• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geochronology of the Late Cretaceous magmatism and metamorphism,Pütürge massif,Turkey

    2015-07-21 08:53:34AyDidemKILIandCihatATE
    巖石學(xué)報(bào) 2015年5期

    Ay?e Didem KILI? and Cihat ATE?

    Department of Geological Engineering,F(xiàn)aculty of Engineering,F(xiàn)?rat University,Elaz?g,Turkey

    1 Introduction

    Located within the southeastern Anatolia thrust belt,in between the Eastern Taurus Orogenic Belt and Arabian plates,the metamorphic Pütürge massif developed as a result of the collision between the Eurasia and Arab plates,and possibly initiated in the Early Cretaceous.Extensive studies have been carried on the geodynamic formation of the massifs (Hall,1976;?zkaya,1982;?eng?r and Yilmaz,1981;Robertson and Dixon,1984;Ricoue et al.,1984;G?ncüo glu and Turhan,1984;Yazgan and Chessex,1991).Among the diverse metamorphic units of different sizes on the southeastern Anatolia thrust belt,the Bitlis,Pütürge,Malatya and Keban metamorphic massifs are the most representative,and they might have settled in the region during the Early Cretaceous-Early Miocene(Yilmaz,1993).

    The Pütürge metamorphic massif is possibly the western continuation of the Bitlis massif within the southeastern Anatolia thrust belt.The Bitlis metamorphic massif is similar to the Pütürge metamorphic massif due to its rock structure and location.Previous studies on the internal structure of the Pütürge metamorphic rocks are limited in comparison with the Bitlis massif (Hempton,1984;Yazgan and Chessex,1991;Erdem,1994)and currently no geochronologic work has been done to determine the age of the Pütürge massif.In this paper,we report the internal structure and element distribution of zircons,as well as40Ar/39Ar dating of metamorphic biotite,separated from the amphibolite facies metamorphic rocks within the southern branch of Neotetis,the southeastern Anatolia thrust zone.

    2 Geological Setting

    The Pütürge massif extends from the northeast to the southwest and is about 50km long and 300m wide and is bordered by faults (Fig.1).The Middle-Upper Eocene Maden complex covers the Pütürge massif at different localities (Yazgan and Chessex,1991).The Maden complex consists of volcanosedimentary rocks,and metamorphic rocks are thickened at the study area by the dip-slip faults.Field observation finds two foliations,i.e,mionitic foliation in the fault and thrust zones,and schistosity-gneiss foliation at the external parts.Mineral stretch lineation and shear lineation are common in rocks and folds at various scales are also observed.The first geochronologic study on the Pütürge metamorphic rocks are K/Ar dating(Yazgan,1984)and it is stated that the last metamorphism of the Pütürge massif occurred at around 500~550℃ during the Late Cretaceous-Campanian.Obduction of the ophiolite nappes in the region in the Late Cretaceous was interpreted as the possible geodynamic background for metamorphism.Yazgan and Chessex (1991 ) combined the Pütürge and the Bitlis metamorphic massifs and named the complex as the Bitlis-Pütürge metamorphic belt,and conclude that the metamorphic age of this massif is 70~75Ma.Metamorphic rocks in the Pütürge complex are widespread on the southern branch of Neotethys and the Eastern Taurus Orogenic Belt and its surroundings.The Maden Complex composes of volcanic rocks and is in fault contact with the Pütürge metamorphic rocks(Fig.1).

    Fig.1 Geological sketch map of the study area

    Fig.2 Micropetrographs of metapelitic gneisses of the Pütürge massif(a)metamorphic prismatic zircon crystal in the matrix,cross polarized light;(b)metamorphic zircon included in the biotite (from Erdem,94),plain polarized light.Symbols of minerals:Apt-apatite;Bi-biotite;Ch-chlorite;Gr-garnet;Mu-muscovite;Q-quartz;Zr-zircon

    3 Petrography

    The Pütürge metamorphic complex consists of metapelite,metasemipelite,pisamite,metagranite,amphibolite,marble and quartzite (Ate?,2011).The metamorphic rocks are classified as the follows:gneiss (quartz + feldspar + biotite + muscovite ±opaque ± apatite ± zircon ± chlorite),mica schist (quartz +feldspar+biotite + muscovite ± opaque ± apatite ± tourmaline ±sphene±zircon±epidote),garnet mica schist (quartz+feldspar+biotite+muscovite+garnet±staurolit±kyanite±sillimanite±opaque±apatite±sphene±zircon ±chlorite),calcschist(quartz+ feldspar + epidote + carbonate + muscovite ± opaque),quartzite (quartz ± mica ± apatite ± opaque mineral),marble(calcite ± muscovite ± quartz ± epidote ± opaque mineral)and amphibolite (hornblende + plagioclase ± quartz ± epidote ±sphene±opaque mineral).The mineral assemblages suggest that the regional metamorphism is ascribed to in between upper greenschist to amphibolite facies,and no clues of anatexis indicate that the P-T conditions of the Pütürge massif are around 600~700℃and 7~9kbar (Barker,1990).Transformation of garnet to chlorite and biotite as well as transformation of biotite to chlorite,suggest the presence of regressive metamorphism,possibly induced by regional nappe and exhumation processes.

    Zircons are observed in the orthogneiss and granitic gneiss with lepidoblastic and/or granoblastic textures.The minerals display a particle distribution.The minerals are quartz,feldspar,biotite and muscovite along with apatite,tourmaline,sphene,zircon and epidote as accessory minerals.Zircons coexist with other minerals in the matrix (Fig.2a),and some zircons are included in the porphyroblasts (Fig.2b)together with other inclusion minerals such as quartz,biotite,muscovite,apatite and tourmaline.The inclusion trails inside the porphyroblasts indicate that these porphyroblasts grew syntectonically.Radioactively damaged zircon rims are also seen in the zircon inclusions inside the biotite (Fig.2b).One possible reason that might cause such radiation damage is the loss of lead(Geisler and Schleicher,2000;Geisler et al.,2003,2007)or much more possibly,α particles passed through the zircons.

    4 Preparation of samples and analytical methods

    Major chemical compositions of the selected rock samples were analyzed at ACME laboratories (Canada)and the results are given in Table 1.40Ar/39Ar analyses were done at Alabama University (USA)geology laboratory.The biotite grains were separated using a magnetic separator,heavy fluids and binocular microscope in order to obtain high quality crystals.The ion currents were measured in order of40Ar,39Ar,38Ar,37Ar and36Ar,respectively,and repeated four times using the AEI-10-S mass spectrometer.Errors are reported at the 2σ confidence level.The isotope values measured in the mass spectrometer were recorded using the computer connected to the spectrometer.

    Zircon crystals for U-Pb dating were separated from powdered augen gneiss (sample dk704),using standard density and magnetic separation techniques.The zircon-rich augengneiss (sample dk704)was pulverized and then was separated into 2 samples with sieve diameters of 63~125mm and 125~250mm;they are enriched first on a wet shaking table and afterwards cleaned using tetrabromoethane and diiodomethane,later the magnetic heavy minerals were removed via a magnetic separator.In the last stage,the sample was passed through Clerici solution,separated into 5 fractions.Finally,the zircons are hand separated under a binocular until 100% purity is obtained.

    5 U-Pb dating of magmatic zircons

    5.1 Zircon cathodoluminescence (CL)images and internal structures

    Zircons suitable for U-Pb geochronology are separated from metagranitic samples dk704 and ch308.The zircons form euhedral or subhedral crystals,varying from a few millimeters to 1cm in length.In cathodoluminescence (CL)images,zircons show grey or sometimes dark brown (Ate?,2011)and oscillatory zonations can be seen,indicative of magmatic origin.

    In addition,the CL images display two structure patterns of the zircon crystals.The first type is the growth zoning or oscillatoryzoning due to the growth of primary zircon (Fig.3a).However,in some grains intensive luminescence is not well preserved.The formation of this structure can be explained by primary growth alteration (Vavra et al.,1999;Hoskin and Black,2000).The second type displays a porous structure destroying the first older zoning in some crystals (Fig.3b,c).The boundary between these two types of structures in the zircon crystals is either sharp or gradual (Fig.3b-d).

    Table 1 Major chemical compositions of the Pütürge metamorphic rocks (wt%)

    Fig.3 Cathodoluminescence (CL)images of zircons extracted from granitic gneisses,the Pütürge massif(a)oscilatory zoned zircon (sample dk704);(b)oscilatory zoned zircon with inner patches (sample ch308);(c)oscilatory zoned zircon with small patch in its mantle (sample dk704);(d)oscilatory zoned zircon with small patch in its inner rim (sample dk704);(e,f)zircons with cracks(sample ch308)

    Some zircon grains exhibit dark CL colour,unzoned cores and light color in the primary rims (Fig.3e)while others show contrary phenomenon.This is the result that Si or high amounts of U,Th and Y replacing Zr in the light CL color areas (Xu et al.,2012;Cherniak and Watson,2001;Cherniak et al.,1997;Bebout,2007;Kooijman et al.,2009).Different coloration on the rim and inner parts of the zircon grains may be due to the distribution of the inclusion minerals preserved in the zircons,or the lack of fluid during the dehydration process of hydrous phases such as chlorite,muscovite and biotite during the prograde metamorphism (Kooijman et al.,2011;Ewing,1994).In CL images,the inclusions of U-rich minerals,such as xenotime,thorite and coffinite were observed.This is especially verified by the fact that the U-rich mineral is the result of the CL color change between the cores and rims of some zircons.Welldeveloped,regular zoning and prismatic zircon grains indicate magmatic origin of the zircons.Unzoned zircons with partially distinct core dimensions may have resulted from fluid-related mineral reactions possibly occurred at the metamorphic peak(M?ller et al.,2003;Nasdala et al.,2001,2004).The element difference may be due to either approaching of the fluid to the crystal lattice or inclusion minerals and thus affects luminescence property (Xu et al., 2012; Hoskin and Schaltegger,2003).Moreover,porous and screen core types are seen in both rock samples.According to Xu et al.(2012)and Pan (1997),porous structure and cracks that represent the first stage of radiation damage speed up the metamictization process.Even though the protolith is identical,the texture type of the zircons may be different.Breaks in zircons with subhedral radial cracks stretch vertically to the rims of the zircon grains (Fig.3e,f).Such breaks may cause increasing radiation damage.

    Table2 U-Pb isotopic data of zircons of metagranite, the Pütürge metamorphic massif(CA1 in sampl edk704)

    5.2 U and Th concentrations of the zircons

    Chemical components of the zoned and unzoned cores of the zircon grains are different.U content of the cores of the zoned zircon grains is less than that of the unzoned cores (Table 2).However,Th content is partially greater in the unzoned cores.The Th/U ratio in the zoned cores is greater than that of the unzoned cores.Zircons with higher U content and lower Th content indicate metamorphic origin whereas those with relatively higher Th and lower U content indicate magmatic zircons(Hoskin and Schaltegger,2003;Schaltegger et al.,1999;Wiedenbeck et al.,1995;Geisler et al.,2002;Griffin et al.,2007).It has been determined that the Th/U ratio of the zircon is 1.38 for the unzoned core and 1.92 for the zoned core (CA1 in sample dk704),well within the Th/U range (6~0.05)of magmatic zircons (Hoskin and Schaltegger,2003).Some portion of the zircons has undergone radiation damage and their U content has increased whereas the other samples are magmatic crystals that preserve their primary zoning properties.

    5.3 Trace element chemistry

    Fig.4 Chondrite-normalized REE diagrams showing the REE content of luminescent core and non-luminescent core of a zircon extracted from a metagranite (sample YK43.4.1),the Pütürge Massif

    The REE ((Lu/Gd)N=7-32)contents of the zircons are present in a wider range with more luminescent cores and negative Eu anomaly and slightly positive Ce anomaly are observed(Fig.4).On the contrary,the core with weak luminescence (CA1 in sample dk704)has more REE ((Lu/Gd)N=15-25)anomaly and the REE change in a narrower interval.The weak luminescent core is possibly the product of prograde dehydration reaction during regional metamorphism (Kooijman et al.,2011;Mattinson,2005).Temperature,fluid and melts may affect the extent of the damage.The different structural patterns of the same protolith at the same temperature conditions are interpreted as the diversity of the variables that cause radiation.

    5.4 SIMS U-Pb age of the zircons

    Zircons suitable for U-Pb dating separated from metagranite sample dk704,are euhedral or subhedral and have a prismatic appearance.Zircon sizes vary from a few millimeters to 1cm in length and show grey color.Oscillatory zoning of the zircons is observed in the CL images,indicative of magmatic origin.

    The SIMS U-Pb analytical data of the zircons (sample dk704)are listed in Table 2.The concordia age of these analytical spots is averaged to be 84.2 ±1.1Ma,interpreted as the formation age of the protolith of the gneiss,dated to be in the Cretaceous Santonian (Fig.5).

    6 39Ar/40Ar dating of metamorphic biotites

    The40Ar/39Ar age of biotite separated from a metapelitic biotite-schist (sample dk173.8)from gradual heating,are given in Table 3.The schist consists mainly of biotite,quartz,muscovite,chlorite, plagioclase, garnet, kyanite, apatite,sphene and opaque minerals.The garnet schist displays porphyroblastic,granolepidoblastic or lepidogranoblastic texture.Biotite is the most abundant mineral.It is found that in some such rocks chlorite or quartz is more abundant than biotite.Chlorite might be formed at the expanse of biotite from regressive metamorphism.Biotites with long prismatic crystals display a regular alignment parallel to the schistosity.

    Fig.5 CL imagines of the analytized magmatic zircons and U-Pb age plotted on the concordia diagram (sample dk704),the Pütürge massif

    Table3 40Ar/39Ar isotopic data of the metapelitic biotites(sampledk173.8) of the Pütürge metamorphic massi

    Fig.6 40Ar/39Ar age spectra of the biotites extracted from a mica schist (sample dk173.8),the Pütürge Massif

    A perfect plateau has been defined on the analyzed biotite(sample dk173.8).The resulting plateau age and the40Ar/39Ar isochron age are indistinguishable and the age is determined to be 83.21 ±0.069Ma (Fig.6).The standard deviation of the determined ages is on the 2σ confidence level.This age records a period of metamorphism of the rocks cooled down to below~300℃(Ate?,2011).

    7 Discussion and conclusion

    The 83.21 ±0.069Ma plateau age of a mica schist (sample dk173.8)of the Pütürge massif was determined via biotite40Ar/39Ar geochronologic method (Ate?,2011).Similar ages have been obtained for the same belt by Rolland et al.(2011)and Oberh?nsli et al.(2010).Rolland et al.(2012)have used the40Ar/39Ar age method and determined the age of 0.7 ±0.3Ma for the phengites of the mica schists.The K-Ar age of the Guleman ophiolite located on the further east of the study area was determined to be 72.4 ± 1.8Ma (K?l??,2009).The settlement age of the Maden volcanic belt located on the Pütürge massif was determined as 79~80Ma,and the 74~71Ma age of Bitlis-Pütürge high pressure metamorphism was gained(Oberhansli et al.,2010).In summary,it was concluded that the first effective period of the metamorphism of the massif was the Alpine metamorphic episode (Yazgan and Chessex,1991)and this metamorphism should have occurred during the Campanian period due to the obduction of the ophiolites.Simultaneously,the SHRIMP U-Pb data (84.2 ± 1.1Ma)carried out on the zircons of the granitic gneiss,is interpreted to be the formation age of the protoliths.The metamorphic ages of the metamorphic rocks,point to Late Cretaceous Santonian.Previous studies carried out on the related units indicate either Coniacian-Santonian (Yazgan,1984),or Santonian-Maastrichtian (Akta? and Robertson,1984),or Coniacian-Early Maastrichtian (Bing?l,1988)or Coniacian-Early Campanian(Yazgan and Chessex,1991)age intervals.The geochronologic data of this contribution and field observations indicate that the Pütürge metamorphic rocks suffered metamorphism immediately after the obduction of the ophiolite,prior to the Arabia-Eurasia Plates collision and the closure of the southern branch of Neotetis.Metamorphism of the Pütürge massif over the Arabian continental block,might started immediately after formation of the massif.It is also probable that metamorphism of the Late Cretaceous-Santonian may be a Barrovian-type regional metamorphism,from green schist to upper amphibolite facies.Retrograde metamorphism may be due to uplift of the Pütürge metamorphic rocks.CL images of the zircons of the metamorphic rocks suggest that the core is rich in uranium.The porous texture and cracks comprise the first stage of radiation damage of zircon rims and led to partial metamictization.Fluid may be also responsible to the radiation damage process of the zircon and altered the Th/U ratio.

    Akta? G and Robertson AHF.1984.Maden complex,SE Turkey:Evolution of a Neotethyan active margin.Geological Society of London Special Publications,17(1):375-402

    Ate? C.2011.Metamorfik kaya?lardaki zirkon mineralinin kristal yap?s? ve metamorfizma ko?ullar?n?n etkisi:Pütürge Metamorfiti ?rnegi.F.ü.Fenbilimleri Enstitüsü Yüksek Lisans Tezi,88 (in Turkish)

    Barker AJ.1990.Introduction to Metamorphic Textures and Microstructures.New York:Chapman and Hall,170

    Bebout GE.2007.Metamorphic chemical geodynamics of subduction zones.Earth and Planetary Science Letters,260(3-4):373-393

    Cherniak DJ,Hanchar JM and Watson EB.1997.Diffusion of tetravalent cations in zircon.Contributions to Mineralogy and Petrology,127(4):383-390

    Cherniak DJ and Watson EB.2001.Pb diffusion in zircon.Chemical Geology,172(1-2):5-24

    Erdem E.1994.Petrographic and petrological characteristic of Pütürge metamorphic rocks.Doctorate Dissertation,119 (in Turkish)

    Ewing RC.1994.The metamict state:1993-The centennial.Nuclear Instruments and Methods in Physics Research,B91(1-4):22-29

    Geisler T and Schleicher H.2000.Improved U-Th-total Pbdating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon.Chemical Geology,163(1- 4):269-285

    Geisler T,Pidgeon RT,van Bronswijk W and Kurtz R.2002.Transport of uranium,thorium,and lead in metamict zircon under low temperature hydrothermal conditions.Chemical Geology,191(1-3):141-154

    Geisler T,Rashwan AA,Rahn M,Poller U,Zwingmann H,Pidgeon RT,Scleicher H and Tomaschek F.2003.Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert,Egypt.Mineralogical Magazine,67(3):485-508

    Geisler T,Schaltegger U and Tomaschek F.2007.Re-equilibration of zircon in aqueous fluids and melts.Elements,3(1):43-50

    G?ncüoglu MC and Turhan N.1984.Geology of the Bitlis metamorphic belt.In:Tekeli O and G?ncüoglu (eds.).Geology of the Taurus Belt.Ankara:MTA Institute,237-244

    Griffin WL,Pearson NJ,Belousova EA and Saeed A.2007.Reply to“ Comment to short-communication ‘ Comment: Hf-isotope heterogeneity in zircon 91500’ by Griffin WL,Pearson NJ,Belousova EA,Saeed A (Chemical Geology 233 (2006)358-363)”by Corfu F.Chemical Geology,244(1-2):354-356

    Hall R.1976.Ophiolite emplacement and the evolution of the Taurus suture zone,southeastern Turkey.Geological Society of America Bulletin,87(7):1078-1088

    Hempton MR.1984.Results of detailed mapping near leak Hazar(Eastern Taurus Mountains).In:Geology of the Taurus Belt.Ankara:Int Symp Proc Maden Tetkik ve Arama Enstitüsü,223-228

    Hoskin PWO and Black LP.2000.Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon.Journal of Metamorphic Geology,18(4):423-439

    Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.Reviews in Mineralogy and Geochemistry,53(1):27-62

    K?l?? AD.2009.Magma odas? dinamiginin Guleman ofiyoliti a??s?ndan incelenmesi.FüBAP-1538 nolu münferit proje (in Turkish)

    Kooijman E,Mezger K and Berndt J.2009.New constraints on Pb diffusion and closure temperature in rutile from in situ U-Pb dating by LA-ICP-MS.Geochimica et Cosmochimica Acta,73:681

    Kooijman E,Upadhyay D,Mezger K,Raith MM,Berndt J and Srikantappa C.2011.Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism:The Kadavur anorthosite complex,southern India.Chemical Geology,290(3-4):177-188

    Mattinson JM.2005.Zircon U-Pb chemical abrasion(“CA-TIMS”)method:Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages.Chemical Geology,220(1-2):47-66

    M?ller A,O’Brien PJ,Kennedy A and Kr?ner A.2003.Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland (SW Norway).Geological Society,London,Special Publications,220(1):65-81

    Nasdala L,Wenzel M,Vavra G,Irner G,Wenzel T and Kober B.2001.Metamictisation of natural zircon:Accumulation versus thermal annealing of radioactivity-induced damage.Contributions to Mineralogy and Petrology,141(2):125-144

    Nasdala L,Reiners PW,Garver JI,Kennedy AK,Stern RA,Balan E and Wirth R.2004.Incomplete retention of radiation damage in zircon from Sri Lanka.American Mineralogist,89(1):219-231

    Oberh?nsli R,Candan O and Wilke F.2010.Geochronological evidence of Pan-African eclogites from the Central Menderes Massif,Turkey.Turkish Journal of Earth Sciences,19(4):431-447

    ?zkaya I.1982.Upper Cretaceous plate rupture and development of leaky transcurrent fault ophioites in SE Turkey.Tectonophysics,88(1-2):103-116

    Pan Y.1997.Zircon- and monazite-forming metamorphic reactions at Manitouwadge,Ontario.Canadian Mineralogist,35:105-118

    Ricoue LE,Marcoux J and Whitechurch H.1984.The Mesozoic organization of the Taurides:One or several ocean basins.Geological Society,London,Special Publications,17(1):349-359

    Robertson AHF and Dixon JE.1984.Introduction:Aspects of the geological evolution of the Eastern Mediterranean.Geological Society,London,Special Publications,17(1):1-74

    Rolland Y,Perin?ek D,Kaymakc? N,Sosson M,Barrier E and Avagyan A.2012.Evidence for ca.80~75Ma subduction jump during Anatolide-Tauride-Armenian block accretion and~48Ma Arabia-Eurasia collision in Lesser Caucasus-East Anatolia.Journal of Geodynamics,56-57:76-85

    Schaltegger U,F(xiàn)anning CM,Günther D,Maurin JC,Schulmann K and Gebauer D.1999.Growth,annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism:Conventional and in-situ U-Pb isotope,cathodoluminescence and microchemical evidence.Contributions to Mineralogy and Petrology,134(2-3):186-201

    ?eng?r AMC and Yilmaz Y.1981.Tethyan evolution of Turkey:A plate tectonic approach.Tectonophysics,75(3-4):181-190,193-199,203-241

    Vavra G,Schmid R and Gebauer D.1999.Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:Geochronology of the Ivrea Zone (Southern Alps).Contributions to Mineralogy and Petrology,134(4):380-404

    Wiedenbeck M,Alle P,Corfu F,Griffin WL,Meier M,Oberli F,von Quadt A,Roddick JC and Spiegel W.1995.Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE analyses.Geostandards Newsletter,19(1):1-23

    Xu XS,Zhang M,Zhu KY,Chen XM and He ZY.2012.Reverse age zonation of zircon formed by metamictisation and hydrothermal fluid leaching.Lithos,150:256-267

    Yazgan E and Cnessex R.1991.Geology and tectonic evolution of the southeastern Taurides in the region of Malatya.Turkish Association of Petroleum Geologists,3(1):1-41

    Yazgan E.1984.Geodynamic evolution of the Eastern Taurus region:Geology of the Taurus belt.In:Geology of the Taurus Belt:Proceedings of the International Symposium.Ankara:Geology of the Taurus Belt,199-208

    Yilmaz Y.1993.New evidence and model on the evolution of the Southeast Anatolian orogen.Geological Society of America Bulletin,105(2):251-271

    观看免费一级毛片| av女优亚洲男人天堂| 国产极品天堂在线| 国产爱豆传媒在线观看| 精品久久久久久久久亚洲| 我的女老师完整版在线观看| 久久综合国产亚洲精品| 久久久色成人| 国产精品蜜桃在线观看| 亚洲精品成人av观看孕妇| 欧美高清性xxxxhd video| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 国产永久视频网站| 亚洲自偷自拍三级| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 干丝袜人妻中文字幕| 亚洲国产精品国产精品| 亚洲中文av在线| 午夜福利在线在线| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花 | .国产精品久久| 纵有疾风起免费观看全集完整版| 少妇人妻 视频| 国产精品无大码| 一级毛片久久久久久久久女| 97热精品久久久久久| 国产精品蜜桃在线观看| 女人久久www免费人成看片| 欧美亚洲 丝袜 人妻 在线| 一边亲一边摸免费视频| 国产老妇伦熟女老妇高清| 欧美极品一区二区三区四区| 伊人久久精品亚洲午夜| av免费观看日本| 国产精品精品国产色婷婷| 丝袜脚勾引网站| videos熟女内射| 色综合色国产| 亚洲美女视频黄频| 嫩草影院入口| 涩涩av久久男人的天堂| 大陆偷拍与自拍| 美女主播在线视频| 青春草亚洲视频在线观看| 国产美女午夜福利| 久久毛片免费看一区二区三区| 久久人妻熟女aⅴ| 少妇人妻 视频| 日日摸夜夜添夜夜爱| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 亚洲精品乱码久久久久久按摩| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久大尺度免费视频| 日韩一区二区视频免费看| 全区人妻精品视频| 日韩三级伦理在线观看| 下体分泌物呈黄色| 久久这里有精品视频免费| 寂寞人妻少妇视频99o| 日韩制服骚丝袜av| 中文字幕精品免费在线观看视频 | 一边亲一边摸免费视频| 国产美女午夜福利| kizo精华| 国产一区二区三区av在线| 免费久久久久久久精品成人欧美视频 | 久久精品国产亚洲av天美| 日本黄色日本黄色录像| 少妇人妻 视频| 久久6这里有精品| 成年免费大片在线观看| 免费看光身美女| 日日啪夜夜撸| 国产高清有码在线观看视频| 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 亚洲av男天堂| 99久国产av精品国产电影| 在线观看人妻少妇| 身体一侧抽搐| 狂野欧美激情性xxxx在线观看| 国产 精品1| 大又大粗又爽又黄少妇毛片口| 亚洲,欧美,日韩| 日本免费在线观看一区| 亚洲精品乱久久久久久| 国产淫片久久久久久久久| 啦啦啦啦在线视频资源| 夜夜爽夜夜爽视频| av.在线天堂| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 一级黄片播放器| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 亚洲色图av天堂| 欧美bdsm另类| 婷婷色综合www| 新久久久久国产一级毛片| 国产高清不卡午夜福利| 国产精品人妻久久久影院| 欧美日韩国产mv在线观看视频 | 有码 亚洲区| 国产精品久久久久久精品电影小说 | 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 涩涩av久久男人的天堂| 久久久亚洲精品成人影院| 亚洲av福利一区| 2021少妇久久久久久久久久久| 中文在线观看免费www的网站| 国产精品一区二区在线观看99| 视频区图区小说| 久久 成人 亚洲| 中文字幕制服av| 亚洲最大成人中文| 色婷婷av一区二区三区视频| 亚洲国产色片| 中文资源天堂在线| 欧美bdsm另类| 免费观看的影片在线观看| videos熟女内射| 亚洲国产高清在线一区二区三| 成人国产av品久久久| 又粗又硬又长又爽又黄的视频| av又黄又爽大尺度在线免费看| 亚洲真实伦在线观看| 久久精品国产亚洲av涩爱| videos熟女内射| 久久99热6这里只有精品| 精品少妇久久久久久888优播| 天美传媒精品一区二区| 搡老乐熟女国产| 国产视频首页在线观看| 久久精品久久久久久久性| 国产一区二区三区综合在线观看 | 国产日韩欧美亚洲二区| 丰满乱子伦码专区| 91精品国产九色| 黄色日韩在线| 自拍欧美九色日韩亚洲蝌蚪91 | 成人午夜精彩视频在线观看| 欧美精品一区二区免费开放| 能在线免费看毛片的网站| 少妇精品久久久久久久| 免费高清在线观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 日日啪夜夜爽| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 久久精品国产a三级三级三级| 久久久久久久久久人人人人人人| 欧美少妇被猛烈插入视频| 乱系列少妇在线播放| 欧美日本视频| av免费观看日本| 免费观看性生交大片5| 久久久久久人妻| 国产精品一区二区在线观看99| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 日韩一区二区视频免费看| 久久99精品国语久久久| 六月丁香七月| 免费看不卡的av| 日本av免费视频播放| 国产av国产精品国产| 欧美高清性xxxxhd video| 人人妻人人看人人澡| 人人妻人人爽人人添夜夜欢视频 | 中文字幕精品免费在线观看视频 | 男人和女人高潮做爰伦理| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 国产 精品1| 九色成人免费人妻av| 街头女战士在线观看网站| 国产成人freesex在线| 国产探花极品一区二区| 国产熟女欧美一区二区| 黄片无遮挡物在线观看| 色婷婷av一区二区三区视频| 99热全是精品| 五月开心婷婷网| 国产精品人妻久久久影院| 99热这里只有是精品在线观看| 免费大片黄手机在线观看| 国产精品国产三级国产av玫瑰| 久久精品夜色国产| 伦理电影大哥的女人| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产毛片av蜜桃av| 精品人妻视频免费看| av国产久精品久网站免费入址| av专区在线播放| 美女主播在线视频| 少妇人妻精品综合一区二区| 三级经典国产精品| 多毛熟女@视频| 亚洲国产成人一精品久久久| 日韩av不卡免费在线播放| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 一级毛片 在线播放| 亚洲精品成人av观看孕妇| av天堂中文字幕网| 黄色怎么调成土黄色| av在线老鸭窝| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| 亚洲性久久影院| 高清日韩中文字幕在线| 久久久久久久国产电影| 免费高清在线观看视频在线观看| 在现免费观看毛片| av福利片在线观看| 一级毛片久久久久久久久女| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| 午夜激情福利司机影院| av福利片在线观看| 久久青草综合色| 久久婷婷青草| 国产成人91sexporn| 亚洲人与动物交配视频| 久久人妻熟女aⅴ| 综合色丁香网| 国产午夜精品一二区理论片| av免费在线看不卡| 亚洲国产成人一精品久久久| 欧美亚洲 丝袜 人妻 在线| 婷婷色综合www| 伦精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 三级国产精品片| 九九在线视频观看精品| 日韩成人av中文字幕在线观看| 99热这里只有是精品50| 草草在线视频免费看| 少妇人妻精品综合一区二区| 日本黄大片高清| 免费观看性生交大片5| a级一级毛片免费在线观看| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av | 少妇人妻精品综合一区二区| 制服丝袜香蕉在线| 国产免费一区二区三区四区乱码| 岛国毛片在线播放| 偷拍熟女少妇极品色| 男女无遮挡免费网站观看| 国产一区二区在线观看日韩| 午夜激情福利司机影院| 午夜福利网站1000一区二区三区| 嫩草影院入口| 久久鲁丝午夜福利片| 免费播放大片免费观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 自拍欧美九色日韩亚洲蝌蚪91 | 在线精品无人区一区二区三 | 免费观看的影片在线观看| av在线app专区| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 啦啦啦中文免费视频观看日本| 欧美高清性xxxxhd video| 成人亚洲欧美一区二区av| 色综合色国产| 午夜福利在线在线| 中国国产av一级| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区激情| 国产免费一级a男人的天堂| 人人妻人人添人人爽欧美一区卜 | 久久亚洲国产成人精品v| 亚洲成人中文字幕在线播放| 欧美zozozo另类| av线在线观看网站| 国产成人精品久久久久久| 欧美性感艳星| 久久久久久久大尺度免费视频| 色综合色国产| 日韩av免费高清视频| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 天堂8中文在线网| 中文字幕亚洲精品专区| 伦理电影大哥的女人| 国产精品免费大片| 内地一区二区视频在线| 精品国产露脸久久av麻豆| 少妇人妻 视频| 51国产日韩欧美| 亚洲欧美日韩东京热| 我的女老师完整版在线观看| 国产 精品1| av视频免费观看在线观看| 一区二区av电影网| 精品一区二区三区视频在线| 黄色日韩在线| 啦啦啦在线观看免费高清www| 男人狂女人下面高潮的视频| 男女免费视频国产| 美女xxoo啪啪120秒动态图| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 中国国产av一级| 精品亚洲成国产av| 亚洲精品乱码久久久久久按摩| 日日摸夜夜添夜夜爱| 熟妇人妻不卡中文字幕| 国产有黄有色有爽视频| 久久久久久久久大av| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| 国产在线男女| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜添av毛片| 亚洲天堂av无毛| 欧美成人a在线观看| 老女人水多毛片| 亚洲国产高清在线一区二区三| 26uuu在线亚洲综合色| 在线观看av片永久免费下载| 深爱激情五月婷婷| videos熟女内射| 亚洲精品,欧美精品| 一本久久精品| 在线精品无人区一区二区三 | 水蜜桃什么品种好| 国产欧美亚洲国产| 成人特级av手机在线观看| 香蕉精品网在线| 午夜福利在线观看免费完整高清在| 国产精品女同一区二区软件| 精品亚洲成a人片在线观看 | 国产乱来视频区| 成人一区二区视频在线观看| 久久精品人妻少妇| 国产免费一区二区三区四区乱码| kizo精华| 久久久久久伊人网av| 嘟嘟电影网在线观看| 欧美精品一区二区大全| 欧美成人a在线观看| 国产在线男女| 国产一区二区在线观看日韩| 国产中年淑女户外野战色| 插逼视频在线观看| 亚洲精品久久午夜乱码| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 热99国产精品久久久久久7| 亚洲无线观看免费| 高清av免费在线| 亚洲av综合色区一区| 国产爱豆传媒在线观看| 毛片一级片免费看久久久久| 伊人久久国产一区二区| 国产精品成人在线| 最近手机中文字幕大全| 看免费成人av毛片| 26uuu在线亚洲综合色| a 毛片基地| 色网站视频免费| 色视频在线一区二区三区| 国产大屁股一区二区在线视频| 国产亚洲5aaaaa淫片| 一级毛片我不卡| 九草在线视频观看| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 欧美高清成人免费视频www| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩另类电影网站 | 最新中文字幕久久久久| 啦啦啦视频在线资源免费观看| 久久人人爽av亚洲精品天堂 | 亚洲电影在线观看av| 超碰av人人做人人爽久久| 联通29元200g的流量卡| 亚洲精品,欧美精品| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 久久热精品热| 亚洲精品久久午夜乱码| av在线老鸭窝| 日韩人妻高清精品专区| 校园人妻丝袜中文字幕| 乱码一卡2卡4卡精品| 91午夜精品亚洲一区二区三区| 校园人妻丝袜中文字幕| 中文在线观看免费www的网站| 久久热精品热| 一区二区三区乱码不卡18| 人人妻人人看人人澡| 国产黄色免费在线视频| 极品教师在线视频| 久久久久国产网址| 久久精品国产自在天天线| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜添av毛片| 亚洲成人中文字幕在线播放| 丰满少妇做爰视频| 熟女av电影| 亚州av有码| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| av黄色大香蕉| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 中国三级夫妇交换| 亚洲av中文字字幕乱码综合| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频 | 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 九九在线视频观看精品| 老司机影院成人| 男人舔奶头视频| 久久99热6这里只有精品| 久久久午夜欧美精品| 国产精品一二三区在线看| 免费观看a级毛片全部| 国产爽快片一区二区三区| 又大又黄又爽视频免费| 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看 | 少妇熟女欧美另类| 国产真实伦视频高清在线观看| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 久久精品熟女亚洲av麻豆精品| 男女边吃奶边做爰视频| 国产毛片在线视频| 六月丁香七月| 寂寞人妻少妇视频99o| 日韩 亚洲 欧美在线| 国产午夜精品久久久久久一区二区三区| 男人狂女人下面高潮的视频| 日韩制服骚丝袜av| 亚洲三级黄色毛片| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| 在线观看免费高清a一片| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| 女性被躁到高潮视频| 美国免费a级毛片| 热99久久久久精品小说推荐| 日韩中文字幕视频在线看片| 久久久久久久国产电影| 久久99精品国语久久久| 老司机亚洲免费影院| 色网站视频免费| av不卡在线播放| 男女边摸边吃奶| 蜜桃国产av成人99| 老司机午夜十八禁免费视频| 美女中出高潮动态图| 青春草亚洲视频在线观看| 在线天堂中文资源库| 一级毛片我不卡| 欧美在线一区亚洲| 丝袜在线中文字幕| 亚洲免费av在线视频| 久久精品aⅴ一区二区三区四区| 成人影院久久| 看十八女毛片水多多多| 欧美国产精品va在线观看不卡| 中国美女看黄片| 国产成人欧美| 国产精品亚洲av一区麻豆| 80岁老熟妇乱子伦牲交| 多毛熟女@视频| 美女中出高潮动态图| 国产片内射在线| 精品人妻熟女毛片av久久网站| 男男h啪啪无遮挡| 少妇裸体淫交视频免费看高清 | 狠狠婷婷综合久久久久久88av| 午夜激情av网站| 国产精品成人在线| 亚洲国产精品国产精品| 中文精品一卡2卡3卡4更新| 亚洲精品一二三| 精品高清国产在线一区| 亚洲国产精品一区二区三区在线| 亚洲中文字幕日韩| 精品久久久久久电影网| 一区福利在线观看| 一级毛片女人18水好多 | 欧美成人午夜精品| 亚洲欧洲国产日韩| 久久久精品免费免费高清| 欧美日韩视频高清一区二区三区二| 看十八女毛片水多多多| 欧美精品亚洲一区二区| 观看av在线不卡| 欧美av亚洲av综合av国产av| 亚洲情色 制服丝袜| 国产高清不卡午夜福利| 国产精品久久久久久精品电影小说| 亚洲色图 男人天堂 中文字幕| 十八禁高潮呻吟视频| 午夜久久久在线观看| 欧美日本中文国产一区发布| av不卡在线播放| 大香蕉久久成人网| tube8黄色片| 丰满人妻熟妇乱又伦精品不卡| 九草在线视频观看| 丝袜脚勾引网站| 香蕉国产在线看| 精品亚洲乱码少妇综合久久| 欧美精品av麻豆av| 国产精品.久久久| 亚洲自偷自拍图片 自拍| 国产成人影院久久av| 黑人巨大精品欧美一区二区蜜桃| 男女高潮啪啪啪动态图| 美女高潮到喷水免费观看| 热99国产精品久久久久久7| 亚洲色图 男人天堂 中文字幕| 国产亚洲av片在线观看秒播厂| 久久ye,这里只有精品| 国产成人精品在线电影| 久热爱精品视频在线9| 中文字幕人妻熟女乱码| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 成年av动漫网址| 亚洲国产中文字幕在线视频| 在线天堂中文资源库| 女性被躁到高潮视频| 观看av在线不卡| 美女午夜性视频免费| 日本av手机在线免费观看| 免费观看av网站的网址| 亚洲精品在线美女| 国产97色在线日韩免费| 亚洲久久久国产精品| av电影中文网址| 又大又爽又粗| 精品人妻一区二区三区麻豆| 国产一区二区 视频在线| 亚洲九九香蕉| 国产无遮挡羞羞视频在线观看| 亚洲免费av在线视频| 亚洲,欧美精品.| 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲 丝袜 人妻 在线| 99久久人妻综合| 国产视频首页在线观看| 天天添夜夜摸| 妹子高潮喷水视频| 一本—道久久a久久精品蜜桃钙片| 午夜福利,免费看| 老司机亚洲免费影院| 欧美人与性动交α欧美精品济南到| 久久国产精品男人的天堂亚洲| 日日夜夜操网爽| 亚洲黑人精品在线| 亚洲av在线观看美女高潮| 国产激情久久老熟女| 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 国产欧美日韩一区二区三 | 国产精品一二三区在线看| 亚洲国产精品一区二区三区在线| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 在线观看www视频免费| 日本av免费视频播放| 欧美日韩亚洲高清精品| bbb黄色大片| 涩涩av久久男人的天堂| 两人在一起打扑克的视频| 国产淫语在线视频| 久久ye,这里只有精品| 十八禁网站网址无遮挡| 丝袜美足系列| 日本a在线网址| 午夜两性在线视频| 日韩伦理黄色片| 在线观看人妻少妇| 国产激情久久老熟女| 亚洲,欧美精品.| 中文字幕高清在线视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品自产自拍| 午夜激情av网站| 日本av免费视频播放| 黑人巨大精品欧美一区二区蜜桃| 国产成人欧美在线观看 | 亚洲中文av在线| 国产成人一区二区三区免费视频网站 | 国产高清videossex| 欧美日本中文国产一区发布| 亚洲情色 制服丝袜| 亚洲第一青青草原| 看免费av毛片|