. At each time step, the policy selects the machine with the highest empirical mean value with probability 1-ε, and with probabilityε, a random machine. To keep the regret at logarithmic growth,εapproaches 0 at a rate of 1/n, wherenis still the current decision epoch index.

    RandomizedPolicy:εn-greedy(decreasingε)Parameters:c>0and0

    However, in an earlier empirical study, Vermorel and Mohri (2005) did not find any pragmatic advantages to obtaining logarithmic instead of linear bound through decreasingεover time. Our implementation will only consider fixed values ofε. The fixed ε creates a weighted equilibrium between exploration and exploitation throughout the heuristic.

    RandomizedPolicy:εn-greedy(fixedε)Parameters:0<ε<1.Initialization:PlayeachmachineonceMain:Foreachroundn=1,2,…-Letjbethemachinewithmaximumcur-rentaveragereward-Playmachinejwithprobability1-εandarandommachinewithprobabilityε.

    4 A pure greedy algorithm

    The greedy design paradigm can be summarized as iteratively making myopic and irrevocable decisions, thereby always making the locally optimal choice in hopes of global optimum. Though the relative correctness of theεn-greedy heuristic is experimentally supported, there are several areas where it strays from the described pure greedy paradigm:

    1) After the initialization where each machine is played, the greedy algorithm’s decisions are no longer parochial in nature, as the algorithm is unfairly given a broader knowledge of each machine when making decisions. Employing such initialization also requires unreasonably many steps.

    2) Theεfactor in making decisions allows the algorithm to not always choose the local optimum. The introduction of randomization into the algorithm effectively disrupts the greedy design paradigm.

    The primary problem we face when designing the strictly greedy algorithm is in its initialization, as the absence of any preliminary knowledge of reward distributions mistakenly puts each machine on equal confidence indices.

    4.1 Strict-greedy

    To solve the aforementioned dilemma, each machine is initialized with average reward 1/1. Therefore, each machine can be effectively played until its return drops below 1, where the algorithm deems the machine inadequate and moves to another machine. The capriciousness of the policy allows the optimal machine to be quickly found, and thus, likely minimizes the time spent on suboptimal states. The policy, therefore, encourages explorative behavior in the beginning and highly exploitative behavior towards the end. However, this policy’s behavior also does not exhibit uniform or asymptotic logarithmic regret.

    DeterministicPolicy:strict-greedyInitialization:Eachmachinestartswithanaver-agerewardof1/1.Main:Foreachroundn=1,2,…-Playmachinejwithmaximumcurrentaveragereward.

    4.2 Proof

    The following proof is inspired from the proof of the aboveεn-greedy heuristic shown in “Finite-time Analysis of the Multiarmed Bandit Problem.”

    Claim.We denoteItas the machine played at playt, so

    which isthe sum of probabilities playtresults in suboptimal machinej. The probability that strict-greedy chooses a suboptimal machine is at most

    whereΔj=μ*-μj

    and

    Proof. Recall that

    because analysis is same for both terms on the right.

    By Lemma 1 (Chernoff-Hoeffding Bound), we get

    Since

    we have that

    where in the last line, we dropped the conditional term because machines are played independently of previous choices of the policy. Finally,

    which concludes the proof.

    5 Experimentation

    Each policy was implemented with a maximum heap data structure, which used a Boolean operator to choose the higher average reward or UCB index. If ties exist, the operator chooses the machine that has been played more often, and after that, randomly.

    Because of the heap’s logarithmic time complexities in insertions and constant time in extracting maximums, the bigOnotation for each algorithm’s runtime isO(K+nlogK) for UCB andεn-greedy andO(nlogK) for the strict-greedy, where n is the total rounds played andKis the number of slot machines, revealing a runtime benefit for the strict-greedy for largeK.

    In the implementation of theεn-greedy strategy,εwas arbitrarily assigned the value 0.01, to limit growing regret while ensuring a uniform exploration. A finite-time analysis of the 3 specified policies on various reward distributions was used to assess each policy’s empirical behavior. The reward distributions are shown in the following table:

    10.450.920.800.930.450.540.450.450.450.450.450.450.450.950.800.80.80.80.80.80.80.960.450.450.450.450.450.450.450.5

    Note that distributions 1 and 4 have high variance with a highμ*, distributions 2 and 5 have low variance with highμ*, and distribution 3 and 6 have low variance with lowμ*Distributions 1-3 are also 2-armed variations whereas distributions 4-6 are 8-armed.

    In each experiment, we tracked the regret, the difference between the reward of always playing the optimal machine and the actual reward. Runs on the plots (shown in next page) were done in a spread of values from 10 000 to 100 000 plays to keep runtime feasible. Each point on the plots is based on the average reward calculated from 50 runs, to balance out the effects of anomalous results.

    Fig.1 shows that the strict-greedy policy runs better than the UCB policy for smallx, but falls in accuracy at 100 000 plays due to its linear regret, which agrees with the earlier proof. Theεn-greedy preforms always slightly worse, but that may be attributed to a suboptimally chosen parameter, which increases its linear regret growth.

    Fig.1 Comparison of policies for distribution 1 (0.45, 0.9)

    Fig.2 shows that all 3 policies lose accuracy in “harder” distributions (smaller variances in reward distributions). The effect is more drastically shown for smaller number of plays, as it merely takes longer for each policy to find the optimal machine.

    Fig.3 reveals a major disadvantage of the strict-greedy, which occurs whenμ*is small. The problem arises because the optimal machine does not win most of its games, or significantly more games than the suboptimal machine, due to its small average reward, rendering the policy less able to find the optimal machine. This causes the strict-greedy to degrade rapidly, more so than an inappropriately tunedεn-greedy heuristic.

    Fig.2 Comparison of policies for distribution 2 (0.8, 0.9)

    Fig.3 Comparison of policies for distribution 3 (0.45, 0.5)

    Fig.4 and Fig.5 reveal the policies under more machines. Theεn-greedy algorithm is more harmed by the increase in machines, as it uniformly explores all arms due to its randomized nature. The suboptimal parameter for theεn-greedy algorithm also causes the regret to grow linearly with a larger leading coefficient. The strict-greedy policy preforms similarly to, if not better than, the UCB policy for smaller number of plays even with the increase in number of machines.

    Fig.6 reaffirms the degrading strict-greedy policy whenμ*is small. The linear nature of the strict-greedy is most evident in this case, maintaining a relatively steady linear regret growth. However, the policy still preforms better than theεn-greedy heuristic.

    Fig.4 Comparison of policies for distribution 4 (0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.9)

    Fig.5 Comparison of policies for distribution 5 (0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.9)

    Fig.6 Comparison of policies for distribution 6 (0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.5)

    6 Conclusions

    The comparison of all the policies can be summarized in the following statements (see Figures 1-6 above):

    1) The UCBand strict-greedy policies preform almost always the best, but for large number of plays, the strict-greedy falls because of its linear, not logarithmic, regret. Theεn-greedy heuristic preforms almost always the worst, though this can be due to a suboptimally tuned parameter.

    2) All 3 policies are harmed by an increase in variance in reward distributions, butεn-greedy degrades most rapidly (especially when there are a lot of suboptimal machines) in that situation because it explores uniformly over all machines.

    3) The strict-greedy policy undergoes weak performance whenμ*is small, because its deterministic greedy nature makes it more difficult to play the optimal arm when its reward is not significantly high.

    4) Of the 3 policies, the UCB showed the most consistent results over the various distributions, or least sensitive to changes in the distribution.

    We have analyzed simple and efficient policies for solving the multi-armed bandit problem, as well as introduced our own deterministic policy, also based on an upper confidence index. This new policy is more computationally efficient than the other two, and runs comparably well, but still proves less reliable than the UCB solution and is unable to maintain optimal logarithmic regret. Due to its strict adherence to the greedy pattern, it can be generalized to solve similar problems that require the greedy design paradigm.

    References

    [1]Auer P,Cesa-Bianchi N, Fischer P. Finite-time Analysis of the Multiarmed Bandit Problem[J]. Machine Learning, 2002,47.

    [2]Bubeck S,Cesa-Bianchi N.Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems[J]. 2012.

    [3]Kuleshov V,Precup D.Algorithms for the multi-armed bandit problem[Z].

    [4]Puterman M.Markov Decision Processes: Discrete Stochastic Dynamic Programming[M].USA:John Wiley & Sons Inc,2005.

    16 August 2014; revised 12 October 2014;accepted 25 September 2014

    Strict greedy design paradigm applied to the stochastic multi-armed bandit problem

    Joey Hong

    (TheKing’sAcademy,Sunnyvale,CA)

    The process of making decisions is something humans do inherently and routinely, to the extent that it appears commonplace. However, in order to achieve good overall performance, decisions must take into account both the outcomes of past decisions and opportunities of future ones. Reinforcement learning, which is fundamental to sequential decision-making, consists of the following components: ① A set of decisions epochs; ② A set of environment states; ③ A set of available actions to transition states; ④ State-action dependent immediate rewards for each action.

    Greedy algorithms, Allocation strategy, Stochastic multi-armed bandit problem

    TP18

    10.3969/j.issn.1001-3881.2015.06.001 Document code: A

    *Corresponding author: Joey Hong,E-mail:jxihong@gmail.com

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail: jdygcyw@126.com

    夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 别揉我奶头 嗯啊视频| 日韩亚洲欧美综合| 在线观看美女被高潮喷水网站| 精品久久国产蜜桃| 国产成人福利小说| 国产亚洲最大av| 国产国拍精品亚洲av在线观看| 色哟哟·www| 蜜臀久久99精品久久宅男| 国产精品精品国产色婷婷| 欧美日韩国产mv在线观看视频 | 国产免费又黄又爽又色| 日韩,欧美,国产一区二区三区| 国内精品宾馆在线| 国产综合精华液| 视频中文字幕在线观看| 中国国产av一级| 18禁在线播放成人免费| 久久久久久国产a免费观看| 亚洲精品色激情综合| 亚洲国产精品sss在线观看| 亚洲精品aⅴ在线观看| 联通29元200g的流量卡| 欧美丝袜亚洲另类| 激情五月婷婷亚洲| 听说在线观看完整版免费高清| 久久久久久国产a免费观看| 男女边吃奶边做爰视频| 国产黄a三级三级三级人| av免费在线看不卡| 久久久久久伊人网av| 最近最新中文字幕免费大全7| 国产精品人妻久久久影院| 久久久国产一区二区| 中文天堂在线官网| 国产精品一区二区性色av| 男的添女的下面高潮视频| 午夜福利高清视频| 欧美区成人在线视频| 国产精品1区2区在线观看.| 久久久久久久久久人人人人人人| 久久久久久久久久人人人人人人| 亚洲第一区二区三区不卡| 国产午夜福利久久久久久| 亚洲欧美一区二区三区黑人 | 亚洲精品成人av观看孕妇| 成人鲁丝片一二三区免费| 欧美成人精品欧美一级黄| 国产单亲对白刺激| 亚洲成人一二三区av| 欧美丝袜亚洲另类| 男人狂女人下面高潮的视频| 欧美 日韩 精品 国产| 亚洲图色成人| 又爽又黄a免费视频| 亚洲三级黄色毛片| 久久久a久久爽久久v久久| 精品久久久久久久久久久久久| 51国产日韩欧美| 国产精品嫩草影院av在线观看| 精品久久久久久久末码| 一本久久精品| 在现免费观看毛片| 午夜激情欧美在线| 最近2019中文字幕mv第一页| 亚洲欧美一区二区三区国产| 国产69精品久久久久777片| 中文乱码字字幕精品一区二区三区 | 汤姆久久久久久久影院中文字幕 | 久久久久久久久大av| 一级毛片 在线播放| 国产黄a三级三级三级人| 国产精品爽爽va在线观看网站| 97在线视频观看| 国产精品日韩av在线免费观看| 狂野欧美激情性xxxx在线观看| 夫妻午夜视频| 亚洲精品国产成人久久av| 日韩强制内射视频| 丰满乱子伦码专区| 欧美另类一区| 激情五月婷婷亚洲| 免费大片18禁| 卡戴珊不雅视频在线播放| 啦啦啦中文免费视频观看日本| 精品久久久久久久末码| 亚洲国产最新在线播放| 丰满乱子伦码专区| 欧美bdsm另类| 人人妻人人澡欧美一区二区| 亚洲精品日韩av片在线观看| 日韩制服骚丝袜av| 日韩一区二区视频免费看| 熟妇人妻不卡中文字幕| 亚洲av成人精品一区久久| 久久这里有精品视频免费| 国产在线男女| 国产伦一二天堂av在线观看| 秋霞伦理黄片| 国产欧美日韩精品一区二区| 成人欧美大片| 国产黄色小视频在线观看| 国产一区亚洲一区在线观看| 国产 亚洲一区二区三区 | 在线观看一区二区三区| 搡女人真爽免费视频火全软件| 国产欧美另类精品又又久久亚洲欧美| 色综合站精品国产| 久久99热这里只频精品6学生| 久久韩国三级中文字幕| 日本一二三区视频观看| 麻豆乱淫一区二区| 干丝袜人妻中文字幕| 色尼玛亚洲综合影院| 成年女人在线观看亚洲视频 | 成人综合一区亚洲| 欧美高清成人免费视频www| 免费大片黄手机在线观看| 日本黄大片高清| 国产精品国产三级专区第一集| 亚洲欧美精品专区久久| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美人成| 国产综合精华液| 成人午夜高清在线视频| 一本久久精品| av女优亚洲男人天堂| 成人二区视频| 99热这里只有是精品50| 亚洲最大成人中文| 亚洲精品aⅴ在线观看| 久久精品久久久久久噜噜老黄| 午夜激情久久久久久久| 日韩强制内射视频| 一区二区三区乱码不卡18| 欧美xxxx性猛交bbbb| 亚洲精品国产av蜜桃| 免费人成在线观看视频色| 成年版毛片免费区| 久久久久久九九精品二区国产| 精华霜和精华液先用哪个| 亚洲精品色激情综合| 深爱激情五月婷婷| 亚洲精品影视一区二区三区av| 亚洲国产色片| 久久精品国产亚洲av天美| 又黄又爽又刺激的免费视频.| 亚洲精品一二三| 国产69精品久久久久777片| 99久久人妻综合| 中文字幕av在线有码专区| 欧美人与善性xxx| av.在线天堂| 日韩人妻高清精品专区| 久久国产乱子免费精品| 天堂√8在线中文| 亚洲欧美日韩卡通动漫| 简卡轻食公司| 干丝袜人妻中文字幕| 亚洲在线观看片| 免费看光身美女| av天堂中文字幕网| 在线观看av片永久免费下载| 深夜a级毛片| 亚洲自偷自拍三级| 日日干狠狠操夜夜爽| 最近的中文字幕免费完整| 少妇熟女欧美另类| 极品教师在线视频| 亚洲在线观看片| 伊人久久精品亚洲午夜| 久久热精品热| 99热网站在线观看| 我要看日韩黄色一级片| 两个人视频免费观看高清| 午夜精品在线福利| 99热这里只有精品一区| 亚洲精华国产精华液的使用体验| 亚洲电影在线观看av| 只有这里有精品99| 国产av不卡久久| 国精品久久久久久国模美| 亚洲av免费高清在线观看| 夫妻午夜视频| 91精品伊人久久大香线蕉| 久久精品国产亚洲网站| 女人被狂操c到高潮| 亚洲在线观看片| 国产老妇女一区| av在线观看视频网站免费| 免费不卡的大黄色大毛片视频在线观看 | 男女边吃奶边做爰视频| 日日干狠狠操夜夜爽| 午夜免费激情av| 嘟嘟电影网在线观看| 小蜜桃在线观看免费完整版高清| 国产午夜福利久久久久久| 深夜a级毛片| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| 在线a可以看的网站| 亚洲欧美日韩无卡精品| 一级a做视频免费观看| 欧美xxxx黑人xx丫x性爽| 干丝袜人妻中文字幕| 赤兔流量卡办理| 我的老师免费观看完整版| 日韩伦理黄色片| 亚洲av电影在线观看一区二区三区 | 国产精品福利在线免费观看| av国产免费在线观看| 欧美另类一区| 精品一区二区三区视频在线| 极品少妇高潮喷水抽搐| 十八禁网站网址无遮挡 | 亚洲乱码一区二区免费版| 亚洲av福利一区| 精品久久久精品久久久| 亚洲美女搞黄在线观看| 小蜜桃在线观看免费完整版高清| 国产免费一级a男人的天堂| 久久久久精品久久久久真实原创| 国产成人91sexporn| 白带黄色成豆腐渣| 亚洲国产日韩欧美精品在线观看| 看十八女毛片水多多多| 亚洲乱码一区二区免费版| 亚洲内射少妇av| 亚洲精品国产av成人精品| 丝瓜视频免费看黄片| 午夜免费男女啪啪视频观看| 身体一侧抽搐| 91aial.com中文字幕在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一个人看的www免费观看视频| 国产av在哪里看| 天堂√8在线中文| 久久国内精品自在自线图片| 久久久久久久国产电影| 久久久欧美国产精品| 午夜福利高清视频| 免费av不卡在线播放| 国产一级毛片七仙女欲春2| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频高清一区二区三区二| 三级毛片av免费| 80岁老熟妇乱子伦牲交| 亚洲精品亚洲一区二区| 国产成人福利小说| 国产av国产精品国产| 国产中年淑女户外野战色| 男女那种视频在线观看| 国产毛片a区久久久久| 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 免费观看的影片在线观看| 久久久久性生活片| 秋霞伦理黄片| 大话2 男鬼变身卡| 777米奇影视久久| 大片免费播放器 马上看| 免费看日本二区| 九草在线视频观看| 精华霜和精华液先用哪个| 青青草视频在线视频观看| 亚洲欧美一区二区三区国产| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 亚州av有码| 色播亚洲综合网| 国产一级毛片在线| 国产伦理片在线播放av一区| 汤姆久久久久久久影院中文字幕 | 大片免费播放器 马上看| 一级av片app| av在线亚洲专区| 亚洲精品自拍成人| 精品久久国产蜜桃| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 精品久久久久久电影网| 日韩av在线大香蕉| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看| 热99在线观看视频| 成人无遮挡网站| 亚洲精品一区蜜桃| 97人妻精品一区二区三区麻豆| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| 亚洲美女搞黄在线观看| 色网站视频免费| 国产 亚洲一区二区三区 | 日本爱情动作片www.在线观看| 国产69精品久久久久777片| 人妻一区二区av| 日韩欧美精品v在线| 69人妻影院| 一级av片app| 国产成人精品福利久久| 免费播放大片免费观看视频在线观看| 一二三四中文在线观看免费高清| 天堂俺去俺来也www色官网 | 日产精品乱码卡一卡2卡三| 亚洲av电影在线观看一区二区三区 | 国产精品一及| 亚洲精品国产av成人精品| 最近最新中文字幕大全电影3| 亚洲欧美一区二区三区黑人 | 国产成人一区二区在线| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| 在现免费观看毛片| 午夜精品一区二区三区免费看| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频 | 精品久久久久久电影网| 性插视频无遮挡在线免费观看| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 国产精品久久久久久精品电影| 最近手机中文字幕大全| 成人美女网站在线观看视频| 国产精品99久久久久久久久| 97人妻精品一区二区三区麻豆| 美女内射精品一级片tv| 国产大屁股一区二区在线视频| 免费观看在线日韩| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 麻豆成人av视频| 亚洲伊人久久精品综合| 性色avwww在线观看| 联通29元200g的流量卡| av在线观看视频网站免费| 亚洲国产精品成人综合色| 欧美成人午夜免费资源| 夜夜看夜夜爽夜夜摸| 国产成人精品婷婷| 亚洲人与动物交配视频| 波多野结衣巨乳人妻| av免费观看日本| 亚洲精品国产av成人精品| 欧美潮喷喷水| 亚洲欧美精品专区久久| 天堂√8在线中文| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 人体艺术视频欧美日本| 精品人妻视频免费看| 有码 亚洲区| 日本欧美国产在线视频| 国产视频内射| 国产一区二区三区综合在线观看 | 激情五月婷婷亚洲| 超碰97精品在线观看| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区视频9| 成人无遮挡网站| 一级毛片aaaaaa免费看小| 午夜日本视频在线| 久久久久九九精品影院| 国产日韩欧美在线精品| 亚洲激情五月婷婷啪啪| 观看美女的网站| 别揉我奶头 嗯啊视频| 男的添女的下面高潮视频| 在线观看美女被高潮喷水网站| av黄色大香蕉| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 激情 狠狠 欧美| 熟妇人妻不卡中文字幕| 欧美精品一区二区大全| 69人妻影院| 尤物成人国产欧美一区二区三区| 两个人的视频大全免费| 一级毛片久久久久久久久女| 亚洲不卡免费看| 日本免费在线观看一区| 国产亚洲91精品色在线| 久久久久性生活片| www.av在线官网国产| 2018国产大陆天天弄谢| 麻豆av噜噜一区二区三区| 伦精品一区二区三区| 搡女人真爽免费视频火全软件| 老司机影院成人| 搞女人的毛片| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 国产成人精品久久久久久| 91久久精品国产一区二区三区| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 国产真实伦视频高清在线观看| 丰满少妇做爰视频| 91精品一卡2卡3卡4卡| 国产不卡一卡二| 男插女下体视频免费在线播放| 久久这里有精品视频免费| 成人国产麻豆网| 亚洲人与动物交配视频| 一个人看的www免费观看视频| 国产精品日韩av在线免费观看| 国产单亲对白刺激| 一区二区三区高清视频在线| 亚洲国产最新在线播放| 久久久久久久久久成人| 亚洲精品色激情综合| 成年av动漫网址| freevideosex欧美| 久久久久九九精品影院| 欧美人与善性xxx| 777米奇影视久久| 国产一级毛片在线| 国产女主播在线喷水免费视频网站 | 卡戴珊不雅视频在线播放| 精品久久久久久久人妻蜜臀av| 搡女人真爽免费视频火全软件| 亚洲人与动物交配视频| 在线a可以看的网站| 青青草视频在线视频观看| 亚洲天堂国产精品一区在线| 亚洲熟女精品中文字幕| 在线 av 中文字幕| h日本视频在线播放| 亚洲av电影在线观看一区二区三区 | 久久久色成人| 久久鲁丝午夜福利片| 一级毛片电影观看| 午夜久久久久精精品| 91av网一区二区| 97精品久久久久久久久久精品| 国产老妇女一区| 在线观看美女被高潮喷水网站| 秋霞伦理黄片| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| 国产精品综合久久久久久久免费| 美女内射精品一级片tv| 国产伦一二天堂av在线观看| 欧美不卡视频在线免费观看| 高清视频免费观看一区二区 | 中文字幕免费在线视频6| 日韩一本色道免费dvd| 日本一二三区视频观看| 欧美激情久久久久久爽电影| 国产高清国产精品国产三级 | 听说在线观看完整版免费高清| 亚洲三级黄色毛片| 国产 一区精品| 成人性生交大片免费视频hd| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站| 看黄色毛片网站| 亚洲18禁久久av| av黄色大香蕉| 美女主播在线视频| 麻豆成人午夜福利视频| 老司机影院毛片| 两个人视频免费观看高清| 看黄色毛片网站| 天堂√8在线中文| 乱码一卡2卡4卡精品| 看非洲黑人一级黄片| 成年免费大片在线观看| 国产高潮美女av| 一级毛片我不卡| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久 | 一级a做视频免费观看| 国产黄色小视频在线观看| 亚洲国产色片| 久热久热在线精品观看| 特大巨黑吊av在线直播| 欧美潮喷喷水| 三级男女做爰猛烈吃奶摸视频| 一边亲一边摸免费视频| 亚洲久久久久久中文字幕| 亚洲精品自拍成人| 一级毛片我不卡| 99久久九九国产精品国产免费| 亚洲最大成人av| av专区在线播放| 国产 亚洲一区二区三区 | 狠狠精品人妻久久久久久综合| 国产真实伦视频高清在线观看| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 国产av在哪里看| 少妇人妻精品综合一区二区| 国内精品美女久久久久久| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 69人妻影院| 中文资源天堂在线| 成人特级av手机在线观看| 国产在线男女| 久久久久久伊人网av| 久久久久久久久久久丰满| 国产黄频视频在线观看| 乱系列少妇在线播放| 大话2 男鬼变身卡| 最近手机中文字幕大全| 在线a可以看的网站| 久久韩国三级中文字幕| 91狼人影院| 麻豆国产97在线/欧美| 免费少妇av软件| 日韩欧美三级三区| 日韩欧美国产在线观看| 日本wwww免费看| 亚洲av在线观看美女高潮| 美女主播在线视频| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕 | 国产色爽女视频免费观看| 日韩不卡一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 日韩av在线免费看完整版不卡| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 成人性生交大片免费视频hd| 国产成人精品久久久久久| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三| 亚洲国产精品成人综合色| 国产黄片美女视频| 日日干狠狠操夜夜爽| 十八禁网站网址无遮挡 | 在线观看美女被高潮喷水网站| 久久久久久久久中文| av一本久久久久| 欧美高清成人免费视频www| or卡值多少钱| 久久久久免费精品人妻一区二区| 搡老乐熟女国产| 亚洲欧美成人精品一区二区| 淫秽高清视频在线观看| 中国美白少妇内射xxxbb| 亚洲国产欧美人成| 免费黄色在线免费观看| 久久精品人妻少妇| 亚洲精品第二区| 亚洲精品乱码久久久久久按摩| 国产麻豆成人av免费视频| 中文字幕av成人在线电影| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| a级毛色黄片| 免费观看a级毛片全部| 久热久热在线精品观看| 国产一区二区在线观看日韩| 亚洲成人一二三区av| av在线观看视频网站免费| 麻豆av噜噜一区二区三区| 亚洲精品乱码久久久久久按摩| 韩国av在线不卡| 国产午夜精品久久久久久一区二区三区| 久久99热6这里只有精品| 国产av在哪里看| 亚洲成人一二三区av| 欧美日韩精品成人综合77777| 超碰97精品在线观看| 日本色播在线视频| 欧美 日韩 精品 国产| 最新中文字幕久久久久| 99久久人妻综合| 亚洲伊人久久精品综合| 最近最新中文字幕大全电影3| 一边亲一边摸免费视频| 午夜免费男女啪啪视频观看| 免费看美女性在线毛片视频| 国产成人一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲av二区三区四区| 2021少妇久久久久久久久久久| 国产精品综合久久久久久久免费| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 一边亲一边摸免费视频| 国产午夜精品一二区理论片| 偷拍熟女少妇极品色| 国产成人freesex在线| 久久6这里有精品| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 日韩 亚洲 欧美在线| 国产三级在线视频| 亚洲精品国产av蜜桃| 亚洲av男天堂| 成人欧美大片| 免费看美女性在线毛片视频| h日本视频在线播放| 老司机影院成人| 国产精品国产三级专区第一集| 午夜福利成人在线免费观看| 美女黄网站色视频|