• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calcareous nannoplankton dating of the Late Quaternary deposits in Greece and the eastern Mediterranean:Case studies from terrestrial and marine sites

    2015-08-20 03:02:44MariaTriantaphyllou
    Journal of Palaeogeography 2015年4期

    Maria V.Triantaphyllou

    Faculty of Geology and Geoenvironment,University of Athens,Panepistimioupolis Zografou,157-84 Athens,Greece

    Keywords:Emiliania huxleyi Biostratigraphy Palaeoclimatic conditions Greece Eastern Mediterranean

    ABSTRACT The distribution and abundance of Emiliania huxleyi(E.huxleyi)assemblages in the marine sediments of the Aravonitsa Plateau,Greece,and from the eastern Mediterranean are used(1)to evaluate the calcareous nannoplankton NN21a and NN21b biozones and the NN21a/NN21b boundary,and(2)to analyze the palaeoenvironmental and palaeoclimatic conditions prevailing in this interval.The sediment succession displays varied E.huxleyi assemblages and these are interpreted as reflecting climatic variability during marine isotope stages MIS 1-8.

    1.Introduction

    Emiliania huxleyi(E.huxleyi)is by far the most abundant and widespread coccolithophore in the world's oceans(Winter et al.,1994;Young,1994).It was first identified using light microscopy(Lohmann,1902)whereas the complicated structure of the coccolith was initially described by Black and Barnes(1961),Braarud et al.(1952),and Deflandre and Fert(1954),using Electron Microscopy.Three types(A,B and C)of E.huxleyi are distinguished(Young and Westbroek,1991),based on heterococcolith morphology,and it was demonstrated that the size of the different morphotypes is in fluenced by ecophenotypic and genotypic factors.The phylogenetic origins of E.huxleyi are documented in the fossil recordby Gallagher(1989),Perch-Nielsen(1985),Romein(1979)and Young et al.(1992).The monospecific genus Emiliania is considered to have evolved from the genus Prinsius through Toweius,Reticulofenestra and Gephyrocapsa(Perch-Nielsen,1985;Samtleben,1980;Young et al.,1992).

    Fig.1-Location of the reviewed on-land and marine records in the eastern Mediterranean.The general circulation pattern is modified from Malanotte-Rizzoli et al.(1997).

    Amongst the extant coccolithophores,E.huxleyi has the widest distribution,dominating the living assemblages.It occasionally forms massive blooms,when water conditions are favorable,e.g.high light,limited silicate and high carbonate saturation(Tyrrell and Merico,2004).Under certain environmental conditions it sheds coccoliths(Paasche,2001).Variation in the coccolith size and morphology of E.huxleyi is frequent(Young and Westbroek,1991),being usually associated with temperature,salinity and available nutrients(e.g.,Bollmann and Herrle,2007;Paasche,1998,2001;Watabe and Wilbur,1966).The increase in atmospheric CO2partial pressure and the consequent changes in the seawater carbonate chemistry can cause a decrease in its cellular particulate inorganic carbon(PIC)/particulate organic carbon(POC)ratio as well as malformations of the coccoliths(Riebesell et al.,2000)-these might have opposing effects on the marine carbon cycle (Rostand Riebesell,2004).Recently,the morphological variability of E.huxleyi var.huxleyi(=E.huxleyi type A)has been demonstrated in the modern Aegean Sea,in respectto theenvironmental parametersof the watercolumn,providing strong evidence for seasonal variation in E.huxleyi coccoliths(Triantaphyllou et al.,2010b).A consistent pattern of increase in the size and calcification of coccoliths and coccospheres has been observed,including the thickness of the inner tube elements in the winter and spring and low seasurface temperature and moderate productivity when compared with summer time,high temperature and low productivity(Triantaphyllou et al.,2010b).

    Table 1-Aravonitsa samples:Quantitative SEM analysis of 300 coccoliths.

    The first appearance datum(FAD)of E.huxleyi in the geological records is used as a biostratigraphic marker and marks the base of the NN21 calcareous nannofossil biozone(NN21a;Martini,1971).It has been dated at~270 ka using correlation with planktonicforaminiferalδ18O records(Gartner and Emiliani,1976),at~268 ka,late in the cold marine isotopic stage 8(MIS 8;Thierstein et al.,1977),at~285 ka(Pacific ocean;Ahagon et al.,1993),and at~230 ka(Hills and Thierstein,1989).According to Kroon et al.(1998),this event is placed at 260 ka in the eastern Mediterranean,whereas the astronomically tuned biozone timescale of Lourens et al.(2005)dates the lowest occurrence of E.huxleyi and subsequently the base of the calcareous nannofossil biozone MNN21a(Raf fi,2002;Rio et al.,1990),(=NN21a;Martini,1971)at 270 ka(265 ka according to Raf fiet al.,2006).

    The blooming life-style of E.huxleyi started in warm timespans between~80 ka at the end of MIS 5 and 50 ka(MIS 3)(Kroon et al.,1998),and is associated with the E.huxleyi Acme Zone(NN21b;Martini,1971)in the fossil record.In shallow marginaland inlandseas theE.huxleyiAcmeZone beganlater;in these areas Gephyrocapsa spp.are generally more dominant(e.g.,Okadaand Honjo,1975).The base of NN21b is followed by the top of the Gephyrocapsa muellerae Acme Zone at 45.7 ka(Flores et al.,1997;Incarbona et al.,2009),characterized by a dramatic and continuous reduction in G.muellerae,which suggests that E.huxleyi may have taken over an ecological niche formerly dominated by Gephyrocapsa spp.

    Fig.2-A-E-Gephyrocapsa protohuxleyi specimens possessing a bridge or the remains of the bases of a bridge;F-G-Small Reticulofenestra specimens that have undergone etching resulting in separation of the ends of the elements(arrows);H-I-Emiliania huxleyi with etching and/or incomplete shield formation(arrows).All samples from the on-land record of Aravonitsa Plateau,location L11.

    At the present day E.huxleyi type A,characterized by moderately elevated distal shield,robust distal shield elements and a central area covered by curved rod-like elements(Young et al.,2003),is abundant in the Mediterranean Sea.It dominates particularly the winter coccolithophore assemblages of the Aegean Sea.Overall,high cell densities are observed in winter and early spring during phases of highernutrient,well-mixed waters(Jan.:34×103cells/dm3,March:23×103cells/dm3),whereas densities are lower in the summer-early autumn oligotrophic and highly stratified water column(Aug.-Sept.:2×103cells/dm3;Dimiza et al.,2008;Triantaphyllou et al.,2010a).The analysis of sediment trap samples has shown that E.huxleyi largely dominates the total coccolith flux in the modern Aegean Sea and the eastern Mediterranean(Malinverno et al.,2009,2014;Triantaphyllou et al.,2004;Ziveri et al.,2000).

    This study is based on the analysis of the coccolithophore assemblages occurring in marine sediments belonging to the NN21a and NN21b biozones that have been recovered from theeasternMediterraneanandfrommainlandGreece.Particular attention has been given to the variations in the pattern of E.huxleyi assemblages and their use both as abiostratigraphic tool and as a means to evaluate the palaeoenvironmental and palaeoclimatic conditions prevailing in these biozones.

    Table 2-Piston core LC08,sample LC08-3(40-100 cm):Quantitative SEM analysis of 300 coccoliths.

    2.Samples and methods

    The locations of the sample sites are shown in Fig.1.The single mainland site is on the Aravonitsa Plateau,northern Peloponnese(location L11,Palyvos et al.,2010).There are deep sea gravity cores from the Libyan Sea (ADE3-23:Triantaphyllou et al.,2010a),the southeastern Aegean Sea(NS-14:Triantaphyllou et al.,2009),and the southern Crete margin(HCMR2-22:Ioakim et al.,2009;Katsouras et al.,2010)as well as a long pistoncore from the Pantelleria Trough(LC08:Anastasakis and Pe-Piper,2006).

    Samples of fine-grained marine sediments were examined by scanning electron and light microscopy for their content of calcareous nannoplankton using standard methods with counts of 300 coccolith specimens(Negri and Giunta,2001;Perch-Nielsen,1985;Thierstein et al.,1977).The definition of the E.huxleyi NN21a biozone is based on the first appearance of specimens of the species,that is the midpoint of the slope of the initial increase of the species in counts of 300 coccoliths(FAD of E.huxleyi;Rio et al.,1990;Thierstein et al.,1977),whereas the E.huxleyi Acme Zone(MNN21b)is defined as the interval where the frequency of E.huxleyi in the coccolith population exceeds 40%level(Castradori,1993;Rio et al.,1990).

    3.Results

    3.1.Terrestrial records

    Fig.3-A-NN21a biozone assemblage,sample LC08-3-100 cm;B-E.huxleyi distal,sample LC08-3-100 cm;C-E.huxleyi distal,sample LC08-3-60 cm;D-E.huxleyi proximal,sample LC08-3-40 cm;E-Gephyrocapsa muellerae coccosphere,sample LC08-3-60 cm;F-Helicosphaera carteri proximal view,sample LC08-3-60 cm;G-H-Coccolithus pelagicus distal and proximal,sample LC08-3-60 cm;I-Helicosphaera carteri HOL(Syracolithus confusus),sample LC08-3-60 cm,from piston core LC08.

    The sedimentary successions of fine-grained shallow marine deposits on the Aravonitsa Plateau are remnants preserved on a flat depositional geomorphic surface now at 500-520 m abovesea level.They werediscoveredduringthe investigation of the Pleistocene coastal uplift in the westernmost part of the Corinth Gulf(Palyvos et al.,2010).Two samples of these finegrained terrigenous sediments (location L11,samples W146A,W146B;Palyvos et al.,2010)yielded sparse nannoplankton assemblages.These contained abundant small Gephyrocapsa spp.(Table 1)including Gephyrocapsa protohuxleyi.The G.protohuxleyi specimens possess a bridge or the remains of the bases of a bridge(Fig.2A-E).It is also clear in each of these specimens that the distal shield elements are more or less tube-like with parallel sides,and there is some evidence in each instance that these had expanded ends(hammer heads)although most elements have lost at least part of their ends.In addition,small coccoliths resembling E.huxleyi occur very occasionally,and these bear platy distal shield elements in contact for much of their length and do not show any trace of hammer-heads.They have been identified as small specimens of Reticulofenestra spp.which have undergone etching resulting in separation of the ends of the elements(Fig.2F-G).Exhaustive microscopic analysis revealed the presence of rare(approximately 1%)true representatives of E.huxleyi with etching and/or incomplete shield formation(Table 1,Fig.2H-I).

    The very low abundance of E.huxleyi in these samples could suggest correlation with the basal part of NN21a within the cold MIS 8 stage.Apparently,the lowest occurrence of E.huxleyi(at 270 ka)in the stratigraphic record of the eastern Mediterranean falls within the cold MIS 8,a phase of low sea levels based on sea-level curves(e.g.,Shackleton and Pisias,1985;Siddall et al.,2007).However,during this phase,the Corinth Gulf developed as a lake,isolated from the sea by a sill(e.g.,Palyvos et al.,2010).Depending on the elevation of the sill at the time,the lowest occurrence of E.huxleyi in the Corinth Gulf isthereforeexpectedto be moreor less closeto the MIS 7e highstand(i.e.a few ka before 240 ka),because only then sea water had the chance to enter the gulf(Palyvos et al.,2010).Therefore these marine deposits from the Aravonitsa Plateau(location L11)most probably belong to the warm MIS 7e stage at approx.240 ka,otherwise E.huxleyi would have been more abundant.

    This is one of the very rare records of this marine biozone preserved in Greece.Another suggested terrestrial occurrence of this marine biozone has been described from a borehole drilled in the shallow valley of Livadi separating Kefallonia from its western peninsula,Paliki,during the search for Homer's Ithaca(Underhill,2006,2008).Very well preserved specimens of E.huxleyi have been recorded in the top 40 m of sediment of this borehole.It is suggested that these very young deposits may not represent in situ sedimentation,but can be considered as consistent with the impact of a catastrophic landslide on a marine channel.This would have ejected a large volume of water out of the channel and saturated the in fill material.This interpretation has been favored,because it was thought that E.huxleyi could not have reached this location earlier than about 6000 years ago,when rising global sea levels penetrated the shallow gulf of Livadi for the first time(Underhill,2008).

    3.2.Marine cores

    Fig.4-a-Stratigraphy,MIS stages and biozonation with core ADE3-23 from the Libyan Sea.The distribution of E.huxleyi and the top of G.muellerae Acme Zone are shown(modified from Triantaphyllou et al.,2010a);b-Stratigraphy,AMS ages and biozonal assignment of core HCMR2-22 from the southern Crete margin;c-The distribution of E.huxleyi and sea surface temperature(SST)pattern within the MIS 1 stage core NS-14 from southeastern Aegean Sea(modified from Triantaphyllou et al.,2009).S1a=The lower part of sapropel S1 layer;S1b=The upper part of sapropel S1 layer;SMH=Sapropel MidHolocene layer.

    In the present study,a very clear transition between the NN21a and NN21b biozones is documented from the lower part of the long piston core LC08 in the Pantelleria Trough,Sicily Channel.This part of the core is dominated by the presence of a thick volcaniclastic interval deposited from a large gravitational flow during the Green Tuff eruption(Anastasakis and Pe-Piper,2006).The lower hemipelagic marls,immediately below the base of the volcaniclastic interval,have been examined for their nannofossil content.E.huxleyi is present in amounts of below 10%in the lower parts of this interval,and this rapidly increases upwards to 40%and more(Table 2,Fig.3).The presence of G.muellerae has been constantly recorded as more than 40%.A sample of marl from the hemipelagic interval yielded an accelerator mass spectrometry conventional radiocarbon age of 41190±1090 a BP(Beta 198833)with a calibrated radiocarbon age of 43-47±2 ka(Anastasakis and Pe-Piper,2006).Although radiocarbon dates older than 40-45 ka are questionable,the calcareous nannofossil assemblages confirm the biostratigraphic correlation of this interval(sample LC08-3-40 cm)with biozone NN21b,providing a unique chance to calibrate the base of this zone in the Mediterranean with an AMS radiocarbon age.

    A case study involving the definition of NN21a/NN21b boundary has been documented in the gravity core ADE3-23,located SW of Crete(34°45.000′N,21°52.800′E),at 2459 m water depth.The core recovered 3.49 m of gray hemipelagic mud and silty mud interlayered with three distinct dark gray sapropelic layers,i.e.,S6,S5 and S1,and a hiatus of approximately 35 ka between ~83 ka and ~118 ka(Triantaphyllou et al.,2010a).E.huxleyi displays values well below 20%(Fig.4a)during the cold MIS 6 and MIS 4 stages,although during the latter,values are comparably higher.It just exceeds 10%during the warm MIS 5(sapropel S5 depositional interval).Apparently the lower part of the core ADE3-23 corresponds to the NN21a biozone.The increase in abundance of E.huxleyi,although never reaching 20%as previously reported(e.g.,Castradori,1993;Corselli et al.,2002;Violanti et al.,1991),suggests higher fertility in the surface waters in the middle part of S5,corresponding to the timing of relaxation in the northward penetration of the African monsoon already recorded within S5 in the southeastern Mediterranean area(Rohling et al.,2002).The definition of the NN21a/NN21b boundary is marked by the increase of E.huxleyi within MIS 3 at 50ka.Thiseventis shortlyfollowedin core ADE3-23 by the top of the Gephyrocapsa muellerae Acme Zone,characterized by a dramatic and continuous reduction in G.muellerae,which points to an age of 45.7 ka(Triantaphyllou et al.,2010a).A further increase of E.huxleyi is recorded within MIS 1(Fig.4a).

    Fig.5-A-B-E.huxleyi Acme Zone assemblage,sample 67-68 cm;C-Gephyrocapsa muellerae,G.muellerae Acme Zone,samples 145-146 cm,and 173-174 cm;D-H-G.muellerae Acme Zone assemblage,samples 118-119 cm,145-146 cm,and 173-174 cm;I-Small Reticulofenestra spp.,sample 173-174 cm.Samples from gravity core HCMR2-22.

    The top of the G.muellerae Acme Zone(45.7 ka BP)has also been recognized in the lower part of one additional sediment succession from gravity core HCMR2-22(34°33.968′N,24°53.770′E,water depth 2211 m,length 175 cm)from the southern Crete margin(Ioakim et al.,2009;Katsouras et al.,2010).Based on calcareous nannofossil biostratigraphy,most of this sedimentary succession has been proved to span the last approximately 50 ka and can be correlated with the E.huxleyi Acme Zone NN21b(Figs.4b and 5).

    Very detailed information for the distribution of E.huxleyi during theLate Glacial-Holoceneintervalin thewarmMIS 1 is provided from a high-resolution record in the southeastern Aegean Sea(gravity core NS14;Triantaphyllou et al.,2009).The high surface nutrient indicator E.huxleyi(Young,1994)is the most abundant placolith within the coccolithophore assemblages from~13 to 10.6 ka BP(Fig.4c;Triantaphyllou et al.,2009).This points to cool surface-water conditions,as E.huxleyi is a species that prevails in the Aegean surface waters mainly in winter(Dimiza et al.,2008)and displays more heavily calcified E.huxleyi morphotypes(Triantaphyllou et al.,2010b).Following this interval,E.huxleyi decreases during the warm and wet phase during the deposition of sapropel S1.There is a prominent reduction starting at 8.5 ka BP with minimum values of 25%at the base of the upper part of sapropel S1(S1b),implying low surface productivity and strong stratification of the water column(Triantaphyllou et al.,2009).E.huxleyi increases again from 7.3 ka BP presenting three main negative shifts at~6.8,6.0 and 4.8 ka BP within the Sapropel Mid Holocene layer(SMH;Triantaphyllou et al.,2009,2014)associated with fluctuating sea-surface temperatures.(Fig.4c;Triantaphyllou et al.,2009).

    4.Conclusions

    The sediment records reveal variations in the E.huxleyi assemblages during marine isotope stages MIS 1-8.These appear to be linked with climatic variability.

    In particular,based on E.huxleyi assemblages:

    1)The E.huxleyi assemblage from the lowermost part of biozone NN21a is described from the Aravonitsa Plateau in the northern Peloponnese and most probably represents the warm phase MIS 7e at approx.240 ka.This is the first marine representative of this biozone onshore.The E.huxleyi coccoliths in the Kefallonia deposits are considered to be redeposited material.

    2)The lower part of the long piston core LC08 from the Pantelleria Trough,Sicily Channel,displaysthe transition from biozone NN21a to NN21b.A radiocarbon(AMS)age of 41190±1090 a BP from this core provides a temporal calibration for the basal part of biozone NN21b in the eastern Mediterranean.

    3)E.huxleyi displays values well below 20%of the total nannofossil assemblage during the cold stages MIS 6 and MIS 4 in the marine core ADE3-23 from the Libyan Sea,although during the latter stage,values are comparably higher.They exceed slightly 10%during the middle part of sapropel S5,within the warm MIS 5.

    4)The biozone NN21a/NN21b boundary is marked by an abrupt increase of E.huxleyi within the relatively warm stage MIS 3 at 50 ka.Overlying this boundary in core ADE3-23 from the eastern Mediterranean is the top of the Gephyrocapsa muellerae Acme Zone at 45.7 ka;this has also been recognized in the lower part of the succession in core HCMR2-22 from the southern Crete margin.

    5)A further increase and considerable fluctuations in E.huxleyi are recognized within warm stage MIS 1 in the core NS-14 from the southeastern Aegean Sea.This is thought to reflect continuous climate variability during this stage in the Late Glacial-Holocene.

    Acknowledgements

    G.Anastasakis is kindly thanked for providing the study material of piston core LC08.The manuscript benefited by the criticism of Christopher Jeans and two anonymous reviewers.

    国产精品麻豆人妻色哟哟久久| 欧美精品一区二区免费开放| 亚洲欧美中文字幕日韩二区| 久久久国产精品麻豆| 少妇人妻精品综合一区二区| 国产高清国产精品国产三级| 国产成人免费观看mmmm| 欧美亚洲 丝袜 人妻 在线| 成年美女黄网站色视频大全免费| 色94色欧美一区二区| 香蕉丝袜av| 大话2 男鬼变身卡| av福利片在线| 五月玫瑰六月丁香| 人人妻人人澡人人看| 免费久久久久久久精品成人欧美视频 | 国产精品麻豆人妻色哟哟久久| 国产欧美日韩一区二区三区在线| 18禁在线无遮挡免费观看视频| 97人妻天天添夜夜摸| 韩国高清视频一区二区三区| 高清在线视频一区二区三区| videos熟女内射| 中文字幕亚洲精品专区| 日韩伦理黄色片| 最近的中文字幕免费完整| 国产亚洲最大av| 黑人高潮一二区| 又大又黄又爽视频免费| 热99国产精品久久久久久7| 有码 亚洲区| 黑人高潮一二区| 国产一区二区在线观看av| 亚洲av男天堂| 午夜福利乱码中文字幕| 精品99又大又爽又粗少妇毛片| 麻豆乱淫一区二区| 国产成人aa在线观看| 中文字幕精品免费在线观看视频 | videos熟女内射| 国产xxxxx性猛交| 欧美成人精品欧美一级黄| 国产乱人偷精品视频| 伊人久久国产一区二区| 纯流量卡能插随身wifi吗| 丁香六月天网| 日韩在线高清观看一区二区三区| 捣出白浆h1v1| 久热这里只有精品99| 校园人妻丝袜中文字幕| 免费在线观看黄色视频的| 如何舔出高潮| 久久久久久人妻| 亚洲少妇的诱惑av| 国产成人aa在线观看| 久久热在线av| 亚洲美女视频黄频| 亚洲综合色惰| 国产黄频视频在线观看| 美女大奶头黄色视频| 在线观看免费视频网站a站| 久久精品国产鲁丝片午夜精品| 日日啪夜夜爽| 国产高清三级在线| 十八禁高潮呻吟视频| 久久精品国产亚洲av天美| 久久久精品免费免费高清| 捣出白浆h1v1| 男女免费视频国产| 日本av免费视频播放| 一本—道久久a久久精品蜜桃钙片| 夫妻午夜视频| 在线观看免费高清a一片| 久久国内精品自在自线图片| 最近的中文字幕免费完整| 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看| 国产精品国产三级专区第一集| 国产精品一区二区在线不卡| 国产精品蜜桃在线观看| 国产成人精品在线电影| 美女国产视频在线观看| 免费日韩欧美在线观看| 久久毛片免费看一区二区三区| 天天躁夜夜躁狠狠久久av| 一级a做视频免费观看| 久久久久精品性色| 久久久欧美国产精品| a级毛片在线看网站| √禁漫天堂资源中文www| 亚洲人与动物交配视频| 高清视频免费观看一区二区| 亚洲av成人精品一二三区| 丝袜美足系列| 国产精品久久久av美女十八| 日韩av在线免费看完整版不卡| 有码 亚洲区| 亚洲人与动物交配视频| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 久久99热这里只频精品6学生| 香蕉精品网在线| 欧美激情极品国产一区二区三区 | 久久人人爽人人片av| 尾随美女入室| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 男女午夜视频在线观看 | 一级黄片播放器| 日韩在线高清观看一区二区三区| 又大又黄又爽视频免费| 2021少妇久久久久久久久久久| 热re99久久精品国产66热6| 三上悠亚av全集在线观看| 五月玫瑰六月丁香| 在线观看国产h片| 中国国产av一级| 中文字幕av电影在线播放| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| 少妇被粗大的猛进出69影院 | 欧美精品人与动牲交sv欧美| 精品一区二区三区四区五区乱码 | 两个人免费观看高清视频| 亚洲第一av免费看| 晚上一个人看的免费电影| 国产又爽黄色视频| 亚洲在久久综合| 亚洲精品aⅴ在线观看| 全区人妻精品视频| 如日韩欧美国产精品一区二区三区| 久久久久久伊人网av| 国产片内射在线| 亚洲成人手机| 在线亚洲精品国产二区图片欧美| 国产一区二区三区综合在线观看 | 曰老女人黄片| 韩国av在线不卡| av在线老鸭窝| 大香蕉久久网| freevideosex欧美| 久久久久视频综合| 91精品国产国语对白视频| 久久人人爽人人片av| 精品人妻熟女毛片av久久网站| 又大又黄又爽视频免费| 国产精品一区www在线观看| 国产精品人妻久久久久久| 国产熟女午夜一区二区三区| 国产精品嫩草影院av在线观看| 日韩欧美一区视频在线观看| 亚洲欧美成人综合另类久久久| 一本大道久久a久久精品| 免费人成在线观看视频色| 亚洲一码二码三码区别大吗| 我的女老师完整版在线观看| 亚洲综合色网址| 尾随美女入室| 高清视频免费观看一区二区| 一区二区三区乱码不卡18| 在线观看三级黄色| 久久久久久久精品精品| 亚洲人与动物交配视频| 久久这里有精品视频免费| a级毛片在线看网站| xxx大片免费视频| 校园人妻丝袜中文字幕| 免费观看在线日韩| 只有这里有精品99| 少妇的丰满在线观看| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| 热99久久久久精品小说推荐| 香蕉国产在线看| 久久精品久久精品一区二区三区| 国产69精品久久久久777片| 久久精品国产亚洲av涩爱| 91国产中文字幕| 欧美精品av麻豆av| 99热全是精品| 午夜福利,免费看| 18在线观看网站| 精品国产一区二区久久| 91久久精品国产一区二区三区| av一本久久久久| 人人妻人人添人人爽欧美一区卜| 97在线视频观看| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区国产| 在线免费观看不下载黄p国产| 午夜影院在线不卡| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 国产日韩欧美亚洲二区| a级毛色黄片| 又黄又爽又刺激的免费视频.| 日韩熟女老妇一区二区性免费视频| 亚洲国产av新网站| 大片免费播放器 马上看| 亚洲精品中文字幕在线视频| 少妇被粗大的猛进出69影院 | 国产一区二区在线观看av| 一级毛片我不卡| 精品亚洲乱码少妇综合久久| 久久精品人人爽人人爽视色| 国产成人免费观看mmmm| 青青草视频在线视频观看| 在线观看www视频免费| 亚洲中文av在线| 人人妻人人澡人人看| 嫩草影院入口| 久久久久久久亚洲中文字幕| 亚洲国产精品一区二区三区在线| 日韩av免费高清视频| 久久韩国三级中文字幕| 美女视频免费永久观看网站| 日韩一区二区视频免费看| 最近中文字幕2019免费版| 精品国产一区二区久久| 国产成人a∨麻豆精品| 纯流量卡能插随身wifi吗| 97超碰精品成人国产| 狠狠婷婷综合久久久久久88av| 丁香六月天网| 日韩精品免费视频一区二区三区 | 天天操日日干夜夜撸| 亚洲国产欧美在线一区| 国产片特级美女逼逼视频| 精品国产一区二区三区四区第35| 男女免费视频国产| 日本猛色少妇xxxxx猛交久久| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 亚洲精品第二区| 97超碰精品成人国产| 欧美精品一区二区免费开放| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 女人久久www免费人成看片| 人人妻人人澡人人看| 9191精品国产免费久久| 精品亚洲成a人片在线观看| 免费观看在线日韩| 免费久久久久久久精品成人欧美视频 | 亚洲av免费高清在线观看| 久久国产精品男人的天堂亚洲 | 日韩 亚洲 欧美在线| 午夜视频国产福利| 国产精品国产三级专区第一集| 精品国产一区二区久久| 精品国产一区二区三区四区第35| 成人毛片a级毛片在线播放| 国产男女内射视频| 国产老妇伦熟女老妇高清| 秋霞伦理黄片| 在线观看免费日韩欧美大片| 黄色毛片三级朝国网站| 国产综合精华液| 卡戴珊不雅视频在线播放| 狂野欧美激情性bbbbbb| 欧美变态另类bdsm刘玥| 国产精品.久久久| 中文字幕人妻丝袜制服| 国产片内射在线| 91精品国产国语对白视频| 亚洲国产欧美日韩在线播放| 亚洲经典国产精华液单| 母亲3免费完整高清在线观看 | 在线观看三级黄色| 国产高清国产精品国产三级| 精品一区二区免费观看| 国精品久久久久久国模美| 久久精品国产a三级三级三级| 满18在线观看网站| 国产亚洲最大av| 免费观看性生交大片5| 狠狠精品人妻久久久久久综合| 波野结衣二区三区在线| 国产成人精品婷婷| 一区二区三区乱码不卡18| 久热久热在线精品观看| 久久精品国产亚洲av涩爱| 日韩av不卡免费在线播放| 亚洲精品国产av蜜桃| 91成人精品电影| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 三级国产精品片| 看十八女毛片水多多多| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 日韩 亚洲 欧美在线| 免费av不卡在线播放| 国产亚洲欧美精品永久| 另类精品久久| 大香蕉久久网| 精品久久久久久电影网| 大香蕉久久成人网| 黄色毛片三级朝国网站| 亚洲美女搞黄在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一区二区日韩欧美中文字幕 | 国产免费现黄频在线看| 另类亚洲欧美激情| 亚洲精品久久久久久婷婷小说| 美女内射精品一级片tv| 国产色爽女视频免费观看| 日韩人妻精品一区2区三区| 日本色播在线视频| 欧美精品一区二区大全| 久久精品国产自在天天线| 9191精品国产免费久久| 久久久精品免费免费高清| 91国产中文字幕| 亚洲欧美日韩卡通动漫| 女性被躁到高潮视频| 久久这里有精品视频免费| 亚洲av欧美aⅴ国产| 最近最新中文字幕大全免费视频 | 午夜av观看不卡| 久久久久久久精品精品| 乱码一卡2卡4卡精品| 2022亚洲国产成人精品| 大片免费播放器 马上看| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| av电影中文网址| 十八禁网站网址无遮挡| 一本—道久久a久久精品蜜桃钙片| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 多毛熟女@视频| 国产色爽女视频免费观看| 一区在线观看完整版| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 成人国产麻豆网| 曰老女人黄片| 黑丝袜美女国产一区| 综合色丁香网| 亚洲三级黄色毛片| 国产精品无大码| 国产片特级美女逼逼视频| 黄色配什么色好看| 精品久久国产蜜桃| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 桃花免费在线播放| 性色av一级| 成人毛片a级毛片在线播放| 黄色怎么调成土黄色| 亚洲精品久久成人aⅴ小说| 男的添女的下面高潮视频| 毛片一级片免费看久久久久| 色5月婷婷丁香| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 观看美女的网站| 国产成人精品一,二区| 制服丝袜香蕉在线| 黄色毛片三级朝国网站| 亚洲国产看品久久| 成人黄色视频免费在线看| 亚洲,一卡二卡三卡| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 99久久人妻综合| 亚洲经典国产精华液单| av片东京热男人的天堂| 熟女人妻精品中文字幕| 免费看光身美女| 日本色播在线视频| 欧美日韩视频高清一区二区三区二| 欧美成人精品欧美一级黄| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区黑人 | 久久久久久伊人网av| 亚洲精品成人av观看孕妇| 高清视频免费观看一区二区| 我的女老师完整版在线观看| 三级国产精品片| 99视频精品全部免费 在线| 国产精品女同一区二区软件| 国产高清三级在线| 日韩中字成人| 水蜜桃什么品种好| 精品国产露脸久久av麻豆| 久久影院123| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 在线精品无人区一区二区三| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 桃花免费在线播放| 国产爽快片一区二区三区| 国产精品成人在线| 99热全是精品| 国产熟女午夜一区二区三区| 亚洲伊人色综图| 一级毛片 在线播放| 午夜福利视频在线观看免费| 午夜激情久久久久久久| av视频免费观看在线观看| 激情五月婷婷亚洲| 亚洲在久久综合| 一区二区三区四区激情视频| 亚洲人成77777在线视频| 精品久久久精品久久久| 男女下面插进去视频免费观看 | 制服诱惑二区| 日韩制服丝袜自拍偷拍| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| 91久久精品国产一区二区三区| 国产精品不卡视频一区二区| 一区二区三区四区激情视频| 国产av精品麻豆| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| av在线观看视频网站免费| 欧美亚洲日本最大视频资源| 精品一区二区免费观看| 欧美97在线视频| 亚洲欧洲日产国产| 99re6热这里在线精品视频| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 久久精品国产a三级三级三级| 日韩大片免费观看网站| 午夜福利乱码中文字幕| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 亚洲欧美清纯卡通| 母亲3免费完整高清在线观看 | 久久人人97超碰香蕉20202| 亚洲国产av影院在线观看| av视频免费观看在线观看| 成人国产av品久久久| 热re99久久国产66热| 精品国产露脸久久av麻豆| 久久久久网色| av在线观看视频网站免费| 欧美日韩亚洲高清精品| 日韩大片免费观看网站| av视频免费观看在线观看| 人人澡人人妻人| 深夜精品福利| 热re99久久国产66热| 日本-黄色视频高清免费观看| 丝袜脚勾引网站| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 亚洲国产精品专区欧美| 久久婷婷青草| 精品少妇久久久久久888优播| 色94色欧美一区二区| 日本欧美国产在线视频| 只有这里有精品99| 99久久人妻综合| 亚洲av福利一区| 日韩在线高清观看一区二区三区| 久久97久久精品| 国产熟女欧美一区二区| 黄色视频在线播放观看不卡| 国产一区二区三区av在线| 老熟女久久久| 午夜久久久在线观看| 高清视频免费观看一区二区| 丰满少妇做爰视频| 伊人亚洲综合成人网| 亚洲av综合色区一区| 亚洲国产精品专区欧美| 久热这里只有精品99| 天美传媒精品一区二区| 99国产综合亚洲精品| av女优亚洲男人天堂| 国产精品偷伦视频观看了| 丝瓜视频免费看黄片| 在线观看三级黄色| 欧美人与善性xxx| 精品国产国语对白av| 成人毛片a级毛片在线播放| 超碰97精品在线观看| 国产麻豆69| 男女无遮挡免费网站观看| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 亚洲人与动物交配视频| 26uuu在线亚洲综合色| 天天影视国产精品| 亚洲国产精品一区三区| 久久久久久久久久人人人人人人| 9热在线视频观看99| 国产一区二区三区av在线| 国产日韩欧美亚洲二区| 欧美精品av麻豆av| 久久女婷五月综合色啪小说| 亚洲欧美一区二区三区国产| 22中文网久久字幕| av不卡在线播放| 国产精品人妻久久久久久| 亚洲,欧美,日韩| 2018国产大陆天天弄谢| 国产日韩欧美在线精品| 亚洲综合色网址| 午夜免费观看性视频| 一边亲一边摸免费视频| av在线老鸭窝| 国产一区二区在线观看av| 女的被弄到高潮叫床怎么办| 日本av免费视频播放| 蜜桃国产av成人99| 69精品国产乱码久久久| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到 | 亚洲av电影在线进入| 好男人视频免费观看在线| 五月开心婷婷网| 国产成人a∨麻豆精品| 亚洲av电影在线进入| videossex国产| 国产有黄有色有爽视频| 高清欧美精品videossex| 欧美xxⅹ黑人| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 五月天丁香电影| 精品福利永久在线观看| 欧美精品亚洲一区二区| 成人毛片a级毛片在线播放| 久久精品久久久久久久性| 亚洲av男天堂| 色5月婷婷丁香| 一本大道久久a久久精品| av在线观看视频网站免费| 国产乱人偷精品视频| 中文字幕最新亚洲高清| 人体艺术视频欧美日本| 天堂俺去俺来也www色官网| av免费在线看不卡| 亚洲国产精品999| 性色avwww在线观看| 汤姆久久久久久久影院中文字幕| 丁香六月天网| 欧美日韩视频高清一区二区三区二| 免费观看av网站的网址| 999精品在线视频| xxx大片免费视频| 在线天堂中文资源库| 9热在线视频观看99| 人人妻人人澡人人看| 少妇的逼水好多| 丰满少妇做爰视频| 久久99蜜桃精品久久| 久久久久久久亚洲中文字幕| 最近中文字幕高清免费大全6| 欧美xxⅹ黑人| 欧美成人精品欧美一级黄| 亚洲内射少妇av| 成人免费观看视频高清| 欧美xxxx性猛交bbbb| 亚洲伊人久久精品综合| 18+在线观看网站| 一本久久精品| 日本av免费视频播放| 精品国产一区二区三区四区第35| av在线播放精品| 伊人亚洲综合成人网| 99久久人妻综合| 成人漫画全彩无遮挡| 欧美xxⅹ黑人| 亚洲精品国产av蜜桃| av一本久久久久| 国产有黄有色有爽视频| 欧美亚洲日本最大视频资源| 2018国产大陆天天弄谢| 人人妻人人澡人人爽人人夜夜| 亚洲精品成人av观看孕妇| 成人国语在线视频| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 国产成人91sexporn| 欧美人与善性xxx| a级毛片黄视频| 一区二区av电影网| 国产伦理片在线播放av一区| 老司机影院成人| 一区二区av电影网| 午夜福利,免费看| 久久久久网色| 国产一区二区在线观看av| 人人妻人人爽人人添夜夜欢视频| 久久久久网色| 精品久久久久久电影网| 高清视频免费观看一区二区| 亚洲欧美中文字幕日韩二区| 亚洲美女视频黄频| 午夜福利,免费看| 亚洲欧美中文字幕日韩二区| 少妇人妻久久综合中文| 午夜福利,免费看| 丝袜脚勾引网站| 七月丁香在线播放| 久久久久国产网址| 久久人人爽人人片av| 在线观看三级黄色| 欧美最新免费一区二区三区|