• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Reduced Reachability Tree for a Class of Unbounded Petri Nets

    2015-08-09 04:54:06ShouguangWangSeniorMemberIEEEMengdiGanMengchuZhouFellowIEEEandDanYou
    IEEE/CAA Journal of Automatica Sinica 2015年4期
    關(guān)鍵詞:全鋼噴漆槽鋼

    Shouguang Wang,Senior Member,IEEE,Mengdi Gan,Mengchu Zhou,Fellow,IEEE,and Dan You

    A Reduced Reachability Tree for a Class of Unbounded Petri Nets

    Shouguang Wang,Senior Member,IEEE,Mengdi Gan,Mengchu Zhou,Fellow,IEEE,and Dan You

    —As a powerful analysis tool of Petri nets,reachability trees are fundamental for systematically investigating many characteristics such as boundedness,liveness and reversibility. This work proposes a method to generate a reachability tree, called ω RT for short,for a class of unbounded generalized nets called ω -independent nets based on new modified reachability trees(NMRTs).ω RT can effectively decrease the number of nodes by removing duplicate and ω -duplicate nodes in the tree,and verify properties such as reachability,liveness and deadlocks. Two examples are provided to show its superiority over NMRTs in terms of tree size.

    Shouguang Wang is with the School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018,China,and also with the State Key Laboratory for Manufacturing Systems Engineering,Xi’an Jiaotong University,Xi’an 710049,China(e-mail:wsg5000@hotmail.com).

    Mengdi Gan is with the Ministry of Education(MoE)Key Laboratory of Embedded System and Service Computing,Tongji University,Shanghai 200092,China(e-mail:mengdigan@126.com).

    Mengchu Zhou is with the MoE Key Laboratory of Embedded System and Service Computing,Tongji University,Shanghai 200092,China,and also with the Department of Electrical and Computer Engineering,New Jersey Institute of Technology,Newark,NJ 07102-1982,USA(e-mail:zhao@njit.edu).

    Dan You is with the School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018,China(e-mail: youdan000@hotmail.com).

    In 1969,Karp and Miller[4]developed a finite reachability tree(FRT)method by introducing a special symbol ω,to represent an infinite component in markings resulting from some transition firing loops.FRT is useful in determining such properties as safeness,boundedness,conservativeness,and coverability[6-7].However,it fails to solve deadlocks[20-22], liveness[23],and reachability problems of unbounded nets due to the information loss caused by the use of ω.

    Wang[16]proposed a modified reachability tree(MRT) method.An MRT can capture more information about the underlying net than an FRT since it adopts the expression a+bnisuggested by Peterson[7]rather than ω to represent the value of some component of a marking.Later,a computer program for the automated generation of an MRT for a Petri net was developed in[24].Jeng and Peng[13-14]extended the capability of FRT for determining liveness,and proposed an augmented reachability tree(ART),which is applicable to oneplace-unbounded nets only.

    Wang et al.[17]formalized and improved their previous results in[16]with a proof for the finiteness of an MRT and its usefulness in solving reachability,deadlock and liveness problems.Their work sets a milestone toward the solution of this long-standing problem.However,the set of markings represented by the nodes of an MRT is not necessarily equal to that of reachable markings[12,15].Wang et al.proposed an improved reachability tree(IRT)for one-place-unbounded nets in[19].The set of markings represented by an IRT is equal to that of reachable markings.

    Motivated by the aforementioned work,Wang et al.[18]proposed a new modified reachability tree(NMRT)method for ω-independent unbounded nets,which has a larger application scope than all the existing methods.An NMRT consists of only but all reachable markings from its initial marking and can correctly check deadlocks.However,it still suffers from a problem that the number of nodes in the tree grows rapidly with respect to the net size.

    In order to decrease the number of nodes in a reachability tree,this work proposes a reduced reachability tree for ωindependent nets based on NMRTs,and we call it an ωRT for short.The ωRT removes duplicate and ω-duplicate nodes in the tree such that the number of nodes decreases.The rest of this paper is organized as follows.Section II briefly reviewspreliminaries used in this paper.AnωRT construction algorithm is presented in Section III.Section IV provides an example for the proposed method to illustrate its superiority. Finally,conclusions are presented in Section V.

    II.PRELIMINARIES

    In the remaining discussion,assumeZ,N,andN+,denote the set of integers,nonnegative integers,and positive integers, respectively.

    A.Basics of Petri Nets

    The following basics of Petri nets(PNs)are due to[5-7].

    A generalized PN is a 4-tupleN=(P,T,F,W),wherePandTare finite,non-empty,and disjoint sets.Pis the set of places andTis the set of transitions withP∪T/=?andP∩T=?.F?(P×T)∪(T×P)is called a flow relation of the net,represented by arcs with arrows from places to transitions or from transitions to places.Wis a mapping that assigns a weight to an arc:W(x,y)>0 if(x,y)∈F,andW(x,y)=0 otherwise,where,x,y∈P∪T.

    A markingμrepresents a system state,which shows the number of tokens contained in each placep∈P.The initial marking is denoted asμ0.A transitiont∈Tis enabled atμif?p∈·t,μ(p)≥W(p,t).The fact is denoted byμ[t〉.Firing it yields a new markingμ′such that?p∈P,μ′(p)=μ(p)-W(p,t)+W(t,p),as denoted byμ[t〉μ′.μ′is called an immediately reachable marking fromμ.μ′′is said to be reachable fromμif there exists a sequence of transitionsσ=t0t1...tnand markingsμ1,μ2,...,andμnsuch thatμ[t0〉μ1[t1,...,μn[tn〉μ′′holds.The set of markings reachable fromμ0inNis called the reachability set of(N,μ0) and denoted byR(N,μ0).

    Given a PN(N,μ0),t∈Tis live atμ0if?μ∈R(N,μ0),?μ′∈R(N,μ),μ′[t〉.(N,μ0)is live if?t∈T,tis live atμ0. (N,μ0)is dead atμ0if?t∈T,μ0[t〉.(N,μ0)is deadlockfree(weakly live or live-locked)if?μ∈R(N,μ0),?t∈T,μ[t〉.It is bounded if?k∈N+,?μ∈R(N,μ0),?p∈P,μ(p)≤k.It is said to be unbounded if it is not bounded.

    B.ω-number

    The definitions and notations ofω-numbers in this subsection are from[16-18].

    1)ω-number.A subset of integersSis called anω-number if?k∈N+,n,q∈Zsuch thatS={ik+q|i≥n,0≤q<k}.Scan be expressed uniquely asS=ω(k,n,q)≡k ωn+q≡{ik+q|k∈N+,n∈Z,0≤q<k,i≥n},whereω(k,n,q)orkωn+qis called a canonicalω-number withkas its base,nthe last bound,andqthe remainder.

    2)Addition ofω-number and integers.Given anω-numberω(k,n,q)and an integera∈Z,it is defined thatω(k,n,q)+a=ω(k,n+s,r),whereq+a=sk+r,s∈Z,0≤r<k.

    3)Comparison of twoω-numbers.LetZωbe the set of integers andω-numbers.?a,b∈Z,a≤bis defined as eithera,b∈Zωanda≤bora=ω(k,m,q),b=ω(k,n,q),andm≤n.Note that in the second case,bis a subset ofa,i.e.,a?b,if both can be viewed as sets.

    4)Comparison of twoω-vectors.A vectorx∈Znωis called anω-vector if at least one of its elements is anω-number. Note that ifxhas noω-number,it is simply ann-dimensional integer vector,i.e.,x∈Zn.A markingμis called anωmarking if it can be represented by anω-vector.Anω-marking can be viewed as a set of ordinary markings.Anω-markingais less than or equal tob(oracontainsb)ifaandbhave the same non-ω-number coordinates,and the other coordinates ofaare less than or equal to the ones ofb.

    C.NMRT

    Following[18],we give the following definitions.

    Definition 1.At anω-markingμthat is a set of ordinary markings,t∈Tis enabled iftis enabled at each ordinary marking inμ;tis not enabled atμiftis not enabled at any ordinary marking inμ;tis conditionally enabled atμif it is not enabled at some ordinary markings inμbut enabled at any other ordinary marking inμ.

    In the remaining discussion,assume that the next-state marking functionδ(μ,t)is the marking resulting from firingtatμ.

    Definition 2.Given a markingμandt∈T,

    1)Ifμis an ordinary marking andtis enabled atμ,thenδ(μ,t)is computed by using the transition firing rule for ordinary markings;

    E-HOUSE基本框架為全鋼結(jié)構(gòu),外部墻面和屋頂為鉚焊結(jié)合和噴漆。底盤采用H型鋼、槽鋼,材質(zhì)為Q345B。E-HOUSE的設(shè)計(jì)、生產(chǎn)、安裝、調(diào)試均在生產(chǎn)工廠內(nèi)完成,在用戶安裝位置僅進(jìn)行E-HOUSE的地腳安裝、外部進(jìn)出線電纜連接,即可進(jìn)行設(shè)備試驗(yàn)、試運(yùn)行、投運(yùn)。

    2)Ifμis anω-marking andtis enabled atμ,thenδ(μ,t) is computed by using the transition firing rule for ordinary markings and the addition ofω-numbers and integers;

    3)Ifμis anω-marking andtis conditionally enabled atμ, thenδ(μ,t)is computed as follows:

    a)Letμ′be anω-marking derived fromμby removing each ordinary marking ofμat whichtis not enabled;

    b)Letδ(μ,t)=δ(μ′,t),whereδ(μ′,t)is computed in the same way as 2).

    Definition 3.Letxandzbe two nodes in an NMRT,whereμzis the marking resulting from firing transitiontat the current markingμxandμz/=δ(μx,t).μzis calledω-dependent if there exists a nodeyon the path from the root node tozsuch that 1)δ(μx,t)>μyand 2)at least two components inδ(μx,t)are larger than the corresponding ones inμy.

    Definition 4.Given an unbounded PN(N,μ0)and its NMRT obtained by the algorithm in[18].(N,μ0)is calledω-independent if its NMRT does not contain anyω-dependent markings.Otherwise,it is calledω-dependent.

    For example,in Fig.1(b),μ2=(ω1,ω1)is anω-dependent marking sinceμ2/=δ(μ0,t2),δ(μ0,t2)=(1,1)>(0,0)andtwo components in(1,1)are larger than those respective ones in(0,0).Similarly,μ4can be verified to be anω-dependent marking.Therefore,the net in Fig.1(a)isω-dependent.While, the net in Fig.2(a)isω-independent since its NMRT contains noω-dependent markings.

    Fig.1.(a)Anω-dependent unbounded net and(b)Its NMRT.

    III.GENERATION OF REDUCED REACHABILITY TREES

    To describe anωRT,four types of nodes are introduced including:terminal,duplicate,ω-duplicate and common nodes pictured by the circle with oblique lines,the filled circle,the circle with vertical lines and the hollow circle,respectively. A terminal node is a node corresponding to a dead marking without any enabled transitions.The definitions of duplicate andω-duplicate nodes are as follows.

    Definition 5.Letxwith a markingμxbe a current node of anωRT.It is called a duplicate node ifμxhas been computed previously during the procedure of constructing anωRT.

    Definition 6.Letxwith anω-markingμxbe a current node of anωRT.It is called anω-duplicate node ifμxcan be contained by anω-markingμyof another node that was computed previously during the procedure of constructing anωRT.

    Remark 1.These concepts of“duplicate”and“ω-duplicate nodes”are first proposed in[17]and used in the algorithm proposed in[18].As stated in[17-18],a duplicate node is a node with a marking that previously appears in the tree along the same path and anω-duplicate node is a node with aω-marking that is contained by another node that appears previously in the tree along the same path.Note that in this paper,duplicate andω-duplicate nodes in generating anωRT is based on these modified definitions.

    Fig.2.(a)Anω-independent unbounded net and(b)Its NMRT.

    AnωRT construction algorithm forω-independent nets based on NMRTs is stated as follows.

    Algorithm 1.Construction algorithm forωRT

    Input:Anω-independent PN(N,μ0).

    Output:AnωRT.

    1)Letx0be the root node of theωRT andμ0be the marking of nodex0;

    2)Initialize the stack Λ:=(x0)and the set Ξ:=μ0;

    /*Λ is a stack consisting of common nodes and Ξ a set containing all the markings of nodes that have appeared in the tree computed by this algorithm*/

    3)whileΛ/=()do

    4)x:=pop(Λ);

    /*Remove the last nodexfrom the stack.*/

    5)Letμxbe the marking of nodex;

    6)foreacht∈Tdo

    7)iftis enabled or conditionally enabled atμxthen

    8)Compute the next-state functionδ(μx,t)by

    Definition 2 and create a new nodez;

    9)ifthere exists a nodeyin the path fromx0tox

    withδ(μx,t)>μythen

    10)foreachp∈Pdo

    11)ifδ(μx,t)p>(μy)pandδ(μx,t)p∈N then

    12)(μz)p:=ω(k,n,q),wherek=δ(μx,t)p-(μy)p,

    δ(μx,t)p=nk+q,and 0≤q<k;

    13)else

    14)(μz)p:=δ(μx,t)p;

    15)end if

    16)end for

    17)else

    18)μz:=δ(μx,t);

    19)end if

    20)Ξ:=Ξ∪μz;

    21)ifzis a common nodethen

    22)Λ:=push(Λ,z);

    /*Push nodezinto stack Λ as the last node in Λ.*/

    23)end if

    24)iftis enabled atμxthen

    25)Add a solid arc t from x to z;

    /*A solid arc indicates that t is enabled atμx.*/

    26)else

    27)Add a dotted arc t from x to z;

    /*A dotted arc indicates that t is conditionally enabled at μx.*/

    28)end if

    29)end if

    30)end for

    31)end while

    32)end.

    Given an ω-independent net,its ωRT can be constructed by Algorithm 1.We briefly explain this algorithm as follows. First,let x0be the root node of an ωRT andμ0(0,0)the marking of x0,Ξ={μ0},Λ=(x0).Second,remove the last node from a stack Λ,and then obtain the current markingμx. Third,for each t∈T that is enabled or conditionally enabled atμx,compute the next-state δ(μx,t)by Definition 2,and then obtain the next-state markingμzaccording to the rule proposed in this paper.Finally,a new node z is created and is pushed into Λ if it is a common node.Repeat these steps until Λ is empty and an ωRT is hence constructed.

    Compared with NMRT,ωRT can decrease the number of nodes in the reachability tree by eliminating more duplicate and ω-duplicate nodes that have been computed already.An ω-independent unbounded net with two unbounded places is shown in Fig.3(a)and(b)is its NMRT with 35 nodes.It is easy to see that more than a half of nodes are reduced by using ωRT since its ωRT shown in Fig.3(c)has only 17 nodes.Clearly,our method successfully decreases the number of nodes in the reachability tree.

    B.Applications of ωRT

    The following theorems guarantee the finiteness of ωRTs and their usefulness in determining reachability,deadlocks, and liveness of ω-independent unbounded PNs.

    Theorem 1(Finiteness).The ωRT of an ω-independent unbounded Petri net is finite.

    Proof.It has been proved that an NMRT is finite in[18].As shown earlier,an NMRT just removes some duplicate nodes with markings that previously appear in the path from the root node to the current node and ω-duplicate nodes with ωmarkings that are contained by another node in the path from the root node to the current node.While an ωRT removes some duplicate nodes with markings that previously appear in the whole tree and ω-duplicate nodes with ω-markings that are contained by another node in the tree.Clearly,the number of nodes in an ωRT is smaller than that in an NMRT.Therefore, the conclusion holds.□

    Theorem 2(Reachability).The ωRT of an ω-independent unbounded Petri net consists of only but all reachable markings from its initial marking.

    Proof.It has been proved in[18]that the NMRT of an ω-independent unbounded Petri net consists of all and only reachable markings from its initial marking.Hence,we only need to prove that the ωRT represents the same marking set as the NMRT for the ω-independent unbounded Petri net. Obviously,we can transform the NMRT into the ωRT by eliminating some duplicate and ω-duplicate nodes that have been computed in the NMRT.Hence,the ωRT represents the same marking set as the NMRT.Therefore,we can conclude that the ωRT of an ω-independent unbounded Petri net consists of only but all reachable markings from its initial marking.□

    Theorem 3(Deadlock-checking).An ω-independent unbounded Petri net has deadlocks if and only if its ωRT contains terminal nodes or full conditional nodes.

    Proof.Sufficiency:By the definition of terminal nodes or full conditional nodes,we can conclude that there exists a dead marking in terminal nodes or full conditional nodes.Since the ωRT contains terminal nodes or full conditional nodes, there exists a dead marking in the ωRT.Hence,there exists a dead marking in the ω-independent unbounded Petri net by Theorem 2.Therefore,the ω-independent unbounded Petri net has deadlocks.

    Necessity:By Theorem 2,there exists a dead marking in the ωRT,since the ω-independent unbounded Petri net has deadlocks.Obviously,only terminal nodes or full conditional nodes contain dead markings for all nodes in the ωRT.Hence, the ωRT contains terminal nodes or full conditional nodes.□

    IV.EXAMPLE

    An illustrative example is presented in this section to show the superiority of ωRT.An ω-independent unbounded net with three unbounded places is shown in Fig.4(a)and its ωRT is shown in(b).We can see that there are only 65 nodes in its ωRT.However,there are more than 600 nodes in its NMRT.Due to the space limit,we do not present its NMRT and more details about its NMRT are in Appendix.Trivially, the number of nodes in its ωRT is much smaller than that in its NMRT.This example illustrates that our method can drastically decrease the number of nodes in a reachability tree by eliminating numerous duplicate and ω-duplicate nodes in the tree.Besides,our method can avoid spurious markings and can correctly check deadlocks for ω-independent nets. According to Theorem 3,it is easy to see that the net in Fig.4(a)is deadlock-free.

    Fig.3.(a)An ω-independent unbounded net with two unbounded places,(b)Its NMRT,and(c)Its ωRT.

    V.CONCLUSION

    How to establish a finite reachability tree to solve reachability problems of arbitrary unbounded nets has remained an open problem since the inception of Petri nets half a century ago[25-27].Due to its extreme difficulty,only limited progress has been made.

    In this work,we propose a reduced reachability tree called ωRT for ω-independent nets based on new modified reachability trees.It can drastically decrease the number of nodes by removing some duplicate nodes and ω-duplicate nodes in the tree.Furthermore,ωRT can be used to determine some properties such as reachability,liveness and deadlocks as well.

    Since the method proposed in this paper can be applicable for ω-independent nets only,future work should extend the proposed results to more general classes of Petri nets.Additional efforts to reduce such tree size should be made,e.g., by allowing the net to fire multiple transitions whenever no conflicts are involved.Computer aided design tools should be developed to facilitate the applications of the proposed finite trees to such application fields as industrial hybrid systems, Internet-based game systems,Internet of things and Internet of vehicles[28-30].

    Fig.4.(a)An ω-independent unbounded net with three unbounded places and(b)Its ωRT.

    REFERENCES

    [1]Hrz B,Zhou M C.Modeling and Control of Discrete-Event Dynamic Systems.London,UK:Springer,2007.

    [2]Ding Z H,Zhou M C,Wang S G.Ordinary differential equationbased deadlock detection.IEEE Transactions on Systems,Man,and Cybernetics:Systems,2014,44(10):1435-1454

    [3]Hu H S,Zhou M C.A Petri net-based discrete-event control of automated manufacturing systems with assembly operations.IEEE Transactions on Control Systems Technology,2015,23(2):513-524

    [4]Karp R M,Miller R E.Parallel program schemata.Journal of Computer and System Sciences,1969,3(2):147-195

    [5]Li Z W,Zhou M C.Deadlock Resolution in Automated Manufacturing Systems:a Novel Petri Net Approach.London:Springer,2009.

    [6]Murata T.Petri nets:properties,analysis and applications.Proceedings of the IEEE,1989,77(4):541-580

    [7]Peterson J L.Petri Net Theory and the Modeling of Systems.NJ: Prentice-Hall,1981.

    [8]Wu N Q,Zhou M C,Chu F,Mammar S.Modeling,analysis,scheduling, and control of cluster tools in semiconductor fabrication.Contemporary Issues in Systems Science and Engineering.Hoboken,NJ:Wiley/IEEE Press,2015.289-315

    [9]Yang F J,Wu N Q,Qiao Y,Zhou M C.Petri net-based optimal one-wafercyclic scheduling of hybrid multi-cluster tools in wafer fabrication.IEEE Transactions on Semiconductor Manufacturing,2014,27(2):192-203

    [10]Zhou M C,Dicesare F.Petri Net Synthesis for Discrete Event Control of Manufacturing Systems.London:Kluwer Academic Publishers,1993.

    [11]Zhou M C,Venkatesh K.Modeling,Simulation and Control of Flexible Manufacturing Systems:A Petri Net Approach.Singapore:World Scientific,1998.

    [12]Ding Z J,Jiang C J,Zhou M C.Deadlock checking for one-place unbounded Petri nets based on modified reachability trees.IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2008, 38(3):881-883

    [13]Jeng M D Peng M Y.On the liveness problem of 1-place-unbounded Petri nets.In:Proceedings of the 1997 IEEE International Conference on Systems,Man,and Cybernetics,Computational Cybernetics and Simulation.Orlando,FL:IEEE,1997.3221-3226

    [14]Jeng M D,Peng M Y.Augmented reachability trees for 1-placeunbounded generalized Petri nets.IEEE Transactions on Systems,Man, and Cybernetics,Part A:Systems and Humans,1999,29(2):173-183

    [15]Ru Y,Wu W W,Hadjicostis C N.Comments on a modified reachability tree approach to analysis of unbounded Petri nets.IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2006,36(5):1210

    [16]Wang F Y.A modified reachability tree for Petri nets.In:Proceedings of the 1999 IEEE International Conference on Systems,Man,and Cybernetics.Charlottesville,VA:IEEE,1991.329-334

    [17]Wang F Y,Gao Y Q,Zhou M C.A modified reachability tree approach to analysis of unbounded Petri nets.IEEETransactionsonSystems,Man, and Cybernetics,Part B:Cybernetics,2004,34(1):303-308

    [18]Wang S G,Zhou M C,Li Z W,Wang C Y.A new modified reachability tree approach and its applications to unbounded Petri nets.IEEE Transactions on Systems,Man,and Cybernetics:Systems,2013,43(4): 932-940

    [19]Wang Y H,Jiang B,Jiao L.Property checking for 1-place-unbounded Petri nets.In:Proceedings of the 4th IEEE International Symposium on Theoretical Aspects of Software Engineering(TASE).Taipei,China: IEEE,2010.117-125

    [20]Fu Jian-Feng,Dong Li-Da,Xu Shan-Shan,Zhu Dan,Zhu Cheng-Cheng. An improved liveness condition for S4P R nets.ActaAutomaticaSinica, 2013,39(9):1439-1446(in Chinese)

    [21]Li Z W,Wang A R.A Petri net based deadlock prevention approach for flexible manufacturing systems.Acta Automatica Sinica,2003,29(5): 733-740

    [22]Xing Ke-Yi,Tian Feng,Yang Xiao-Jun,Hu Bao-Sheng.Polynomialcomplexity deadlock avoidance policies for automated manufacturing systems.Acta Automatica Sinica,2007,33(8):893-896(in Chinese)

    [23]Wang S G,Gan M D,Zhou M C.Macro liveness graph and liveness of ω-independent unbounded nets.Science China Information Sciences, 2015,58(3):032201

    [24]Wong H M,Zhou M C.Automated generation of modified reachability trees for Petri nets.In:Proceedings of the 1992 Regional Control Conference.Brooklyn,NY,1992.119-121

    [25]Huang Y S,Pan Y L,Zhou M C.Computationally improved optimal deadlock control policy for flexible manufacturing systems.IEEE Transactions on Systems,Man,and Cybernetics,Part A:Systems and Humans, 2012,42(2):404-415

    [26]Huang Y S,Weng Y S,Zhou M C.Modular design of urban traffic-light control systems based on synchronized timed Petri nets.IEEE Transactions on Intelligent Transportation Systems,2014,15(2):530-539

    [27]Pan L,Ding Z J,Zhou M C.A configurable state class method for temporal analysis of time Petri nets.IEEETransactionsonSystems,Man, and Cybernetics:Systems,2014,44(4):482-493

    [28]Cheng J J,Cheng J L,Zhou M C,Liu F Q,Gao S C,Liu C.Routing in internet of vehicles:a review.IEEE Transactions on Intelligent Transportation Systems,to be published

    [29]Ding Z H,Zhou Y,Jiang M Y,Zhou M C.A new class of Petri nets for modeling and property verification of switched stochastic systems.IEEE Transactions on Systems,Man,and Cybernetics:Systems,2015,45(7): 1087-1100

    [30]Lee J S,Zhou M C,Hsu P L.Multiparadigm modeling for hybrid dynamic systems using a Petri net framework.IEEE Transactions on Systems,Man,and Cybernetics:Part A:Systems and Humans,2008, 38(2):493-498

    Shouguang Wang received the Ph.D.degree from the College of Electrical Engineering,Zhejiang University,China in 2005.He is currently a professor at the School of Information and Electronic Engineering,Zhejiang Gongshang University.He was a a visiting professor with the Department of Electrical and Computer Engineering,New Jersey Institute of Technology,Newark,NJ,from Jan.2011 to Jan. 2012.He is a visiting professor with the Electrical and Electronic Engineering Department,University of Cagliari,Cagliari,Italy,from Dec.2014 to Dec.2015.He was the Dean of the Department of Measuring and Control Technology and Instrument from July 2011 to July 2014.He is a senior member of IEEE.

    His research interests include application,supervisory control of discrete event systems,Petri net theory and application,and production scheduling. He is the author or coauthor of over 50 published papers.

    Mengdi Gan received the bachelor degree from the School of Information and Electronic Engineering,Zhejiang Gongshang University,China in 2014. She is currently a master student at the School of Electronic and Information Engineering,Tongji University.Her research interests include supervisory control of discrete event systems,and Petri net theory and application.

    Mengchu Zhou(S88-M90-SM93-F03)received his B.S.degree in control engineering from Nanjing University of Science and Technology,Nanjing, China in 1983,M.S.degree in automatic control from Beijing Institute of Technology,Beijing,China in 1986,and Ph.D.degree in computer and systems engineering from Rensselaer Polytechnic Institute, Troy,NY,USA in 1990.He joined New Jersey Institute of Technology(NJIT),Newark,NJ in 1990, and is now a Distinguished Professor of Electrical and Computer Engineering.His research interests are in Petri nets,Internet of Things,big data,semiconductor manufacturing,transportation,and energy systems.He has over 600 publications including 12 books,300+journal papers(majority in IEEE Transactions),and 28 book-chapters.His recently co-authored/edited books include Business and Scientific Workflows:A Web Service-Oriented Approach,IEEE/Wiley,New Jersey,2013(with W.Tan)and Contemporary Issues in Systems Science and Engineering,IEEE/Wiley,New Jersey,2015(with H.-X.Li and M.Weijnen).

    He was invited to lecture in Australia,Canada,China(Mainland,Hong Kong,and Taiwan),France,Germany,Italy,Japan,Korea,Mexico,Singapore, and US and served as a plenary speaker for many conferences.He is the founding Editor of IEEE Press Book Series on Systems Science and Engineering.He served as Associate Editor of IEEE Transactions on Robotics and Automation from 1997 to 2000 and IEEE Transactions on Automation Science and Engineering from 2004-2007,and Editor of IEEE Transactions on Automation Science and Engineering from 2008-2013.He is Associate Editor of IEEE Transactions on Systems,Man,and Cybernetics:Systems, IEEE Transactions on Industrial Informatics and IEEE Transactions on Intelligent Transportation Systems.He served as Guest-Editor for many journals including IEEE Transactions on Industrial Electronics and IEEE Transactions on Semiconductor Manufacturing.He was General Chair of IEEE Conf.on Automation Science and Engineering,Washington D.C.,August 23-26,2008, General Co-Chair of 2003 IEEE International Conference on System,Man and Cybernetics(SMC),Washington DC,October 5-8,2003,Founding General Co-Chair of 2004 IEEE Int.Conf.on Networking,Sensing and Control, Taipei,March 21-23,2004,and General Chair of 2006 IEEE Int.Conf.on Networking,Sensing and Control,Ft.Lauderdale,Florida,U.S.A.April 23-25,2006.He was Program Chair of 2010 IEEE International Conference on Mechatronics and Automation,August 4-7,2010,Xi’an,China,1998 and 2001 IEEE International Conference on SMC and 1997 IEEE International Conference on Emerging Technologies and Factory Automation.He organized and chaired over 100 technical sessions and served on program committees for many conferences.

    Dr.Zhou has led or participated in over 50 research and education projects with total budget over 12M,funded by National Science Foundation,Department of Defense,NIST,New Jersey Science and Technology Commission, and industry.He was the recipient of NSFs Research Initiation Award, CIM University-LEAD Award by Society of Manufacturing Engineers,Perlis Research Award and Fenster Innovation in Engineering Education Award by NJIT,Humboldt Research Award for US Senior Scientists,Leadership Award and Academic Achievement Award by Chinese Association for Science and Technology-USA,Asian American Achievement Award by Asian American Heritage Council of New Jersey,and Outstanding Contributions Award, Distinguished Lecturership and Franklin V.Taylor Memorial Award of IEEE SMC Society,and Distinguished Service Award from IEEE Robotics and Automation Society.He is founding Co-chair of Enterprise Information Systems Technical Committee(TC)and Environmental Sensing,Networking, and Decision-making TC of IEEE SMC Society.He has been among most highly cited scholars for years and ranked top one in the field of engineering worldwide in 2012 by Web of Science/Thomson Reuters.He is Fellow International Federation of Automatic Control(IFAC)and American Association for the Advancement of Science(AAAS).Corresponding author of this paper.

    Dan You received the bachelor degree from the School of Information and Electronic Engineering, Zhejiang Gongshang University,China,in 2014. She is currently a master student at the School of Information and Electronic Engineering,Zhejiang Gongshang University.Her research interests include supervisory control of discrete event systems,and Petri net theory and application.

    I.INTRODUCTION

    t

    June 5,2015;accepted July 27,2015.This work was supported by National Natural Science Foundation of China (61374148,61472361,61374005),Natural Science Foundation of Zhejiang Province(LY15F030003,LY15F030002,LR14F020001),the National Science Foundation of USA(CMMI-1162482),the Opening Project of State Key Laboratory for Manufacturing Systems Engineering(sklms2014011),Zhejiang NNST Key Laboratory(2015C31064),and the State Scholarship Fund of China.Recommended by Associate Editor Fei-Yue Wang.

    :Shouguang Wang,Mengdi Gan,Mengchu Zhou,Dan You.A reduced reachability tree for a class of unbounded Petri nets.IEEE/CAA Journal of Automatica Sinica,2015,2(4):345-352

    Index Terms—Petri nets,reachability tree,deadlock.

    P ETRI nets[1-11]have been widely used for modeling and control of discrete event system(DES)since 1960s.As a well-known analysis tool of Petri nets,reachability trees, i.e.,the tree representations of their reachability sets,are fundamental and powerful for checking various properties such as reachability,boundedness,liveness,reversibility and coverability[12-19].However,such a tree may be an infinite tree for a given initial state or marking[7].In past decades, many scholars focused on finding a finite representation for an infinite reachability tree.

    猜你喜歡
    全鋼噴漆槽鋼
    管道基坑槽鋼支護(hù)在水環(huán)境治理工程中的應(yīng)用
    四川水利(2022年5期)2022-10-29 13:00:02
    噴漆廢氣環(huán)保治理措施分析
    全鋼附著式升降腳手架及其安裝方法
    槽鋼加強(qiáng)T形圓鋼管節(jié)點(diǎn)的軸向承載性能研究*
    干式噴漆室的商用化
    上海涂料(2021年5期)2022-01-15 06:09:44
    基于Ansys Workbench的大承載全鋼盤的設(shè)計(jì)和有限元分析
    電線電纜(2021年1期)2021-03-29 02:26:56
    汽車小損傷免噴漆無損修復(fù)技術(shù)
    北橡院自主研發(fā)的59/80R63全鋼巨型工程機(jī)械子午線輪胎成功下線
    合肥萬力200萬條全鋼胎項(xiàng)目奠基
    汽車噴漆流水線的應(yīng)用與研究
    久久久久久久久免费视频了| 不卡av一区二区三区| 岛国在线免费视频观看| 99热只有精品国产| 91字幕亚洲| 久久久久久九九精品二区国产| 999精品在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区免费观看 | 色在线成人网| 欧美乱色亚洲激情| 亚洲欧美日韩东京热| 成人精品一区二区免费| 看片在线看免费视频| 国产毛片a区久久久久| 韩国av一区二区三区四区| 日韩欧美国产在线观看| 日韩欧美在线二视频| 久久久久精品国产欧美久久久| 在线播放国产精品三级| tocl精华| 国内毛片毛片毛片毛片毛片| 亚洲精品粉嫩美女一区| 女生性感内裤真人,穿戴方法视频| 国产私拍福利视频在线观看| 亚洲熟妇熟女久久| 听说在线观看完整版免费高清| 成人午夜高清在线视频| 一本一本综合久久| 国产精品美女特级片免费视频播放器 | 99热这里只有精品一区 | 日韩成人在线观看一区二区三区| 大型黄色视频在线免费观看| 1000部很黄的大片| 大型黄色视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 18禁国产床啪视频网站| 18禁美女被吸乳视频| 国产成人av教育| 精品久久久久久久久久久久久| 少妇熟女aⅴ在线视频| 男人舔女人的私密视频| 精品国产美女av久久久久小说| 日韩欧美免费精品| 国产美女午夜福利| 亚洲天堂国产精品一区在线| 亚洲国产精品合色在线| 国产精品影院久久| 床上黄色一级片| 淫秽高清视频在线观看| 嫁个100分男人电影在线观看| 老司机午夜福利在线观看视频| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 99久久久亚洲精品蜜臀av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲18禁久久av| 一个人免费在线观看电影 | 国产av麻豆久久久久久久| 免费一级毛片在线播放高清视频| 亚洲专区字幕在线| 身体一侧抽搐| 国产精品久久久av美女十八| 宅男免费午夜| 变态另类丝袜制服| 99久久无色码亚洲精品果冻| 成人av在线播放网站| 欧美极品一区二区三区四区| 日韩大尺度精品在线看网址| 免费观看精品视频网站| 欧美乱码精品一区二区三区| 不卡av一区二区三区| h日本视频在线播放| 神马国产精品三级电影在线观看| 岛国在线观看网站| 黄色 视频免费看| 啦啦啦免费观看视频1| 露出奶头的视频| 在线观看免费午夜福利视频| 欧美一级a爱片免费观看看| av天堂中文字幕网| 亚洲无线观看免费| 国内精品久久久久精免费| 亚洲无线观看免费| 国产高清视频在线播放一区| 国产精品av视频在线免费观看| 国产精品自产拍在线观看55亚洲| 一本久久中文字幕| 亚洲第一电影网av| 婷婷精品国产亚洲av| 国产一区二区在线观看日韩 | 97人妻精品一区二区三区麻豆| 精品久久久久久久毛片微露脸| 亚洲色图 男人天堂 中文字幕| 国产精品永久免费网站| 国内精品一区二区在线观看| 嫩草影视91久久| 99精品欧美一区二区三区四区| 亚洲五月天丁香| 成熟少妇高潮喷水视频| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 97碰自拍视频| 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 中国美女看黄片| 麻豆国产av国片精品| av黄色大香蕉| 少妇熟女aⅴ在线视频| 国产免费男女视频| av天堂中文字幕网| 精品人妻1区二区| 国产成人福利小说| 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 欧美国产日韩亚洲一区| 亚洲欧美日韩高清在线视频| 99久久精品一区二区三区| 中文资源天堂在线| 三级国产精品欧美在线观看 | 麻豆av在线久日| 精品欧美国产一区二区三| 国产v大片淫在线免费观看| 欧美极品一区二区三区四区| 亚洲一区二区三区不卡视频| 一个人看的www免费观看视频| 午夜福利18| 久久香蕉国产精品| 青草久久国产| 美女扒开内裤让男人捅视频| 亚洲欧洲精品一区二区精品久久久| 麻豆一二三区av精品| 亚洲专区国产一区二区| 人妻夜夜爽99麻豆av| 色吧在线观看| 美女cb高潮喷水在线观看 | 精品国产超薄肉色丝袜足j| 日韩精品青青久久久久久| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 国产又黄又爽又无遮挡在线| 亚洲第一电影网av| 两个人看的免费小视频| 夜夜躁狠狠躁天天躁| 99久久99久久久精品蜜桃| 人妻丰满熟妇av一区二区三区| 国产熟女xx| 亚洲成人久久性| 欧美午夜高清在线| 中文字幕熟女人妻在线| 1024手机看黄色片| 最近最新中文字幕大全电影3| 超碰成人久久| 神马国产精品三级电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 99视频精品全部免费 在线 | 精品欧美国产一区二区三| 国产成人欧美在线观看| 怎么达到女性高潮| 成人国产综合亚洲| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 黄色视频,在线免费观看| 好男人在线观看高清免费视频| 亚洲avbb在线观看| 国产激情偷乱视频一区二区| 亚洲欧美精品综合一区二区三区| 男女午夜视频在线观看| 五月玫瑰六月丁香| 久久久久久久精品吃奶| 很黄的视频免费| 国产精品一区二区免费欧美| 亚洲电影在线观看av| 精品国产美女av久久久久小说| 99国产精品一区二区蜜桃av| 精品久久蜜臀av无| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 天天躁日日操中文字幕| 国产精品永久免费网站| 国语自产精品视频在线第100页| 国产精品久久久av美女十八| 国产精品av久久久久免费| e午夜精品久久久久久久| 看片在线看免费视频| 午夜福利在线观看免费完整高清在 | 国内揄拍国产精品人妻在线| 俄罗斯特黄特色一大片| 在线观看日韩欧美| 制服人妻中文乱码| 欧美精品啪啪一区二区三区| 日韩精品青青久久久久久| 天堂动漫精品| 欧美xxxx黑人xx丫x性爽| 国产v大片淫在线免费观看| 午夜日韩欧美国产| 亚洲一区二区三区色噜噜| 热99在线观看视频| 免费观看人在逋| 熟女人妻精品中文字幕| 亚洲av片天天在线观看| 久久欧美精品欧美久久欧美| 亚洲无线在线观看| 三级毛片av免费| 啦啦啦韩国在线观看视频| 动漫黄色视频在线观看| 国产不卡一卡二| 69av精品久久久久久| 亚洲国产中文字幕在线视频| 欧美激情久久久久久爽电影| 午夜免费成人在线视频| 国产高清三级在线| www国产在线视频色| 日韩精品中文字幕看吧| 国产成人系列免费观看| av在线天堂中文字幕| 两个人视频免费观看高清| 美女高潮的动态| 亚洲,欧美精品.| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 真实男女啪啪啪动态图| 日本成人三级电影网站| 精品国产美女av久久久久小说| 母亲3免费完整高清在线观看| 午夜成年电影在线免费观看| 九九在线视频观看精品| 国产精品自产拍在线观看55亚洲| 日韩欧美在线二视频| 黑人巨大精品欧美一区二区mp4| 久久天堂一区二区三区四区| 欧美zozozo另类| 在线免费观看不下载黄p国产 | 日本一本二区三区精品| 特级一级黄色大片| 日韩成人在线观看一区二区三区| 国产黄色小视频在线观看| 首页视频小说图片口味搜索| 人人妻人人看人人澡| 中文亚洲av片在线观看爽| 天天躁狠狠躁夜夜躁狠狠躁| 视频区欧美日本亚洲| 一级作爱视频免费观看| 成人18禁在线播放| 黄色成人免费大全| 久久精品国产亚洲av香蕉五月| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| 黄色 视频免费看| 舔av片在线| 首页视频小说图片口味搜索| 日韩国内少妇激情av| 午夜福利在线在线| 亚洲精品美女久久久久99蜜臀| 日本免费a在线| 99在线视频只有这里精品首页| 亚洲人成网站高清观看| 熟女电影av网| av欧美777| 亚洲精品久久国产高清桃花| 日本在线视频免费播放| 麻豆成人av在线观看| 久久亚洲精品不卡| 免费观看的影片在线观看| 精品国产乱子伦一区二区三区| 国内精品美女久久久久久| 在线免费观看的www视频| 麻豆成人午夜福利视频| 国产成人精品久久二区二区免费| 日本五十路高清| 亚洲九九香蕉| 一进一出抽搐动态| 国产久久久一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 91av网一区二区| 欧美zozozo另类| 久久久久精品国产欧美久久久| 国产精品一区二区精品视频观看| 99re在线观看精品视频| 久久亚洲真实| 亚洲人成网站高清观看| 白带黄色成豆腐渣| 长腿黑丝高跟| 中出人妻视频一区二区| av天堂中文字幕网| 国产精品久久久人人做人人爽| 日本 欧美在线| 婷婷丁香在线五月| 国产精品一区二区精品视频观看| 精华霜和精华液先用哪个| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 熟女电影av网| www.999成人在线观看| 男人的好看免费观看在线视频| 日本一本二区三区精品| www.自偷自拍.com| 亚洲九九香蕉| 两人在一起打扑克的视频| 婷婷亚洲欧美| 宅男免费午夜| 亚洲人成电影免费在线| 成人一区二区视频在线观看| 人人妻人人澡欧美一区二区| 99国产综合亚洲精品| 午夜福利成人在线免费观看| 国产精品1区2区在线观看.| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 久久这里只有精品中国| 日韩欧美在线二视频| 一级a爱片免费观看的视频| 三级毛片av免费| 老汉色∧v一级毛片| 在线观看午夜福利视频| 在线观看66精品国产| 欧美成人性av电影在线观看| 757午夜福利合集在线观看| 国产一区二区三区在线臀色熟女| 国产成人精品久久二区二区免费| 九九热线精品视视频播放| 欧美最黄视频在线播放免费| 老汉色av国产亚洲站长工具| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 久久热在线av| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 黄片小视频在线播放| 欧美中文综合在线视频| 一a级毛片在线观看| 又爽又黄无遮挡网站| 波多野结衣高清无吗| 久久久国产成人免费| 夜夜看夜夜爽夜夜摸| 成人无遮挡网站| 老司机在亚洲福利影院| 亚洲精华国产精华精| 成人国产综合亚洲| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 午夜亚洲福利在线播放| 免费在线观看日本一区| avwww免费| 成年女人毛片免费观看观看9| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 午夜影院日韩av| 99久久精品国产亚洲精品| 国产精品影院久久| 美女高潮的动态| 日本与韩国留学比较| 亚洲欧美激情综合另类| 午夜福利18| 色视频www国产| 日本与韩国留学比较| av片东京热男人的天堂| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 亚洲国产看品久久| 久久伊人香网站| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩亚洲国产一区二区在线观看| 色噜噜av男人的天堂激情| 成人三级做爰电影| 窝窝影院91人妻| 午夜免费观看网址| 亚洲在线观看片| 精品乱码久久久久久99久播| 天堂网av新在线| 久久精品影院6| 国产精品电影一区二区三区| 综合色av麻豆| 国产伦在线观看视频一区| 偷拍熟女少妇极品色| 在线观看舔阴道视频| 俄罗斯特黄特色一大片| 天天一区二区日本电影三级| 亚洲黑人精品在线| av天堂中文字幕网| 99国产精品一区二区蜜桃av| 三级男女做爰猛烈吃奶摸视频| 天天躁日日操中文字幕| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 日本黄色视频三级网站网址| 国产亚洲精品一区二区www| 制服丝袜大香蕉在线| 99国产精品一区二区三区| 搡老妇女老女人老熟妇| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 免费av不卡在线播放| 嫩草影院入口| 精品一区二区三区视频在线观看免费| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 在线免费观看不下载黄p国产 | av女优亚洲男人天堂 | 亚洲精品456在线播放app | 欧美一级a爱片免费观看看| 亚洲av成人av| 波多野结衣巨乳人妻| 露出奶头的视频| 国产午夜精品论理片| 亚洲欧美一区二区三区黑人| 国产精品1区2区在线观看.| 亚洲精品久久国产高清桃花| av在线蜜桃| 操出白浆在线播放| 村上凉子中文字幕在线| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 精品国内亚洲2022精品成人| 成人特级av手机在线观看| 久久精品国产综合久久久| 在线观看美女被高潮喷水网站 | 欧美日韩亚洲国产一区二区在线观看| 久久久成人免费电影| 亚洲欧洲精品一区二区精品久久久| 丰满人妻一区二区三区视频av | 看黄色毛片网站| 听说在线观看完整版免费高清| 在线观看舔阴道视频| а√天堂www在线а√下载| 老熟妇乱子伦视频在线观看| 美女cb高潮喷水在线观看 | 最新在线观看一区二区三区| 亚洲国产精品999在线| 欧美成人免费av一区二区三区| 中文字幕人成人乱码亚洲影| 久久久久精品国产欧美久久久| 国产成年人精品一区二区| 久久久久久久久免费视频了| 久久99热这里只有精品18| 国产高清三级在线| 淫秽高清视频在线观看| 亚洲av片天天在线观看| 日日干狠狠操夜夜爽| av福利片在线观看| 最近在线观看免费完整版| 好男人电影高清在线观看| 女人被狂操c到高潮| 国产精品香港三级国产av潘金莲| 最新美女视频免费是黄的| 床上黄色一级片| 中文字幕高清在线视频| 岛国在线免费视频观看| 小说图片视频综合网站| 熟女人妻精品中文字幕| 亚洲自拍偷在线| 亚洲第一欧美日韩一区二区三区| 久久婷婷人人爽人人干人人爱| 国产成人av激情在线播放| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品av在线| 欧美zozozo另类| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 亚洲欧美日韩无卡精品| www.熟女人妻精品国产| 床上黄色一级片| 搡老熟女国产l中国老女人| 色播亚洲综合网| 国产精品亚洲一级av第二区| 黄色片一级片一级黄色片| 久久人人精品亚洲av| 精品99又大又爽又粗少妇毛片 | 亚洲中文日韩欧美视频| 偷拍熟女少妇极品色| 免费无遮挡裸体视频| 男人的好看免费观看在线视频| 亚洲熟女毛片儿| 亚洲黑人精品在线| 亚洲午夜精品一区,二区,三区| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 久久久久久国产a免费观看| 看免费av毛片| 19禁男女啪啪无遮挡网站| 精品国产乱子伦一区二区三区| 国产欧美日韩精品亚洲av| 真实男女啪啪啪动态图| 美女高潮喷水抽搐中文字幕| 欧美一级毛片孕妇| 少妇人妻一区二区三区视频| 1024手机看黄色片| 不卡av一区二区三区| 观看美女的网站| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 久99久视频精品免费| 国产毛片a区久久久久| 亚洲激情在线av| av片东京热男人的天堂| 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 亚洲成人免费电影在线观看| 日本 欧美在线| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 亚洲av成人一区二区三| 91麻豆精品激情在线观看国产| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 香蕉丝袜av| 观看免费一级毛片| avwww免费| 男人的好看免费观看在线视频| 亚洲国产精品合色在线| 51午夜福利影视在线观看| 国产伦在线观看视频一区| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 亚洲,欧美精品.| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 久久久久久九九精品二区国产| 久99久视频精品免费| 日韩欧美国产一区二区入口| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 亚洲一区高清亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 老司机福利观看| 久久精品夜夜夜夜夜久久蜜豆| 黑人巨大精品欧美一区二区mp4| 亚洲欧美日韩卡通动漫| 欧美不卡视频在线免费观看| 性色av乱码一区二区三区2| 国产伦一二天堂av在线观看| 香蕉丝袜av| 无限看片的www在线观看| 99热只有精品国产| 色播亚洲综合网| 少妇熟女aⅴ在线视频| 观看美女的网站| 99国产精品一区二区三区| a级毛片在线看网站| h日本视频在线播放| 嫁个100分男人电影在线观看| 色老头精品视频在线观看| 麻豆av在线久日| 亚洲午夜理论影院| 亚洲无线在线观看| 成人精品一区二区免费| 国产一区二区在线av高清观看| 怎么达到女性高潮| 国产一区二区在线av高清观看| 少妇的逼水好多| 99国产综合亚洲精品| 99国产精品一区二区三区| 久久亚洲真实| 国产视频一区二区在线看| 久久午夜亚洲精品久久| 黄色 视频免费看| 在线观看免费午夜福利视频| 国产高清激情床上av| 小蜜桃在线观看免费完整版高清| 一边摸一边抽搐一进一小说| 婷婷精品国产亚洲av在线| 国产综合懂色| 精品免费久久久久久久清纯| 日本黄大片高清| 老司机福利观看| 国产一区二区激情短视频| av天堂中文字幕网| 欧美丝袜亚洲另类 | 欧美日韩一级在线毛片| 久久这里只有精品中国| 欧美高清成人免费视频www| 久久久久九九精品影院| 丁香欧美五月| 99热精品在线国产| 国产精品久久视频播放| 亚洲精品在线观看二区| 91老司机精品| 国产精品久久久久久人妻精品电影| 久久精品人妻少妇| 国产 一区 欧美 日韩| 精品免费久久久久久久清纯| 日韩免费av在线播放| 级片在线观看| 国产伦人伦偷精品视频| 一区二区三区高清视频在线| 久久伊人香网站| 我要搜黄色片| 欧美一区二区精品小视频在线| 国产精品 欧美亚洲| 最近视频中文字幕2019在线8| 亚洲熟女毛片儿| 亚洲欧美精品综合久久99| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 国产v大片淫在线免费观看| 久久精品综合一区二区三区| 在线观看免费视频日本深夜| www国产在线视频色| 麻豆国产97在线/欧美| 国产亚洲av高清不卡| 色综合欧美亚洲国产小说| 久久久国产精品麻豆| 成年女人看的毛片在线观看| 国内精品久久久久久久电影| 日韩 欧美 亚洲 中文字幕| 欧美国产日韩亚洲一区| 哪里可以看免费的av片| 欧美高清成人免费视频www| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| 亚洲成人精品中文字幕电影|