• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fatigue Analysis of Steel Catenary Risers Based on a Plasticity Model

    2015-07-30 09:51:26YongqiangDongandLipingSun

    Yongqiang Dong and Liping Sun

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    1 Introduction1

    As the offshore developments of oil and gas move into deeper water, the understanding of the fatigue performance of the steel catenary riser (SCR) becomes critical to long-standing operation. The SCRs usually tend to fatigue damage, especially in the region where the riser pipe reaches the seabed, known as the ‘touchdown zone’ (TDZ) (Hodder and Byrne, 2010). One of the key issues for SCR design is to assess the fatigue damage due to repetitive loading over the lifetime of the riser (Xuet al., 2006). Accurate evaluation of the fatigue life of an SCR remains a major challenge due to uncertainty surrounding the interaction forces where the riser touches down on the seabed (Hodderet al., 2009). The results of the fatigue evaluation depend significantly on the assumed riser-soil interaction model at the TDZ, which is still an area of uncertainty for designers.

    The mechanisms that govern riser dynamic responses in the TDZ are not easy to quantify. The riser moves cyclically within the touchdown zone due to excitation from the vessel and wave loadings, softening and remolding the seabed soil.Vertically or in-plane, riser motions create transient variations in the riser-soil force, associated with longitudinal translation of the touchdown point accompanied by changes in the tension. The cyclic expulsion and sucking-in of water between the riser and soil during vertical motions also tends to cause water entrainment into the soil, thereby increasing the degradation of the shear strength. Horizontally or out-of-plane, riser motions reduce the vertical bearing capacity of the soil due to the combined V-H loading imposed on the seabed. The embedment required to support a given vertical load need to be increased. Also, horizontal motions tend to sweep soil laterally away from the riser alignment, which leads to the formation of a trench around the riser.

    The full riser-soil interaction responses within the TDZ of an SCR include interaction between the riser response and the soil response. The actual conditions imposed on an element of a riser pipe are neither load controlled nor displacement controlled only (Hodderet al., 2009).Therefore, the riser-soil interaction response is dependent on a range of factors such as the seabed soil strength, loading conditions and riser displacement magnitude.

    The riser-soil interaction forces within the TDZ strongly influence the SCR fatigue damage. Structural analyses of SCRs usually consider only vertical pipe-soil forces and incorporate the pipe-soil interaction via linear springs(Mekha and Bhat, 2013). Fatigue life predictions for SCRs in the vicinity of the TDZ are heavily dependent on the assumed stiffness of the seabed. For accurate fatigue life predictions to be achieved, a reliable evaluation of the seabed stiffness is required. Nonlinear models which incorporate tensile pipe-soil forces have been developed,including the CARISIMA model (Giertsenet al., 2004;Leiraet al., 2004), STRIDE model (Thethi and Moros, 2001;Bridgeet al., 2004), P-y curve model (Aubeny and Biscontin, 2008; 2009) and hysteretic seabed model(Randolph and Quiggin, 2009). The analysis results of the nonlinear models above indicate significantly decreased fatigue damage as compared to the linear idealization.

    Plasticity theory, which has been applied to constitutive modeling of both metals and soils, is gradually being used on a macroelement scale to model the combined loading behavior of shallow foundations, as presented by Wood(2004), Cathieet al. (2005) and Tian and Cassidy (2008).The force-resultant models simulate the behavior of the entire foundation by combining the resultant forces directly with the corresponding displacement (Cassidyet al., 2004)and supply an alternate method to model the elements of riser or pipeline.

    The force-resultant kinematic hardening plasticity model in calcareous sand was originally presented by Zhang (2001)and Zhanget al. (2002a; 2002b). This novel approach is applied to pipeline-soil interaction, which utilizes the bounding surface theory as the framework to describe the combined vertical and horizontal load-displacement behavior of a pipeline in calcareous sands. The method was calibrated using centrifuge test data of a prototype 1 m in diameter and an 8 m long pipeline on calcareous sands(Zhang, 2001). Tian and Cassidy (2008) provided a revision by formulating a different plastic potential function and the consistency condition of the yield surface in derivation of the constitutive equation. The non-associated flow rule introduced by Zhang (2001) was modified so that the plastic potential surface could remain a similar shape and position with the yield surface. Tianet al. (2010) provided a new model formulation with all the parameters calibrated from the experimental tests of a segment of pipe on calcareous sand. The modified model has been shown to have excellent agreement with the centrifuge data from the lateral displacement tests of the diameters of the two pipes. This provides additional confidence in the plasticity framework model’s use in the simulation of the pipeline and underlying soil.

    Using a plasticity framework model to simulate the behaviour of the pipeline and the underlying soil offers an alternate method. The more fundamental understanding of the pipe-soil interaction under the vertical and horizontal loading can be expressed by the parameters consistent with the pipeline structural analysis, through expressing the pipe-soil interaction in terms of the loads and the corresponding displacements. Integrating the plasticity framework model into an FEM analysis program can describe the pipe-soil interaction behavior efficiently, and the reasonable results can be achieved.

    Similarly, a plasticity framework of the riser-soil interaction model in a clay soil seabed has been developed in this paper. The fatigue life of an SCR was analyzed by integrating the linear springs model and the plasticity framework model into a structural analysis program in the time domain, respectively. According to the comparisons of the different models, the fatigue life analysis result from the plasticity framework is reasonable and the horizontal effects of the riser-soil interaction can be included.

    2 The plasticity framework model

    2.1 Basic assumptions

    The plasticity framework model is based on the theory of kinematic hardening and critical state soil mechanics. A two-surface model provided by Li and Meissner (2002) was developed for predicting the undrained behavior of saturated cohesive soils under cyclic loads. The development of this model is based on the following assumptions similarly:

    1) The riser-soil loading history is described with the bounding surface that is definitely defined by the vertical settlement and represents the isotropic properties of soil.The bounding surface is a geometrical boundary, which can translate, contract and expand in the V-H space, but the loading point cannot go outside of it.

    2) The elastic domain is surrounded by the yield surface,which becomes to be a point and the plastic flow turns up for load increment within the bounding surface. Other than the classic yield surface, there is a loading surface within the domain surrounded by the bounding surface that represents a single loading event and reflects the anisotropic characteristic of the soil.

    3) The loading surface could translate or expand with the loading path within the bounding surface. The loading surface can tangentially contact with the bounding surface,but can not cross it.

    4) At the time that the load point moves to the bounding surface, the plastic hardening modulus on the loading surface varies from its local value to an appointed value on the bounding surface. The magnitude of the plastic hardening modulus lies on the relative condition of the two surfaces.

    5) The associated flow rule is utilized to govern the plastic flow for the loading surface. The positions of the loading and bounding surfaces in the V-H space are defined by the kinematic hardening rule.

    2.2 Formulation of the model

    The steel catenary riser in the touchdown zone is assumed to be rigid and placed on the flat surface of homogeneous isotropic soil. The riser pipe is embedded into the soil under the inner vertical loading and the horizontal soil loading.The resultant load contains the vertical loading and the horizontal loading, so the riser-soil interaction is defined in the vertical and horizontal load space.

    2.2.1 Bounding and loading surfaces

    The bounding surface is assumed to be an elliptic form as:

    whereHandVare the horizontal and vertical forces;ris the ratio of the two semi axes,r=1/tanq;andrepresent the coordinates of the centerMof the bounding surface;is the semidiameter of the ellipse in theVdirection;pwis the vertical settlement of the riser pipe;mis the ordinal number of the loading events but not the loading cycles number,m=0 means the initial loading during the loading process,m=1 represents the first loading or unloading event, and so on.

    In order to keep a smooth transformation between the deformation processes inside the bounding surface, the loading surface is assumed to be similar to the bounding surface and always tangentially in contact with it, and their axes are parallel to each other, as shown in Fig. 1. Similar to Eq. (1), the loading surface is written as follows:

    Fig. 1 Kinematic hardening model

    2.2.2 Kinematic hardening rule

    The kinematic hardening rule is described in detail by Li and Meissner (2002). The position of the memory center is defined by the hardening rule firstly, which states that the memory center is located at the origin of the V-H space for virgin loading, and that it moves to the new load point for the next loading where the loading path changes. The movement of the bounding and loading surfaces is controlled by the hardening rule else, which states that when the memory center gets its new position, the old bounding and loading surfaces in the last loading event are removed,and the new bounding and loading surfaces begin to play their roles in the new loading event. The kinematic hardening rule is schematically represented in Fig. 2.

    Fig. 2 The kinematic hardening rule

    2.2.3 Flow rule and incremental relations

    The associated flow rule forfmduring themth loading event is written as:

    with

    where

    If the soil fluid and solid phases are incompressible, the loading index can be represented by:

    and

    where

    The differential equation of the loading path is expressed as:2.2.4 Evolvement rule

    The size of the bounding surface is defined by specifying the variation of the semidiameterpw, which is the only hardening parameter for the bounding surface:

    with

    whereφandcare respectively the internal friction angle in failure and the cohesion of clays,0ais decided by the initial loading,the vertical plastic settlement in the initial loading, andcthe soil state parameter.

    The center coordinates ofFmcan be obtained from the proportionality relationship:

    The center offmcan be derived from these two equations by replacingand. The relationship between the pointRandfmcan also be expressed in the proportionality equations:

    The expression ofRcan be given from Eq. (1) by

    with

    whereRrandMrexpress the value ofrat pointsRandMrespectively. The semidiameter offmcan be obtained:2.2.5 Plastic hardening modulus

    The plastic hardening modulus is assumed to transform depending on the relationship of the bounding and loading surfaces. The hardening plastic modulus offmcan be represented by:

    3 Calculation example and results

    To show the feasibility of the plasticity framework’s riser-soil interaction model, the finite element method has been used to evaluate the fatigue life of a typical SCR example subjected to platform motions and wave loadings in the method suggested by Donget al. (2014).

    The fatigue life of an SCR was analyzed by integrating the plasticity framework model into a structural analysis program ABAQUS in the time domain. The parameters of the example riser are shown in Table 1 and the plasticity framework model parameters are shown in Table 2.

    Table 1 SCR data

    Table 2 Model parameter

    The SCR nonlinear dynamic response analysis was carried out under the wave and current forces coupled with the motions of the floating in the time domain. The time histories of the combined stresses according to the dynamic analysis were employed to predict the riser fatigue life by the method of the S-N curve and Rainflow counting technique. The SCR fatigue damage results of every seastate were added together with different probabilities of occurrence and the whole SCR fatigue damage and fatigue life were achieved. The motions of the floating were predicted in 6 degrees of freedom and the wave and current forces acting on the SCR were calculated using Morison’s equation. The moment and tension responses of the SCR are shown in Fig. 3.

    Fig. 3 SCR tension and moment

    The Von Mises combined stress can be given as the expression:

    whereTis the tension force;Ais the area of the riser pipe,Mis the moment force;Iis the moment of inertia;iDandoDare the inner and outer diameter of the riser pipe respectively.

    The stress results of riser element number 1241(3 087 m from the top end of SCR) in one seastate are shown in Table 3. The stress circulation number results of riser element number 1241, direction 180°(The bottom of the riser pipe) are shown in Table 4.

    The Doe-E S-N curve was used to estimate the fatigue damage of the riser. The expression can be written as:

    whereS=SCF×ΔS, SCF is the stress concentration factor,aandmare the material constant.

    So, the riser fatigue life can be predicted by the method of the S-N curve and Rainflow counting technique. The fatigue damage of the example riser can be obtained in the SW direction consisting of 15 seastates with different probabilities of occurrence. The SCR fatigue damage results of every seastate were added together with the probability of occurrence. The whole SCR fatigue damage and fatigue life were achieved and the fatigue damage results are shown in

    Fig. 4. It can be seen that the maximum fatigue damage result is located at the TDZ.

    Table 3 Riser element stress results

    Table 4 Stress circulation number results of riser element

    Fig. 4 The fatigue damage of the SW direction

    4 Comparison of results and discussion

    To illustrate that the result of the plasticity framework model is reasonable and reliable, the fatigue life of an SCR was analyzed by integrating the linear spring model and the plasticity framework model into a structural analysis program in the time domain, respectively. According to the comparisons of the different models, the fatigue life analysis result of the plasticity framework is reasonable and the horizontal effects of the pipe-soil interaction can be included.The fatigue damage at the TDZ of the two models is shown in Fig. 5 and the fatigue damage at the TDZ of the two models in the vertical is shown in Fig. 6. It can be seen that the difference of the results between the linear spring model and the plasticity framework model is more remarkable in the vertical.

    Fig. 5 TDZ fatigue damage of the two models

    Fig. 6 TDZ fatigue damage of the two models in the vertical

    Fig. 7 The combined stress envelopes of the spring element model in the vertical

    To find out the reason why the fatigue result of the plasticity framework model decreases evidently in the vertical, the comparison analysis between the combined stresses of the two models in the vertical and the horizontal directions is needed.

    The maximum and minimum combined stresses at the TDZ of the two models in the vertical are shown in Figs. 7 and 8. From the comparison of the two figures, it can be judged that the margin between the maximum and minimum combined stresses of the spring element model is more remarkable, that is, the cyclic amplitude is larger. So, the fatigue of the spring element model is more severe.

    Also, the maximum and minimum combined stresses at the TDZ of the two models in the horizontal are shown in

    Figs. 9 and 10. But judged from the comparison of the two figures, the margin between the maximum and minimum combined stresses of the plasticity framework model is more obvious, the cyclic amplitude of the combined stress is larger, and the fatigue damage is higher than the other. It indicates that the effect of the horizontal reaction force between the riser and the soil can be summed up in the plasticity framework model.

    Fig. 8 The combined stress envelopes of the plasticity framework model in the vertical

    Fig. 9 The combined stress envelopes of the spring element model in the horizontal

    Fig. 10 The combined stress envelopes of the plasticity framework model in the horizontal

    5 Conclusions

    This paper introduces a practical approach to integrate the riser-soil interaction plasticity model into the finite element(FE) program. Attaching numerous force-resultant plasticity model elements to riser’s Finite Element nodes, the analysis of the riser-soil interaction becomes computationally feasible. The 3D beam theory and FE displacement method are utilized to combined the model described in this paper into the FE program software ABAQUS. The structural stiffness matrix was assembled with the plasticity model by discretizing the riser pipe in the TDZ as beam elements.That is, the contribution of the riser-soil plasticity model is incorporated into the structural stiffness matrix using the FE displacement method. An SCR calculation case demonstrates the feasibility of the suggested approach.

    Although the plasticity model is only covering vertical and horizontal effects, combining the 3D beam theory and the finite element displacement method in implementing the model into the finite element method program would provide a more efficient approach to simulate the riser-soil interaction with averaged sophistication of the structure and soil. The proposed approach facilitates the riser dynamic analysis and can be used to evaluate the riser fatigue under complex loading conditions. However, the axial friction force and rotation have not been considered in the model or in this paper, which needs further development. In conclusion, the proposed approach provides a new strategy for SCR fatigue analysis and the research results should be helpful to the SCR design and analysis.

    Aubeny CP, Biscontin G (2008). Interaction model for steel compliant riser on soft seabed.Proceedings of2008 Offshore Technology Conference, Houston, USA, OTC 19493.DOI: http://dx.doi.org/10.2118/120077-PA

    Aubeny CP, Biscontin G (2009). Seafloor-riser interaction model.International Journal of Geomechanics, 9(3), 133-141.DOI: 10.1061/(ASCE)1532-3641(2009)9:3(133)

    Bridge C, Laver K, Clukey E, Evans T (2004). Steel catenary riser touchdown point vertical interaction models.Proceedings of 2004 Offshore Technology Conference, Houston, USA, OTC 16628.DOI: http://dx.doi.org/10.4043/16628-MS

    Cassidy MJ, Martin CM, Houlsby GT (2004). Development and application of force resultant models describing jacking-up foundation behavior.Marine Structures, 17(3-4), 165-193.DOI: 10.1016/j.marstruc.2004.08.002

    Cathie DN, Jaeck C, Ballard JC, Wintgens JF (2005). Pipeline geotechnics-state-of-the-art.International Symposium on the Frontiers in Offshore Geotechnics: ISFOG 2005, London,95-114.

    Dong Yongqiang, Song Ruxin, Sun Liping (2014). Deepwater steel catenary riser fatigue life estimate analysis.The Ocean Engineering, 32(2), 119-124. (in Chinese)

    Giertsen E, Richard V, Schr?der K (2004). CARISIMA: A catenary riser/soil interaction model for global riser analysis.Proceedings of the 23rd International Conference on OffshoreMechanics and Arctic Engineering, Vancouver, Canada,633-640.DOI: 10.1115/OMAE2004-51345

    Hodder MS, Byrne BW (2010). 3D experiments investigating the interaction of a model SCR with the seabed.Applied Ocean Research,32(2), 146-157.DOI: 10.1016/j.apor.2009.09.004

    Hodder MS, White D, Cassidy M (2009). Effect of remolding and reconsolidation on the touchdown stiffness of a steel catenary riser: observations from centrifuge modeling.Proceedings of 2009 Offshore Technology Conference, Houston, USA, OTC 19871.DOI: http://dx.doi.org/10.4043/19871-MS

    Leira BJ, Passano E, Karunakaran D, Farnes KA, Giertsen E (2004).Analysis guidelines and applications of a riser-soil interaction model including trench effects.Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, Canada, 955-962.DOI: 10.1115/OMAE2004-51527

    Li T, Meissner H (2002). Two-surface plasticity model for cyclic undrained behavior of clays.Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 613-626.DOI: 10.1061/(ASCE)1090-0241(2002)128:7(613)

    Mekha B, Bhat S (2013). Newer frontiers in the design of steel catenary risers for floating production systems.Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, OMAE2013-11562.DOI: 10.1115/OMAE2013-11562

    Randolph M, Quiggin P (2009). Non-linear hysteretic seabed model for catenary pipeline contact.Proceedings of the the 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA, 145-154.DOI: 10.1115/OMAE2009-79259

    Thethi R, Moros T (2001). Soil interaction effects on simple catenary riser response.Proceedings of Deepwater Pipeline and Riser Technology Conference, Houston, USA, 1-25.

    Tian Yinghui, Cassidy MJ (2008). Modeling of pipe-soil interaction and its application in numerical simulation.International Journal of Geomechanics, 8(4), 213-229.DOI: 10.1016/j.marstruc.2007.05.001

    Tian Yinghui, Cassidy MJ, Gaudin C (2010). Advancing pipe-soil interaction models in calcareous sand.Applied Ocean Research,32(3), 284-297.DOI: 10.1016/j.apor.2010.06.002

    Wood MD (2004).Geotechnical modeling.Spon Press,Oxfordshire, UK.

    Xu J, Fang J, Else M (2006). Wave loading fatigue performance of steel catenary risers (SCRs) in ultradeepwater applications.Proceedings of 2006 Offshore Technology Conference, Houston,USA, OTC 18180.DOI: 10.4043/18180-MS

    Zhang Jianguo (2001).Geotechnical stability of offshore pipelines in calcareous sand. PhD thesis, University of Western Australia,Perth, Australia.

    Zhang J, Stewart DP, Randolph MF (2002a). Kinematic hardening model for pipeline-soil interaction under various loading conditions.The International Journal of Geomechanics, 2(4),419-446.DOI: 10.1061/(ASCE)1532-3641(2002)2:4(419)

    Zhang Jianguo, Stewart DP, Randolph MF (2002b). Modeling of shallowly embedded offshore pipelines in calcareous sand.Journal of Geotechnical and Geoenviron Mental Engineering,128(5), 363-371.DOI: 10.1061/(ASCE)1090-0241(2002)128:5(363)

    国语自产精品视频在线第100页| 精品久久久久久电影网 | 嘟嘟电影网在线观看| 免费人成在线观看视频色| .国产精品久久| 精品人妻视频免费看| 久久精品综合一区二区三区| 禁无遮挡网站| 亚洲国产精品久久男人天堂| 欧美+日韩+精品| 中文字幕av成人在线电影| 久久久久久伊人网av| 亚洲av熟女| 久久精品久久久久久久性| 国产精品电影一区二区三区| 国内精品美女久久久久久| 美女国产视频在线观看| 天天躁日日操中文字幕| 精品久久久久久成人av| 亚洲最大成人中文| 日本色播在线视频| 国产精品女同一区二区软件| 日韩一区二区三区影片| 97超碰精品成人国产| 国产精品一区二区性色av| 日韩欧美三级三区| 天天躁日日操中文字幕| 99久久人妻综合| 亚洲国产精品合色在线| 日韩欧美精品v在线| 国产亚洲最大av| 简卡轻食公司| 国产淫语在线视频| 国产免费一级a男人的天堂| 亚洲欧洲国产日韩| av在线播放精品| 成人鲁丝片一二三区免费| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| 中文精品一卡2卡3卡4更新| 六月丁香七月| 国产精品蜜桃在线观看| 亚洲在久久综合| 国产精品国产三级专区第一集| 丰满乱子伦码专区| 能在线免费观看的黄片| 99久久精品一区二区三区| 成人毛片60女人毛片免费| 国内揄拍国产精品人妻在线| 国产免费视频播放在线视频 | 伦精品一区二区三区| 婷婷色麻豆天堂久久 | 伦精品一区二区三区| 久久99蜜桃精品久久| 亚洲av电影在线观看一区二区三区 | 纵有疾风起免费观看全集完整版 | 久久久久久大精品| 成人无遮挡网站| 2021少妇久久久久久久久久久| 两个人视频免费观看高清| 一边摸一边抽搐一进一小说| 亚洲国产色片| 干丝袜人妻中文字幕| 久久精品国产鲁丝片午夜精品| 欧美一级a爱片免费观看看| 欧美高清成人免费视频www| 三级经典国产精品| 永久免费av网站大全| 深夜a级毛片| 久久久久精品久久久久真实原创| 我的女老师完整版在线观看| 热99在线观看视频| 国产成人精品婷婷| 国产精品人妻久久久影院| 国产一区二区亚洲精品在线观看| 亚洲熟妇中文字幕五十中出| 久久精品综合一区二区三区| 校园人妻丝袜中文字幕| 一区二区三区免费毛片| 久久鲁丝午夜福利片| 欧美一区二区精品小视频在线| 国产真实伦视频高清在线观看| 国产精品,欧美在线| 在线观看美女被高潮喷水网站| 一级黄片播放器| 亚洲av中文字字幕乱码综合| 全区人妻精品视频| 亚洲精品日韩在线中文字幕| 国产 一区精品| 高清日韩中文字幕在线| 男女国产视频网站| 18禁在线无遮挡免费观看视频| 国产真实乱freesex| 亚洲人与动物交配视频| 久久久久久久国产电影| 天堂网av新在线| 国产成人午夜福利电影在线观看| 国产伦理片在线播放av一区| 色网站视频免费| 九九在线视频观看精品| 久久热精品热| 五月伊人婷婷丁香| 久久久精品94久久精品| 男女视频在线观看网站免费| 91精品国产九色| 国产探花极品一区二区| 日本免费一区二区三区高清不卡| 国产一区二区在线av高清观看| 国产麻豆成人av免费视频| 欧美变态另类bdsm刘玥| 日本色播在线视频| 欧美xxxx黑人xx丫x性爽| 久久人妻av系列| 国产一级毛片七仙女欲春2| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 精品少妇黑人巨大在线播放 | 尤物成人国产欧美一区二区三区| 精品一区二区三区人妻视频| 综合色av麻豆| 午夜福利成人在线免费观看| 美女脱内裤让男人舔精品视频| 亚州av有码| 国产精品一区www在线观看| 夜夜爽夜夜爽视频| 欧美日韩综合久久久久久| 十八禁国产超污无遮挡网站| 国模一区二区三区四区视频| 如何舔出高潮| 欧美日韩国产亚洲二区| 国产av在哪里看| 国产av不卡久久| 久久久久九九精品影院| 色尼玛亚洲综合影院| 精品酒店卫生间| 国产一区二区在线观看日韩| 青青草视频在线视频观看| 国产亚洲精品久久久com| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| av.在线天堂| 成人国产麻豆网| 噜噜噜噜噜久久久久久91| 1024手机看黄色片| 国产av一区在线观看免费| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 在线免费观看的www视频| 国产精品久久久久久av不卡| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 成年版毛片免费区| 日本与韩国留学比较| 久久久久久国产a免费观看| 国产精华一区二区三区| 在线播放国产精品三级| 岛国毛片在线播放| 中文欧美无线码| 欧美一区二区国产精品久久精品| 国模一区二区三区四区视频| 蜜桃久久精品国产亚洲av| 在线播放无遮挡| 欧美精品一区二区大全| 丰满人妻一区二区三区视频av| av国产久精品久网站免费入址| 国产单亲对白刺激| 亚洲经典国产精华液单| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 九九爱精品视频在线观看| 国产免费福利视频在线观看| 亚洲av一区综合| 欧美高清性xxxxhd video| 免费观看在线日韩| 我要看日韩黄色一级片| av黄色大香蕉| 日韩av在线免费看完整版不卡| 丝袜美腿在线中文| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 久99久视频精品免费| 看免费成人av毛片| 亚洲av福利一区| 久久精品久久久久久久性| 欧美日韩综合久久久久久| a级毛片免费高清观看在线播放| 欧美成人免费av一区二区三区| 插逼视频在线观看| 18禁在线播放成人免费| 男女那种视频在线观看| 91aial.com中文字幕在线观看| 午夜福利在线观看吧| 看片在线看免费视频| 最新中文字幕久久久久| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 国产av不卡久久| 如何舔出高潮| 久久久久久九九精品二区国产| 精品免费久久久久久久清纯| 亚洲av成人精品一区久久| 波多野结衣高清无吗| 久久午夜福利片| 波多野结衣巨乳人妻| 在线观看一区二区三区| 亚洲成人久久爱视频| 白带黄色成豆腐渣| or卡值多少钱| 成年版毛片免费区| 在线观看一区二区三区| av卡一久久| 国产又黄又爽又无遮挡在线| 观看免费一级毛片| 亚洲人成网站高清观看| 人体艺术视频欧美日本| 亚洲美女视频黄频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品乱久久久久久| 亚洲最大成人手机在线| 极品教师在线视频| 色5月婷婷丁香| .国产精品久久| av线在线观看网站| 午夜免费男女啪啪视频观看| 亚洲精品久久久久久婷婷小说 | 18禁在线无遮挡免费观看视频| 中文在线观看免费www的网站| 国产午夜精品论理片| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 91精品国产九色| 高清视频免费观看一区二区 | 久久精品人妻少妇| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 高清av免费在线| 大香蕉97超碰在线| 午夜免费男女啪啪视频观看| 国产白丝娇喘喷水9色精品| .国产精品久久| 看免费成人av毛片| 黑人高潮一二区| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 只有这里有精品99| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| www.av在线官网国产| 久久久久久久久大av| 麻豆成人午夜福利视频| 午夜视频国产福利| 亚洲成人精品中文字幕电影| 少妇猛男粗大的猛烈进出视频 | 丰满人妻一区二区三区视频av| 国产精华一区二区三区| 可以在线观看毛片的网站| 男的添女的下面高潮视频| 激情 狠狠 欧美| 久久精品国产99精品国产亚洲性色| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄 | 九九在线视频观看精品| 变态另类丝袜制服| 日韩一区二区三区影片| 大香蕉97超碰在线| 国产又黄又爽又无遮挡在线| 亚洲激情五月婷婷啪啪| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 中文天堂在线官网| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| av福利片在线观看| 舔av片在线| 99久久人妻综合| 婷婷色麻豆天堂久久 | 中文字幕av在线有码专区| 亚洲精品日韩av片在线观看| 国产精华一区二区三区| 亚洲,欧美,日韩| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| kizo精华| www.色视频.com| 国产乱来视频区| 日本免费在线观看一区| 超碰av人人做人人爽久久| 亚洲在线观看片| 日韩精品青青久久久久久| 久久久久九九精品影院| 欧美日本视频| 国产成年人精品一区二区| 少妇人妻精品综合一区二区| 全区人妻精品视频| 中国国产av一级| 直男gayav资源| 波多野结衣高清无吗| 97热精品久久久久久| 人人妻人人看人人澡| 热99在线观看视频| 久久精品夜色国产| 在线a可以看的网站| 高清av免费在线| 内地一区二区视频在线| 久久精品人妻少妇| 嫩草影院入口| 中国美白少妇内射xxxbb| 国产伦精品一区二区三区视频9| 国产老妇伦熟女老妇高清| 国产成人freesex在线| 亚洲综合色惰| 日本黄色片子视频| 精品国产一区二区三区久久久樱花 | 人妻夜夜爽99麻豆av| 18禁在线播放成人免费| 国产成人a区在线观看| 中文欧美无线码| 国产精品嫩草影院av在线观看| 久久久久久久亚洲中文字幕| 日本色播在线视频| 国产精品久久久久久精品电影小说 | 99国产精品一区二区蜜桃av| 国产综合懂色| 2021天堂中文幕一二区在线观| 亚洲欧美清纯卡通| 免费av观看视频| 精品国产一区二区三区久久久樱花 | 人人妻人人澡欧美一区二区| 久久久久久久久久黄片| 天堂av国产一区二区熟女人妻| 国产av在哪里看| 少妇的逼好多水| 日韩欧美国产在线观看| 久久久亚洲精品成人影院| 欧美性感艳星| 国产乱来视频区| 国产黄片美女视频| 国产黄a三级三级三级人| 级片在线观看| 男人舔女人下体高潮全视频| 三级毛片av免费| 日本免费在线观看一区| 校园人妻丝袜中文字幕| 国产免费又黄又爽又色| 最新中文字幕久久久久| 三级毛片av免费| 久久精品91蜜桃| av在线播放精品| 99久久精品一区二区三区| 亚洲自拍偷在线| 能在线免费观看的黄片| av天堂中文字幕网| 视频中文字幕在线观看| 观看免费一级毛片| 亚洲精品亚洲一区二区| 一级毛片我不卡| kizo精华| 国产精品,欧美在线| 免费看日本二区| 亚洲av二区三区四区| 精品国产露脸久久av麻豆 | 色网站视频免费| 久久久久久大精品| 国产色爽女视频免费观看| 国产亚洲5aaaaa淫片| 久久国内精品自在自线图片| 亚洲,欧美,日韩| 国产亚洲91精品色在线| 老司机福利观看| 插逼视频在线观看| 深爱激情五月婷婷| 国产精品野战在线观看| 日本午夜av视频| 最近的中文字幕免费完整| 黄色日韩在线| 久久久久久大精品| av黄色大香蕉| av在线观看视频网站免费| 精品一区二区三区视频在线| av福利片在线观看| 少妇裸体淫交视频免费看高清| 国产av一区在线观看免费| 日韩人妻高清精品专区| 性插视频无遮挡在线免费观看| 赤兔流量卡办理| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 成人特级av手机在线观看| av黄色大香蕉| 久久国产乱子免费精品| 国产精品熟女久久久久浪| 日韩国内少妇激情av| 国产伦精品一区二区三区视频9| 免费av毛片视频| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 男女边吃奶边做爰视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| av在线老鸭窝| 免费观看a级毛片全部| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 淫秽高清视频在线观看| 十八禁国产超污无遮挡网站| 汤姆久久久久久久影院中文字幕 | 高清日韩中文字幕在线| 又爽又黄无遮挡网站| 日韩欧美 国产精品| 欧美zozozo另类| 久久这里有精品视频免费| 国产成人免费观看mmmm| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 日本黄色片子视频| 久久亚洲精品不卡| 国产 一区 欧美 日韩| 免费不卡的大黄色大毛片视频在线观看 | 夜夜爽夜夜爽视频| 噜噜噜噜噜久久久久久91| 欧美激情国产日韩精品一区| 18禁在线无遮挡免费观看视频| 日本免费在线观看一区| 最近2019中文字幕mv第一页| 亚洲乱码一区二区免费版| 中文字幕亚洲精品专区| 久久久久久久久大av| 夜夜爽夜夜爽视频| 亚洲av电影在线观看一区二区三区 | 麻豆av噜噜一区二区三区| 黄片wwwwww| 天堂影院成人在线观看| 色哟哟·www| av在线亚洲专区| 亚洲欧美日韩卡通动漫| 免费观看在线日韩| 久久人人爽人人片av| 日本色播在线视频| 国产亚洲av片在线观看秒播厂 | 精品免费久久久久久久清纯| 黄色日韩在线| 在线免费十八禁| 2022亚洲国产成人精品| 欧美极品一区二区三区四区| 亚洲自偷自拍三级| 日日摸夜夜添夜夜添av毛片| 一二三四中文在线观看免费高清| 亚洲国产高清在线一区二区三| 亚洲国产色片| 国产真实伦视频高清在线观看| 日本三级黄在线观看| 亚洲18禁久久av| 国产又色又爽无遮挡免| 一二三四中文在线观看免费高清| 国产成人精品久久久久久| 精品无人区乱码1区二区| 少妇人妻一区二区三区视频| 天堂影院成人在线观看| 久久久精品94久久精品| 国内精品一区二区在线观看| 大香蕉97超碰在线| 色尼玛亚洲综合影院| 国产 一区精品| 高清在线视频一区二区三区 | 国产乱人偷精品视频| АⅤ资源中文在线天堂| 久久精品国产亚洲av涩爱| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| av卡一久久| 欧美不卡视频在线免费观看| 中国美白少妇内射xxxbb| 精品一区二区免费观看| 极品教师在线视频| 日日啪夜夜撸| 少妇人妻精品综合一区二区| 1000部很黄的大片| 国模一区二区三区四区视频| 亚洲色图av天堂| 日日摸夜夜添夜夜爱| 亚洲国产精品合色在线| 亚洲一区高清亚洲精品| 汤姆久久久久久久影院中文字幕 | 精品久久久久久电影网 | 菩萨蛮人人尽说江南好唐韦庄 | 夜夜看夜夜爽夜夜摸| 亚洲国产最新在线播放| 一级黄色大片毛片| 成人无遮挡网站| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 国产黄片美女视频| 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| 国产精品久久视频播放| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看| 岛国在线免费视频观看| 人妻夜夜爽99麻豆av| 国产单亲对白刺激| 国产成年人精品一区二区| 国产午夜精品论理片| 性色avwww在线观看| 两个人的视频大全免费| av女优亚洲男人天堂| 日本黄大片高清| 1024手机看黄色片| 两个人的视频大全免费| 精品人妻熟女av久视频| 日韩一本色道免费dvd| 乱系列少妇在线播放| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| 精品人妻偷拍中文字幕| 午夜激情福利司机影院| 亚洲精品久久久久久婷婷小说 | 人妻制服诱惑在线中文字幕| 久久6这里有精品| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 六月丁香七月| 成年女人看的毛片在线观看| 亚洲国产色片| 亚洲精品日韩在线中文字幕| 久久99热6这里只有精品| 精华霜和精华液先用哪个| 一卡2卡三卡四卡精品乱码亚洲| 99久久精品热视频| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 日韩大片免费观看网站 | 国产淫语在线视频| 亚洲经典国产精华液单| 一个人观看的视频www高清免费观看| 国产精品1区2区在线观看.| 97热精品久久久久久| 插逼视频在线观看| 男人和女人高潮做爰伦理| 国产午夜福利久久久久久| 免费搜索国产男女视频| 中国美白少妇内射xxxbb| 成人漫画全彩无遮挡| 国产伦理片在线播放av一区| 99九九线精品视频在线观看视频| 欧美高清成人免费视频www| 91久久精品国产一区二区三区| 人人妻人人看人人澡| 乱人视频在线观看| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 黄色配什么色好看| av视频在线观看入口| 亚洲,欧美,日韩| 亚洲国产精品成人综合色| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频| 日本黄色视频三级网站网址| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 婷婷色av中文字幕| 亚洲怡红院男人天堂| 国产 一区 欧美 日韩| 日本猛色少妇xxxxx猛交久久| 看黄色毛片网站| av在线播放精品| 美女脱内裤让男人舔精品视频| 麻豆成人午夜福利视频| 蜜臀久久99精品久久宅男| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| 亚洲丝袜综合中文字幕| 亚洲精品国产成人久久av| 久久鲁丝午夜福利片| 一区二区三区乱码不卡18| 欧美一区二区精品小视频在线| 韩国高清视频一区二区三区| 日韩精品有码人妻一区| videos熟女内射| 一边亲一边摸免费视频| 国产成人一区二区在线| 91精品伊人久久大香线蕉| 亚洲中文字幕一区二区三区有码在线看| 国产精品美女特级片免费视频播放器| 亚洲欧美精品专区久久| 国产久久久一区二区三区| 中文精品一卡2卡3卡4更新| 日韩成人伦理影院| 亚洲欧美日韩卡通动漫| 国产极品精品免费视频能看的| 一级黄片播放器| 色噜噜av男人的天堂激情| 成人美女网站在线观看视频| 最近视频中文字幕2019在线8| 伦理电影大哥的女人| av女优亚洲男人天堂| 哪个播放器可以免费观看大片| 男女那种视频在线观看| 我要搜黄色片| 久久精品91蜜桃| 久久久国产成人精品二区| 97超视频在线观看视频| 欧美日本视频| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 久热久热在线精品观看|