孫衛(wèi)東 李聰穎 凌明星 丁興 楊曉勇 梁華英 張紅 范蔚茗
1.中國科學(xué)院廣州地球化學(xué)研究所,中國科學(xué)院礦物與成礦重點(diǎn)實(shí)驗(yàn)室,廣州 510640
2.中國科學(xué)院青藏高原地球科學(xué)卓越創(chuàng)新中心,北京 100101
3.中國科學(xué)院廣州地球化學(xué)研究所,中國科學(xué)院同位素年代學(xué)和地球化學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510640
4.中國科學(xué)技術(shù)大學(xué)地球和空間科學(xué)學(xué)院,合肥 230026
5.西北大學(xué)地質(zhì)學(xué)系,西安 710069
鉬(Mo)是一種中度不相容的親銅元素,在MORB 和弧后盆玄武巖的巖漿作用中其不相容性與鈰(Ce)和鍶(Sr)等元素相似(McDonough and Sun,1995;Sun and McDonough,1989)。由于Mo 具有親銅性質(zhì),在巖漿過程中的不相容性受到硫在巖漿中飽和程度的影響(Sun et al.,2003b),所以Mo與Ce 具有相似的不相容性屬于偶然結(jié)果。與同為親硫元素的銅(Cu)、錸(Re)相比,Mo 的不相容性略高(Sun et al.,2003a,b,2004)。Mo 是一種十分稀有的元素,在原始地幔中的豐度為50 ×10-9,僅為稀土元素Ce 原始地幔豐度的3%,Cu 的0.13% (McDonough and Sun,1995)。鉬在大陸地殼中的豐度為0.8 ×10-6,相應(yīng)地為Ce 陸殼豐度的2%,Cu的3% (Rudnick and Gao,2003)。雖然Mo 在原始地幔和陸殼中的豐度均很低,但與其它豐度很低的元素不同,Mo 是一種重要的成礦元素。在自然界中,Mo 常以輝鉬礦的形式產(chǎn)出,有大量的鉬礦床,主要是斑巖鉬礦和斑巖銅(金)鉬礦;相比之下,Ce 很少形成獨(dú)立的礦物和礦床。這種特殊的地質(zhì)表征暗示鉬元素在地質(zhì)過程中有著獨(dú)特的富集機(jī)制和成礦過程。
本文嘗試通過分析Mo 的地球化學(xué)性質(zhì)來理解其富集機(jī)制和成礦過程,探討不同富集機(jī)制及相應(yīng)礦床特點(diǎn)。
鉬的富集主要包括兩個(gè)過程,即表生過程和巖漿過程。
根據(jù)Mo 的地球化學(xué)性質(zhì),有利于提高沉積物中Mo 含量的關(guān)鍵因素有:高大氣氧含量、高化學(xué)風(fēng)化速率、大流域面積、河口地區(qū)和還原性沉積環(huán)境?;瘜W(xué)風(fēng)化速率主要受控于氣溫和降水,通常降雨量大的熱帶地區(qū)是化學(xué)風(fēng)化速率最高的氣候帶(Ma et al.,2007),亞熱帶次之,溫帶、寒帶的化學(xué)風(fēng)化速率通常遠(yuǎn)低于熱帶、亞熱帶。另一方面,造山帶由于快速抬升,風(fēng)化剝蝕速率往往遠(yuǎn)高于相同氣候帶的其它大地構(gòu)造位置,因此處于熱帶、亞熱帶的造山帶是全球化學(xué)風(fēng)化最強(qiáng)烈的地區(qū),相應(yīng)地釋放出更多的鉬。
圖1 黑色頁巖中鉬含量和大氣氧含量隨時(shí)間的變化在2.3Ga 左右,大氣氧第一大幅度升高(Kump,2008),但是此次升高沒有對(duì)沉積物中Mo 含量產(chǎn)生明顯的影響(Scott et al.,2008).在寒武紀(jì)/前寒武紀(jì)之交,大氣氧含量再次升高(Kump,2008),黑色頁巖等沉積物中Mo 的含量大幅度升高(Scott et al.,2008).富鉬黑色頁巖部分熔融有利于鉬礦床的形成Fig.1 Variations of Mo contents in black shales as a function of atmospheric oxygenThe first elevation of atmospheric oxygen in the Earth’s history occurred at~2.3Gyr ago (Kump,2008),which however,did not result in elevation of Mo in black shales (Scott et al.,2008).After the second major elevation of atmospheric oxygen at~550Myr ago,Mo contents in black shales increased dramatically (Scott et al.,2008).Partial melting of Mo rich black shales are favorable to Mo deposits
還原水體是鉬表生過程中富集的另一個(gè)關(guān)鍵因素,封閉、半封閉型水域往往會(huì)形成還原性水體,可以還原、吸收水體中的鉬等變價(jià)元素,形成富鉬黑色頁巖等沉積物(巖)。在同一地區(qū)的沉積物中,Mo 含量與沉積物中有機(jī)碳的含量(Corg)有正相關(guān)關(guān)系(圖2)(Rimmer,2004)。值得注意的是不同的沉積物中鉬含量差異很大,從幾個(gè)到幾百個(gè)×10-6(Rimmer,2004;Scott et al.,2008),其含量總體上與沉積物中有機(jī)碳含量往往呈正相關(guān)關(guān)系,但是在有機(jī)碳對(duì)鉬含量的圖解中,不同環(huán)境下形成的沉積物有不同的斜率(圖2)(Algeo and Lyons,2006;McArthur et al.,2008;Rowe et al.,2008),這可能反映了Mo 沉積時(shí)水體的氧化還原條件,或者與其源區(qū)的Mo/Corg等有關(guān)。
一般說來,沉積物中鉬含量與大氣氧含量、化學(xué)風(fēng)化強(qiáng)度、沉積環(huán)境等有著密切的關(guān)系。板塊俯沖、碰撞往往形成造山帶,大幅度提高風(fēng)化速率;與此同時(shí),還往往在弧后等環(huán)境形成封閉、半封閉水體,有利于形成鉬富集的還原性沉積物。因此,位于熱帶、亞熱帶的陸緣弧是表生過程中鉬富集的最佳環(huán)境,其富集量取決于流域面積和持續(xù)時(shí)間等;而河流是地表徑流入海的主要通道,因此河口地區(qū)更有利于富鉬黑色頁巖等沉積物的形成。
值得指出的是,在地球歷史上曾發(fā)生過多次全球性大洋缺氧事件,還原性水體在開闊性大洋也普遍存在,例如全球水域廣泛發(fā)育黑色頁巖等富含有機(jī)質(zhì)的沉積巖(Bralower et al.,1999;Suan et al.,2010)。在這種情況下,形成富鉬黑色頁巖等沉積物的關(guān)鍵在于化學(xué)風(fēng)化速率和陸源物質(zhì)輸送量。其中,白堊紀(jì)的全球性海洋缺氧事件規(guī)模大,是國際上地球科學(xué)研究的熱點(diǎn)之一(Bralower et al.,1999;McElwain et al.,2005;Wang et al.,2001;Wilson and Norris,2001)。現(xiàn)有數(shù)據(jù)顯示白堊紀(jì)大洋缺氧事件所形成的黑色頁巖中往往富集鉬(Berrocoso et al.,2008;Lipinski et al.,2003;Turgeon and Creaser,2008),這些黑色頁巖可能是東太平洋沿岸銅(金)鉬礦發(fā)育的主要原因。
圖2 鉬與還原性沉積物中有機(jī)碳含量的關(guān)系(a)顯示了薩尼奇灣、卡里亞科盆地和黑海沉積物不同的鉬含量與有機(jī)碳含量及其相關(guān)性圖,同源樣品表現(xiàn)出較好的相關(guān)性,其斜率可能取決于陸源輸入物的Mo/TOC 比值(Algeo and Lyons,2006);(b)顯示了英國約克郡晚多爾斯階黑色頁巖不同層位具有不同的鉬含量與有機(jī)碳含量,其相關(guān)性也有明顯變化.可能說明了當(dāng)時(shí)海洋發(fā)生了氧化還原事件或者源區(qū)發(fā)生了變化(McArthur et al.,2008)Fig.2 Molybdenum contents versus total organic contents (TOC)in black shales(a)parsed Mo-TOC data for modern anoxic silled-basin environments.These exhibit a well-defined relationship between Mo and TOC concentrations in the same place,suggesting a similar Mo/TOC source (Algeo and Lyons,2006).(b)crossplot of Mo-TOC data in Lower Toarcian sediments of Yorkshire,United Kingdom.The obvious different slopes the two regression lines may reflect different redox states or source regions (McArthur et al.,2008)
經(jīng)歷表生富集過程形成的富鉬沉積物(巖)通常不會(huì)直接達(dá)到工業(yè)品位而成礦。目前已知的含Mo 最高的黑色頁巖是華南寒武紀(jì)底部的鎳鉬層,其Mo 含量達(dá)到5.5%以上,遠(yuǎn)遠(yuǎn)超過了工業(yè)品位,但是其成因是簡(jiǎn)單的沉積過程還是有熱液活動(dòng)參與還存在爭(zhēng)議(Jiang et al.,2009;Mao et al.,2002;Wille et al.,2008)。一種可能是當(dāng)時(shí)氧逸度突然上升,使鉬大量被氧化,搬運(yùn)到還原水體沉積。通常富鉬黑色頁巖需要在適當(dāng)條件下發(fā)生部分熔融,使鉬進(jìn)一步富集,才能成礦。富鉬沉積物(巖)發(fā)生部分熔融的主要途徑有兩個(gè),即板塊俯沖和深埋升溫。
板塊俯沖過程中,隨著溫度的升高,沉積物發(fā)生一系列的變質(zhì)作用、釋放出揮發(fā)份(如水、有機(jī)物等),很多還原性物質(zhì)可能在俯沖的早期就釋放了。造山帶地幔方輝橄欖巖中發(fā)現(xiàn)的富含甲烷的流體包裹體(Song et al.,2009)可能就是這個(gè)過程中形成的。隨著還原性物質(zhì)的釋放,俯沖沉積物的氧逸度會(huì)逐漸升高。當(dāng)俯沖到較大的深度時(shí),沉積物會(huì)發(fā)生部分熔融,形成富鉬初始巖漿。由于上述巖漿形成于俯沖板片的表層,在上升過程中要穿過地幔楔,因此往往與島弧巖漿發(fā)生不同程度的混合。此外,鉬也可能會(huì)通過脫水直接進(jìn)入島弧巖漿。島弧巖漿巖的氧逸度通常高出地幔1~2 個(gè)數(shù)量級(jí)以上(Ballhaus,1993;Bryant et al.,2007;Sun et al.,2004,2007),因此混合后巖漿的氧逸度會(huì)進(jìn)一步升高。與此同時(shí),俯沖板塊(玄武巖)部分熔融等過程會(huì)形成富集銅、金的埃達(dá)克質(zhì)巖石(Kay et al.,2005;Mungall,2002;Oyarzun et al.,2001;Sajona and Maury,1998;Sun et al.,2010,2011,2013b,2014,2015;Thiéblemont et al.,1997),因此,與板塊俯沖有關(guān)的鉬礦可以與銅、金等元素共生,形成銅鉬礦床或銅金鉬礦床。還原性沉積物的初始低氧逸度可能是造成俯沖帶斑巖銅(金)鉬礦床氧逸度系統(tǒng)低于斑巖銅(金)礦床的原因(圖3)。由于混合作用,斑巖銅鉬礦的Mo品位通常遠(yuǎn)遠(yuǎn)低于斑巖鉬礦(Klemm et al.,2008)。
在深埋的過程中,隨著溫度的升高,富鉬黑色頁巖等沉積巖也要發(fā)生變質(zhì)作用,釋放出揮發(fā)份,包括有機(jī)質(zhì)等還原性物質(zhì)。值得指出的是,深埋過程的地溫梯度往往高于俯沖過程,其變質(zhì)過程中容易釋放負(fù)二價(jià)的硫:當(dāng)變質(zhì)達(dá)到角閃巖相時(shí),黃鐵礦在高溫下變質(zhì)成磁黃鐵礦,沉積巖會(huì)釋放出H2S (Tomkins,2010)等還原性物質(zhì)及金等親硫元素(Sun et al.,2013a),其氧逸度會(huì)進(jìn)一步升高。當(dāng)溫度升高到固熔線以上時(shí),沉積物會(huì)發(fā)生部分熔融,形成的富鉬初始巖漿,有利于形成斑巖鉬礦。此類礦床傾向于富集高度不相容親石元素,如鎢,從而形成鎢鉬共生的礦床類型,如秦嶺的上房溝(包志偉等,2009)和三道莊礦床(Zhang et al.,2011;石英霞等,2009)。由于在這個(gè)過程中沒有島弧巖漿巖的參與,因此,斑巖鉬礦的氧逸度通常比較低,系統(tǒng)低于斑巖銅鉬礦床和斑巖銅金礦床(圖3)。深埋變質(zhì)的黑色頁巖能否形成斑巖礦床,關(guān)鍵是氧逸度。
圖3 氧逸度與成礦圖(據(jù)Thompson et al.,1999;Sillitoe and Thompson,1998)從斑巖銅金礦床→斑巖銅(金)鉬礦床→斑巖鉬礦,氧逸度和鐵含量逐漸降低.其原因可能與富鉬黑色頁巖有關(guān)Fig.3 FeO versus logfO2 diagram (after Thompson et al.,1999;Sillitoe and Thompson,1998)The decreasing total iron content and logfO2 from porphyry Cu-Au to porphyry Cu-(Au)-Mo to porphyry Mo deposits is likely associated with the involvement of Mo-rich black shales
鐵在高氧逸度下的化學(xué)風(fēng)化過程中很不活動(dòng)(Ma et al.,2007),因此黑色頁巖等富鉬黑色頁巖等沉積巖的鐵含量一般較低,相應(yīng)地其部分熔融形成的巖漿也往往具有較低的鐵含量。與富鉬巖漿不同,斑巖銅礦往往與俯沖洋殼部分熔融形成的埃達(dá)克巖相關(guān)(Cooke et al.,2005;Sun et al.,2010,2011;Thiéblemont et al.,1997;Sajona and Maury,1998;Mungall,2002;Xie et al.,2012;Zhang et al.,2013),由于洋殼的鐵含量高(Sun and McDonough,1989;Sun et al.,2008),此類斑巖的鐵含量要系統(tǒng)高于富鉬斑巖。而銅鉬礦床作為兩者的混合,鐵含量也位于兩者之間。這樣就形成了從斑巖銅金礦床→斑巖銅(金)鉬礦床→斑巖鉬礦氧逸度和鐵含量均逐漸降低的現(xiàn)象(圖3)。由于巖漿混合,斑巖銅(金)鉬礦中鉬的品位通常低于斑巖鉬礦。
在俯沖過程中氯有很強(qiáng)的活動(dòng)性(Lassiter et al.,2002;Rowe and Lassiter,2009;Sun et al.,2007)。與氯不同,在板塊俯沖初期,氟會(huì)大量進(jìn)入多硅白云母、磷灰石等礦物,而表現(xiàn)出不活動(dòng)的特點(diǎn),因此與板塊俯沖有關(guān)的鉬礦(斑巖銅鉬礦)可能與氯有較強(qiáng)的親緣關(guān)系,與氟關(guān)系不明顯(Zhang et al.,2013)。相反,沒有經(jīng)過板塊俯沖,直接通過深埋等過程升溫發(fā)生部分熔融時(shí),所形成的巖漿往往具有較高的氟,與氟有較好的親緣性。而位于弧后多硅白云母分解區(qū)之上的深埋或者俯沖變質(zhì)黑色頁巖部分熔融型斑巖鉬礦可能具有很高的氟,如美國的Climax 鉬礦帶。值得指出的是,氟與鉬具有很好的親和性,對(duì)鉬的進(jìn)一步富集可能有促進(jìn)作用。
研究表明,斑巖礦床通常都具有很高的氧逸度。斑巖鉬礦床也是如此(Sun et al.,2013b,2014,2015)。富含有機(jī)物的沉積物是還原性的,如何由還原性變?yōu)檠趸允且粋€(gè)值得研究的課題。
圖4 環(huán)太平洋地區(qū)斑巖銅(金)鉬礦分布(據(jù)Sillitoe,2010,有改動(dòng))太平洋東岸有大量的斑巖銅(金)鉬礦床,太平洋西岸幾乎沒有斑巖銅(金)鉬礦床,其原因是俯沖體制Fig.4 The distribution of porphyry Mo deposits along the Pacific margins (modified after Sillitoe,2010)There are large amount of porphyry Cu (Au)Mo deposits along the eastern Pacific margins,whereas there are essentially no porphyry Cu(Au)Mo deposits along the western Pacific margins.This is likely due to different subduction regimes
從成礦的角度看,太平洋東西兩岸差別很大。東岸有大量的斑巖銅金礦床,而西岸則只在菲律賓、印尼等島國有斑巖銅金礦床,但是規(guī)模遠(yuǎn)小于東岸,而數(shù)千千米長(zhǎng)的日本島弧幾乎沒有斑巖銅金礦床,這種現(xiàn)象被認(rèn)為是太平洋俯沖不對(duì)稱的結(jié)果(Sun et al.,2010),東岸靠近太平洋擴(kuò)張洋脊,北部擴(kuò)張洋脊已經(jīng)消亡(Cole and Basu,1995;Cole et al.,2006;Cole and Stewart,2009),南部也有大量的垂直于主擴(kuò)張洋脊的擴(kuò)張洋脊和非震洋脊(aseismic ridge)俯沖(Cooke et al.,2005;Espurt et al.,2008;Sun et al.,2010)。斑巖鉬礦的分布有類似的特點(diǎn)(圖4),太平洋東海岸鉬礦資源很豐富,美國的阿拉斯加、華盛頓、愛達(dá)荷、內(nèi)華達(dá)、科羅拉多、新墨西哥、猶他、亞利桑那、蒙大拿等州廣泛發(fā)育斑巖鉬礦和斑巖銅鉬礦床。智利的埃爾特林特(El Teniente,9435 萬噸銅,250 萬噸鉬,437 噸金),丘基卡馬塔(Chuquicamata,6637 萬噸銅,181 萬噸鉬,300 噸金)和Río Blanco-Los Bronces(5673萬噸銅,126 萬噸鉬,244.7 噸金)(Cooke et al.,2005)是世界上最大的三個(gè)斑巖銅金礦床,伴生鉬儲(chǔ)量達(dá)到550 多萬噸,占智利的鉬儲(chǔ)量約85%以上。加拿大的不列顛哥倫比亞省有很豐富的鉬礦床,占加拿大鉬資源的80%左右。上述礦床大部分為原生斑巖型鉬礦床及斑巖型銅(金)鉬礦床。造成上述鉬礦分布特點(diǎn)的主要原因是東、西太平洋俯沖體制的差異。
圖5 太平洋東西兩岸俯沖體制差異示意圖東太平洋俯沖帶是陸緣俯沖帶,發(fā)育陸緣弧,陸源沉積物可以堆積在俯沖板片上,沉積物中鉬含量高.一部分可以被俯沖板片帶到地球深部,有利于鉬礦的形成.西太平洋俯沖帶是島弧俯沖帶,發(fā)育島弧,陸源沉積物主要堆積在弧后盆中,俯沖板片上富鉬沉積物少,不利于形成鉬礦Fig.5 Cartons showing the differences in subduction regimes between the eastern and western Pacific marginsFlat subduction with continental margin arc in the east versus steep subduction with backarc basin in the west.Backarc basins in the West Pacific may have filtered Mo,Re as well as nutrients,forming less Mo enriched sediments, which is not favorable for Mo mineralization
東太平洋俯沖帶是陸緣俯沖帶,發(fā)育陸緣弧;西太平洋俯沖帶是島弧俯沖帶,發(fā)育島弧(圖5)。根據(jù)鉬的地球化學(xué)性質(zhì),其表生富集過程的關(guān)鍵是陸源物質(zhì)的輸入和還原性水體。東太平洋屬于陸緣弧,俯沖帶緊鄰大陸,俯沖板片上有大量的陸源沉積物,可以隨板塊一起俯沖到地幔。由于沉積物富硅含水,因此容易發(fā)生部分熔融(Plank and Langmuir,1993,1998),其中的富鉬黑色頁巖等沉積巖會(huì)形成富鉬巖漿,有利于成礦。而相比之下,西太平洋由于有典型的溝-弧-盆體系,陸源物質(zhì)優(yōu)先在弧后盆沉積,尤其是鉬等變價(jià)元素,通常主要留在弧后盆等富含有機(jī)物的沉積物中(Turgeon and Brumsack,2006)(圖6)。因此俯沖板片上的沉積物較少,而且沉積物中的鉬含量通常遠(yuǎn)低于陸緣沉積物。這可能是西太平洋斑巖鉬礦少的主要原因。
圖6 鉬富集的沉積環(huán)境示意圖(據(jù)Turgeon and Brumsack,2006 修改)弧后盆等還原性水體發(fā)育的構(gòu)造位置易于出現(xiàn)鉬富集Fig.6 Cartons of Mo depositional model (modified after Turgeon and Brumsack,2006)Cartons showing closed or semi-closed water bodies,such as back-arc basin,with large catchment area and high chemical weathering rates are favorable places for the formation of Mo enriched sediments,because of anoxic environment and Mo-rich surface water
值得指出的是,東太平洋的鉬礦不僅儲(chǔ)量大,而且分布廣(圖4),在高緯度地區(qū)同樣發(fā)育大量的鉬礦。如前述,除了其俯沖體制外,侏羅紀(jì)、白堊紀(jì)全球大洋缺氧事件形成的富鉬黑色頁巖等沉積巖的作用可能更大。在全球大洋缺氧事件期間,還原性水體在開闊性大洋也普遍發(fā)育,形成的黑色頁巖中往往富集鉬(Berrocoso et al.,2008;Lipinski et al.,2003;Turgeon and Creaser,2008)。一般認(rèn)為,全球大洋缺氧事件的起因是二氧化碳升高引起的全球氣溫突然升高(Jenkyns,2010)。在高溫氣候條件下,全球化學(xué)風(fēng)化速率普遍升高,不僅位于熱帶、亞熱帶的造山帶附近海域會(huì)形成大量的富鉬黑色頁巖,高緯度地區(qū)的化學(xué)風(fēng)化速率也會(huì)很高,有利于形成富鉬黑色頁巖等沉積巖。其中,白堊紀(jì)的全球大洋缺氧事件在全球范圍內(nèi)形成大量的富含有機(jī)物的沉積巖,如特提斯(Scopelliti et al.,2006;Turgeon and Brumsack,2006;Wang et al.,2001;Zou et al.,2005)、太 平 洋(Robinson et al.,2004;Takashima et al.,2010)、大西洋(Berrocoso et al.,2008)等,這些沉積巖普遍富鉬。目前東太平洋最老的洋殼是古新世,表明白堊紀(jì)洋殼已經(jīng)完全被俯沖消減。盡管其原始分布不是很清楚,但是從現(xiàn)有資料看,在東太平洋,俯沖形成的海岸山脈加大了風(fēng)化速率,更有利于富鉬沉積物的形成??紤]到俯沖體制的差異,有理由推斷,東太平洋白堊紀(jì)富鉬沉積物比西太平洋更發(fā)育。這些形成于全球大洋缺氧事件的(富鉬)黑色頁巖可能是東太平洋沿岸銅(金)鉬礦發(fā)育的最主要原因。相比之下,西太平洋曾經(jīng)長(zhǎng)期向北俯沖(Sun et al.,2007),在50Ma 是轉(zhuǎn)向北西俯沖,目前俯沖的是侏羅紀(jì)、白堊紀(jì)洋殼。由于還原性沉積物的影響,西北太平洋的氧逸度系統(tǒng)低于東太平洋,不利于形成斑巖礦床(Sun et al.,2012,2013b)。
除了斑巖銅(金)鉬礦床外,美洲還有大量的斑巖鉬礦。世界上著名的Climax-Henderson 鉬礦帶沿東太平洋俯沖帶北美科迪勒拉山脈分布,屬于典型的斑巖鉬礦床,幾乎不含銅金,但其Mo 品位遠(yuǎn)遠(yuǎn)高于斑巖銅鉬礦床,并且有很高的氟含量(Klemm et al.,2008)。鉛同位素?cái)?shù)據(jù)指示其源于地殼(Stein and Hannah,1985)。在白堊世到早第三世期間,該區(qū)屬于俯沖帶海岸山脈與大陸之間的半封閉型海盆,白堊紀(jì)高溫濕潤(rùn)的氣候有利于化學(xué)風(fēng)化,而位于熱帶、亞熱帶地區(qū)的北美造山帶南端化學(xué)風(fēng)化受到高溫和造山的雙重作用,化學(xué)風(fēng)化理應(yīng)更強(qiáng)烈,為Climax-Henderson 鉬礦帶的形成提供了物質(zhì)基礎(chǔ)。這些鉬礦不含銅,而具有很高的氟含量(Klemm et al.,2008),可能是富鉬黑色頁巖等沉積巖在弧后拉張條件下直接部分熔融形成的,其高氟含量可能與俯沖板片上多硅白云母分解有關(guān)。一種可能的機(jī)制是板片后撤引發(fā)軟流圈上涌,使俯沖板片的溫度升高,多硅白云母集中分解,同時(shí)軟流圈的加熱造成地殼中易熔的富鉬沉積物發(fā)生部分熔融,形成斑巖鉬礦(Li et al.,2012b)。
我國的秦嶺鉬礦帶現(xiàn)在是世界著名斑巖鉬礦帶,目前控制儲(chǔ)量已經(jīng)達(dá)到500 萬噸以上,約占全國總儲(chǔ)量的50% (Li et al.,2007,2012a)。這些鉬礦床主要分布于東秦嶺華北克拉通南緣二郎坪弧后盆,形成時(shí)代以早白堊世為主,有少量晚三疊世(Stein et al.,1997;李永峰等,2005;毛景文等,2005)。最近在大別山北淮陽地區(qū)也發(fā)現(xiàn)超大型鉬礦(Zhang et al.,2014)。整個(gè)秦嶺大別鉬礦帶的總儲(chǔ)量達(dá)到700 萬噸以上。這些鉬礦的形成時(shí)代分為三個(gè)階段:晚三疊、早白堊早期和早白堊晚期(Li et al.,2012a)。一部分學(xué)者認(rèn)為晚三疊世成礦期的脈狀礦床都與華北克拉通和揚(yáng)子克拉通碰撞后的陸內(nèi)造山局部伸展過程有關(guān);早白堊世早期的成礦作用與依澤納吉板塊和太平洋板俯沖產(chǎn)生的弧后拉張有關(guān);再晚的成礦作用可以歸因于中國東部的大規(guī)模巖石圈拆沉運(yùn)動(dòng)(Mao et al.,2008;毛景文等,2005)。另一種觀點(diǎn)認(rèn)為晚三疊世的礦床形成于弧后拉伸環(huán)境,而其后的斑巖型鉬礦床都與華北和揚(yáng)子陸塊的碰撞造山過程有關(guān)(Li et al.,2007;李永峰等,2005)。世界上的碰撞造山帶很多,究竟是什么原因使東秦嶺成為世界上重要的鉬礦帶?
古地磁研究表明,在其演化歷史中,秦嶺-大別造山帶曾長(zhǎng)期處于中低緯度(Zhao and Coe,1987;Zhu et al.,1998),符合鉬表生富集的主要條件:高化學(xué)風(fēng)化的熱帶、亞熱帶和長(zhǎng)期演化的造山帶。秦嶺造山帶有著兩次主要的碰撞造山事件:古生代沿商丹縫合帶的碰撞和三疊紀(jì)沿勉略縫合帶的碰撞(Meng and Zhang,1999;Qin et al.,2009,2010;Sun et al.,2002a,b;Zhang et al.,1996)。在古生代時(shí),巖相古地理顯示商丹縫合線以南曾經(jīng)形成了向西開口的盲腸狀海盆(Yin et al.,2004),屬于半封閉型海盆,推測(cè)應(yīng)該發(fā)育還原性沉積環(huán)境,有利于形成富鉬沉積物。二郎坪弧后盆屬古生代弧后盆(Li et al.,1996;Meng and Zhang,1999;Sun et al.,2002a,b;Zhang et al.,1996),目前對(duì)其演化了解甚少??紤]到其東面的大別造山古生代島弧發(fā)育較差以及碰撞時(shí)代東西存在差異(Sun et al.,2002c;Zhai et al.,1998),推測(cè)二郎坪弧后盆也曾經(jīng)歷過封閉、半封閉海盆的階段,有利于形成富鉬沉積物。這些富鉬沉積物在造山過程中被俯沖或深埋,在適當(dāng)?shù)臈l件下形成斑巖鉬礦。
秦嶺古生代鉬礦很不發(fā)育,這說明秦嶺造山帶富鉬沉積物在古生代時(shí)并沒有大量參與巖漿形成。三疊紀(jì)秦嶺-大別造山帶發(fā)生了最后一次全面陸陸碰撞形成了著名的桐柏-大別-蘇魯超高壓變質(zhì)帶(Li et al.,1994,2000;Li and Rao,1993;Liu et al.,2006;Sun et al.,2002a;Zheng et al.,2003;Ding et al.,2013),西部形成了同造山花崗巖帶,年齡在220~206Ma 之間(Jiang et al.,2010;Qin et al.,2009,2010;Sun et al.,2002c;周濱等,2008),但是大多數(shù)的三疊紀(jì)花崗巖也不成鉬礦,即缺少富Mo 沉積物參與其形成。一種可能是當(dāng)時(shí)富鉬沉積物埋深太淺,另一種可能是上述巖漿巖主要分布在商丹縫合帶以南,遠(yuǎn)離了二郎坪弧后盆等富鉬沉積物主要形成部位。
三疊紀(jì)碰撞后約80Myr,在早白堊世早期130~148Ma二郎坪弧后盆靠近華北陸塊南緣發(fā)生了大規(guī)模的Mo 成礦事件,形成的Mo 礦床占秦嶺Mo 礦帶探明儲(chǔ)量的50%以上。此次巖漿活動(dòng)的主要參與者應(yīng)該是富鉬沉積物。在華南華北兩大陸塊碰撞拼合的過程中,富鉬黑色頁巖被俯沖/深埋,在適當(dāng)?shù)臈l件下發(fā)生部分熔融,形成富硅、富鉀、低鐵的巖漿。部分鉬礦與花崗閃長(zhǎng)巖等中性巖有關(guān),暗示幔源物質(zhì)的參與。
根據(jù)成礦的時(shí)空關(guān)系,我們認(rèn)為這次成礦事件應(yīng)該是由于長(zhǎng)江中下游地區(qū)的洋脊俯沖的遠(yuǎn)程效應(yīng),引起巖石圈破裂,軟流圈地幔物質(zhì)上涌,使二郎坪弧后盆的大量富集了Mo的古生代沉積物被加熱重熔產(chǎn)生的。在時(shí)間上,這兩個(gè)地區(qū)的成巖成礦事件的峰期年齡近似。在空間上,秦嶺在長(zhǎng)江中下游地區(qū)的西部,二者在一條直線上(Ling et al.,2009;Mao et al.,2006;Sun et al.,2003c;Xie et al.,2009)。
這種時(shí)空關(guān)系支持秦嶺鉬礦帶主成礦期的地球動(dòng)力學(xué)背景與長(zhǎng)江中下游這一時(shí)期大規(guī)模的成巖成礦事件有著緊密的聯(lián)系。根據(jù)板塊再造方面的研究,125Ma 之前,太平洋板塊向南西方向俯沖(Sun et al.,2007),而依澤納吉板塊則向北北西方向俯沖(Maruyama et al.,1997),兩個(gè)板塊之間的擴(kuò)張洋脊在140~150Ma 時(shí)在長(zhǎng)江中下游地區(qū)俯沖到歐亞大陸之下,俯沖板片部分熔融形成了大量與埃達(dá)克巖有關(guān)的斑巖型和矽卡巖型礦床及A-型花崗巖(Li et al.,2011,2012c;Ling et al.,2009,2013)。而洋脊俯沖的遠(yuǎn)程效應(yīng)可以使距離俯沖帶遠(yuǎn)處的仰沖板片變形,造成巖石圈的破裂,同時(shí)擾動(dòng)軟流圈,使易熔的沉積物發(fā)生部分熔融,從而觸發(fā)了與長(zhǎng)江中下游地區(qū)在一條直線上、位于其西面的秦嶺地區(qū)的巖漿和礦化事件。即秦嶺主成礦期的地球動(dòng)力學(xué)背景是長(zhǎng)江中下游的洋脊俯沖的遠(yuǎn)程效應(yīng)觸發(fā)了秦嶺造山帶沿二郎坪弧后盆的再活化。由于這些富含Mo 的沉積物的參與,使得原始巖漿中大量富集了Mo 元素,為鉬礦的形成提供了物質(zhì)來源(Li et al.,2012a)。
如果這一模型是正確的,則大別山北部的古生代弧后盆也有很好的形成鉬礦的條件,現(xiàn)在已經(jīng)發(fā)現(xiàn)的沙坪溝(Zhang et al.,2014;張紅等,2011;孟祥金等,2012;陳紅瑾等,2013)、千鵝沖(羅齊云和李吉林,2009;楊梅珍等,2010;高陽等,2014)等大型鉬礦支持這一觀點(diǎn)。另外,華北北緣,是我國另一個(gè)重要的鉬礦帶,可能與其古生代以及中生代的侏羅紀(jì)、白堊紀(jì)全球大洋缺氧事件時(shí)處于鉬表生富集的有利大地構(gòu)造位置有關(guān)。
地表過程是鉬富集的主要過程,在寒武紀(jì)大氣氧第二次大幅度升高以后,作為變價(jià)元素,鉬在地表化學(xué)風(fēng)化過程中容易被氧化為水溶性的MoO42-,隨地表徑流進(jìn)入海洋、湖泊,并在還原條件下進(jìn)入黑色頁巖等富有機(jī)質(zhì)的沉積物中。具有高化學(xué)風(fēng)化速率、大的流域面積的封閉、半封閉型水域和河口地區(qū)是表生過程中鉬富集的最佳區(qū)域,是形成大規(guī)模鉬礦的關(guān)鍵。
富鉬沉積物可以通過板塊俯沖或深埋等過程,發(fā)生部分熔融形成更富鉬的原始巖漿,從而成礦。前者往往形成斑巖銅(金)鉬礦床,具有相對(duì)較高的氧逸度和鐵含量,后者形成氧逸度和鐵含量低的斑巖鉬礦。前者與氯有較好的親緣性,后者則往往與氟有較好的親緣性;而位于弧后多硅白云母分解區(qū)之上的深埋部分熔融型斑巖鉬礦可能具有很高的氟。
太平洋東岸有大量鉬礦,而西岸則很少,其主要因素是東太平洋沒有弧后盆,地表徑流輸送入海的鉬可以富集在弧前,隨板塊一起被俯沖進(jìn)入地幔,發(fā)生部分熔融而成礦;此外,在東太平洋,白堊紀(jì)全球大洋缺氧事件形成的富鉬沉積物已經(jīng)被俯沖下去,可能是東太平洋沿岸銅(金)鉬礦發(fā)育的最主要原因。相比之下,西太平梯的侏羅紀(jì)、白堊紀(jì)洋殼仍在俯沖,使氧逸度過低,尚未成礦。
世界上最大的鉬礦帶,秦嶺鉬礦帶,主要產(chǎn)于二郎坪和北淮陽等弧后背景。在古生代秦嶺-大別造山帶位于赤道附近,屬于高化學(xué)風(fēng)化區(qū)造山帶,隨著俯沖、碰撞的進(jìn)行,弧后盆逐漸變成盲腸式的半封閉海灣,形成了富集鉬等變價(jià)元素的沉積物,為成礦提供了物質(zhì)基礎(chǔ)。秦嶺鉬礦屬于斑巖鉬礦或者鎢鉬礦,可能與富鉬沉積物深埋升溫繼而部分熔融有關(guān)。其主要的成礦期與長(zhǎng)江中下游時(shí)代一致,可能反映了兩者均與發(fā)生在140~150Ma 太平洋板塊和依澤納吉板塊之間的洋脊俯沖有關(guān),前者是俯沖洋殼部分熔融形成的富銅巖漿,后者則是遠(yuǎn)程效應(yīng)引發(fā)的沉積物部分熔融。
Algeo TJ and Lyons TM.2006.Mo-total organic carbon covariation in modern anoxic marine environments:Implications for analysis of paleoredox and paleohydrographic conditions.Paleoceanography,21(1):doi:10.1029/2004PA001112
Bao ZW,Zeng QS,Zhao TP and Yuan ZL.2009.Geochemistry and petrogenesis of the ore-related Nannihu and Shangfanggou granite porphyries from East Qinling belt and their constaints on the molybdenum mineralization.Acta Petrologica Sinica,25(10):2523-2536 (in Chinese with English abstract)
Ballhaus C.1993.Redox states of lithospheric and asthenospheric upper mantle.Contributions to Mineralogy and Petrology,114(3):331-348
Berrocoso AJ,MacLeod KG,Calvert SE and Elorza J.2008.Bottom water anoxia,inoceramid colonization,and benthopelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic).Paleoceanography,23(3),doi:10.1029/2007PA001545
Bralower RJ,CoBabe E,Clement B,Sliter WV,Osburn CL and Longoria J.1999.The record of global change in Mid-Cretaceous(Barremian-Albian)sections from the Sierra Madre,northeastern Mexico.Journal of Foraminiferal Research,29(4):418-437
Bryant JA,Yogodzinski GM and Churikova TG.2007.Melt-mantle interactions beneath the Kamchatka arc:Evidence from ultramafic xenoliths from Shiveluch volcano.Geochemistry, Geophysics,Geosystems,8(4):1-24
Chen HJ,Chen YJ,Zhang J,Chen XZ and Zhang HD.2013.Zircon UPb ages and Hf isotope characteristics of the ore-bearing intrusion from the Shapinggou molybdenum deposit,Jinzhai County,Anhui Province.Acta Petrologica Sinica,29(1):131-145 (in Chinese with English abstarct)
Cole RB and Basu AR.1995.Nd-Sr isotopic geochemistry and tectonics of ridge subduction and middle cenozoic volcanism in Western California.Geological Society of America Bulletin,107(2):167-179
Cole RB,Nelson SW,Layer PW and Oswald PJ.2006.Eocene volcanism above a depleted mantle slab window in southern Alaska.Geological Society of America Bulletin,118(1-2):140-158
Cole RB and Stewart BW.2009.Continental margin volcanism at sites of spreading ridge subduction:Examples from southern Alaska and western California.Tectonophysics,464(1-4):118-136
Cooke DR,Hollings P and Walsh JL.2005.Giant porphyry deposits:Characteristics, distribution, and tectonic controls.Economic Geology,100(5):801-818
Ding X,Hu YH,Zhang H,Li CY,Ling MX and Sun WD.2013.Major Nb/Ta fractionation recorded in garnet amphibolite facies metagabbro.Journal of Geology,121(3):255-274
Espurt N,F(xiàn)uniciello F,Martinod J,Guillaume B,Regard V,F(xiàn)accenna C and Brusset S.2008.Flat subduction dynamics and deformation of the South American plate:Insights from analog modeling.Tectonics,27(3),doi:10.1029/2007tc002175
Gao Y,Ye HS,Li YF,Luo ZZ,Li FL,Xiong BK and Meng F.2014.SHRIMP zircon U-Pb ages,Hf isotopic compositions and trace elements characteristics of the granites from the Qian’echong Mo deposit,Dabie Orogen.Acta Petrologica Sinica,30(1):49-63(in Chinese with English abstract)
Jenkyns HC.2010.Geochemistry of oceanic anoxic events.Geochemistry Geophysics Geosystems,11(3),doi:10.1029/2009GC002788
Jiang SY,Pi DH,Heubeck C,F(xiàn)rimmel H,Liu YP,Deng HL,Ling HF and Yang JH.2009.Early Cambrian ocean anoxia in South China.Nature,459(7248):E5-E6
Jiang YH,Jin GD,Liao SY,Zhou Q and Zhao P.2010.Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen,central China:Implications for a continental arc to continent-continent collision.Lithos,117(1-4):183-197
Kay SM,Godoy E and Kurtz A.2005.Episodic arc migration,crustal thickening,subduction erosion,and magmatism in the south-central Andes.Geological Society of America Bulletin,117(1- 2):67-88
Klemm LM,Pettke T and Heinrich CA.2008.Fluid and source magma evolution of the Questa porphyry Mo deposit,New Mexico,USA.Mineralium Deposita,43(5):533-552
Kump LR.2008.The rise of atmospheric oxygen.Nature,451(7176):277-278
Lassiter JC,Hauri EH,Nikogosian IK and Barsczus HG.2002.Chlorine-potassium variations in melt inclusions from Raivavae and Rapa,Austral Islands:Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust.Earth and Planetary Science Letters,202(3-4):525-540
Li CY,Wang FY,Hao XL,Zhang H,Ling MX,Zhou JB,Li YL,F(xiàn)an WM and Sun WD.2012a.Formation of the world’s largest molybdenum metallogenic belt:A plate-tectonic perspective on the Qinling molybdenum deposits.International Geology Review,54(9):1093-1112
Li CY,Zhang H,Wang FY,Liu JQ,Sun YL,Hao XL,Li YL and Sun WD.2012b.The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback.Lithos,150:101-110
Li H,Zhang H,Ling MX,Wang FY,Ding X,Zhou JB,Yang XY,Tu XL and Sun WD.2011.Geochemical and zircon U-Pb study of the Huangmeijian A-type granite:Implications for geological evolution of the Lower Yangtze River belt.International Geology Review,53(5-6):499-525
Li H,Ling MX,Li CY,Zhang H,Ding X,Yang XY,F(xiàn)an WM,Li YL and Sun WD.2012c.A-type granite belts of two chemical subgroups in central eastern China:Indication of ridge subduction.Lithos,150:26-36
Li N,Chen YJ,Zhang H,Zhao TP,Deng XH,Wang Y and Ni ZY.2007.Molybdenum deposits in East Qinling.Earth Science Frontiers,14(5):186-198
Li SG,Wang SS,Chen YH,Liu DL,Qiu J,Zhou HX and Zhang ZM.1994.Excess argon in phengite from eclogite:Evidence from dating of eclogite minerals by Sm-Nd,Rb-Sr and Ar-40/Ar-39 Methods.Chemical Geology,112(3-4):343-350
Li SG,Sun WD,Zhang GW,Chen JY and Yang YC.1996.Chronology and geochemistry of metavolcanic rocks from Heigouxia valley in the Mian-Lue tectonic zone,South Qinling:Evidence for a Paleozoic oceanic basin and its close time.Science in China (Series D),39(3):300-310
Li SG,Jagoutz E,Chen YZ and Li QL.2000.Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains,Central China.Geochimica et Cosmochimica Acta,64(6):1077-1093
Li Y and Rao JL.1993.geochemical mass balances of major chemicalconstituents in Bohai sea-water.Chemical Geology,107(3- 4):393-396
Li YF,Mao JW,Hu HB,Guo BJ and Bai FJ.2009.Geology,distribution,types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area.Mineral Deposits,24(3):292-304(in Chinese with English abstract)
Ling MX,Wang FY,Ding X,Hu YH,Zhou JB,Zartman RE,Yang XY and Sun WD.2009.Cretaceous ridge subduction along the Lower Yangtze River Belt,eastern China.Economic Geology,104(2):303-321
Ling MX,Li Y,Ding X,Teng FZ,Yang XY,F(xiàn)an WM,Xu YG and Sun WD.2013.Destruction of the North China craton induced by ridge subductions.Journal of Geology,121(2):197-213
Lipinski M,Warning B and Brumsack HJ.2003.Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian Shelf and the Barents Sea.Palaeogeography,Palaeoclimatology,Palaeoecology,190:459-475
Liu DY,Jian P,Kroner A and Xu ST.2006.Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex,China.Earth and Planetary Science Letters,250(3-4):650-666
Luo QY and Li JL.2009.The geological features and metallogenesis of Qian’echong copper-molybdenum polymetallic deposit in Guangshan County,Henan Province.Mineral Resource and Geology,23(6):495-499 (in Chinese with English abstract)
Ma JL,Wei GH,Xu YG,Long WG and Sun WD.2007.Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island,South China.Geochimica et Cosmochimica Acta,71(13):3223-3237
Mao JW,Lehmann B,Du AD,Zhang GD,Ma DS,Wang YT,Zeng MG and Kerrich R.2002.Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance.Economic Geology and the Bulletin of the Society of Economic Geologists,97(5):1051-1061
Mao JW,Xie GQ,Zhang ZH,Li XF,Wang YT,Zhang CQ and Li YF.2005.Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings.Acta Petrologica Sinica,21(1):169-188 (in Chinese with English abstract)
Mao JW,Wang YT,Lehmann B,Yu JJ,Du AD,Mei YX,Li YF,Zang WS,Stein HJ and Zhou TF.2006.Molybdenite Re-Os and albite40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications.Ore Geology Reviews,29(3-4):307-324
Mao JW,Xie GQ,Bierlein F,Qu WJ,Du AD,Ye HS,Pirajno F,Li HM,Guo BJ,Li YF and Yang ZQ.2008.Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt.Geochimica et Cosmochimica Acta,72(18):4607-4626
Maruyama S, Isozaki Y, Kimura G and Terabayashi M.1997.Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750Ma to the present.Island Arc,6(1):121-142 McArthur JM,Algeo TJ,van de Schootbrugge B,Li Q and Howarth RJ.2008.Basinal restriction,black shales,Re-Os dating,and the Early Toarcian (Jurassic)oceanic anoxic event.Paleoceanography,23(4):doi:10.1029/2008PA001607
McDonough WF and Sun SS.1995.The composition of the Earth.Chemical Geology,120(3-4):223-253
McElwain JC,Wade-Murphy J and Hesselbo SP.2005.Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals.Nature,435(7041):479-482
Meng QR and Zhang GW.1999.Timing of collision of the North and South China blocks:Controversy and reconciliation.Geology,27(2):123-126
Meng XJ,Xu WY,Lü QT,Qu WJ,Li XC,Shi DF and Wen CH.2012.Zircon U-Pb dating of ore-bearing rocks and molybdenite Re-Os age in Shapinggou porphyry molybdenum deposit,Anhui Province.Acta Geologica Sinica,86(3):486- 494 (in Chinese with English abstract)
Mungall JE.2002.Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits.Geology,30(10):915-918
Oyarzun R,Márquez A,Lillo J,López I and Rivera S.2001.Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:Adakitic versus normal calc-alkaline magmatism.Mineralium Deposita,36(8):794-798
Plank T and Langmuir CH.1993.Tracing Trace-elements from sediment input to volcanic output at subduction zones.Nature,362(6422):739-743
Plank T and Langmuir CH.1998.The chemical composition of subducting sediment and its consequences for the crust and mantle.Chemical Geology,145(3-4):325-394
Qin JF,Lai SC,Grapes R,Diwu CR,Ju YJ and Li YF.2009.Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen(central China).Lithos,112(3-4):259-276
Qin JF,Lai SC,Diwu CR,Ju YJ and Li YF.2010.Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton,northwestern margin of the South China block:Geochemistry,Sr-Nd isotopic,zircon U-Pb dating and Hf isotopic evidences.Contributions to Mineralogy and Petrology,159(3):389-409
Rimmer SM.2004.Geochemical paleoredox indicators in Devonian-Mississippian black shales,central Appalachian basin (USA).Chemical Geology,206(3-4):373-391
Robinson SA,Williams T and Bown PR.2004.Fluctuations in biosiliceous production and the generation of Early Cretaceous oceanic anoxic events in the Pacific Ocean (Shatsky Rise,Ocean Drilling Program Leg 198).Paleoceanography,19(4):doi:10.1029/2004PA001010
Rowe HD,Loucks RG,Ruppel SC and Rimmer SM.2008.Mississippian Barnett Formation,F(xiàn)ort Worth Basin,Texas:Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction.Chemical Geology,257(1-2):16-25
Rowe MC and Lassiter JC.2009.Chlorine enrichment in central Rio Grande Rift basaltic melt inclusions:Evidence for subduction modification of the lithospheric mantle.Geology,37(5):439-442 Rudnick RL and Gao S.2003.Composition of the continental crust.In:Heinrich DH and Turekian KK (eds.).Treatise on Geochemistry,Volume 3.Oxford:Pergamon,1-64
Sajona FG and Maury RC.1998.Association of adakites with gold and copper mineralization in the Philippines.Comptes Rendus De L’Académie Des Sciences-Series II A-Earth and Planetary Science,326(1):27-34
Scopelliti G,Bellanca A,Neri R,Baudin F and Coccioni R.2006.Comparative high-resolution chemostratigraphy of the Bonarelli Level from the reference Bottaccione section (Umbria-Marche Apennines)and from an equivalent section in NW Sicily:Consistent and contrasting responses to the OAE2.Chemical Geology,228(4):266-285
Scott C,Lyons TW,Bekker A,Shen Y,Poulton SW,Chu X and Anbar AD.2008.Tracing the stepwise oxygenation of the Proterozoic ocean.Nature,452(7186):456-U455
Shi YX,Li N and Yang Y.2009.Ore geology and fluid inclusion geochemistry of the Sandaozhuang Mo-W deposit in Luanchuan County,Henan Province.Acta Petrologica Sinica,25(10):2575-2587 (in Chinese with English abstract)
Sillitoe RH and Thompson JFH.1998.Intrusion-related vein gold deposits:Types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits.Resource Geology,48(4):237-250
Sillitoe RH.2010.Porphyry copper systems.Economic Geology,105(1):3-41
Song YC,Chou IM,Hu WX,Robert B and Lu WJ.2009.CO2density-Raman shift relation derived from synthetic inclusions in fused silica capillaries and its application.Acta Geologica Sinica,83(5):932-938
Stein HJ and Hannah JL.1985.Movement and origin of ore fluids in Climax-type systems.Geology,13(7):469-474
Stein HJ,Markey RJ,Morgan JW,Du A and Sun Y.1997.Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt,Shaanxi Province,China.Economic Geology and the Bulletin of the Society of Economic Geologists,92(7-8):827-835
Suan G,Mattioli E,Pittet B,Lécuyer C,Suchéras-Marx B,Duarte LV,Philippe M, Reggiani L and Martineau F.2010.Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes.Earth and Planetary Science Letters,290(3-4):448-458
Sun SS and McDonough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publication,42(1):313-345
Sun WD,Li SG,Chen YD and Li YJ.2002a.Timing of synorogenic granitoids in the South Qinling,central China:Constraints on the evolution of the Qinling-Dabie orogenic belt.Journal of Geology,110(4):457-468
Sun WD,Li SG,Sun Y,Zhang GW and Li QL.2002b.Mid-Paleozoic collision in the North Qinling:Sm-Nd,Rb-Sr and40Ar/39Ar ages and their tectonic implications.Journal of Asian Earth Sciences,21(1):69-76
Sun WD,Williams IS and Li SG.2002c.Carboniferous and triassic eclogites in the western Dabie Mountains,east-central China:Evidence for protracted convergence of the North and South China blocks.Journal of Metamorphic Geology,20(9):873-886
Sun WD,Bennett VC,Eggins SM,Arculus RJ and Perfit MR.2003a.Rhenium systematics in submarine MORB and back-arc basin glasses:Laser ablation ICP-MS results.Chemical Geology,196(1-4):259-281
Sun WD,Bennett VC,Eggins SM,Kamenetsky VS and Arculus RJ.2003b.Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas.Nature,422(6929):294-297
Sun WD,Xie Z,Chen JF,Zhang X,Chai ZF,Du AD,Zhao JS,Zhang CH and Zhou TF.2003c.Os-Os dating of copper and molybdenum deposits along the Middle and Lower Reaches of the Yangtze River,China.Economic Geology and the Bulletin of the Society of Economic Geologists,98(1):175-180
Sun WD,Arculus RJ,Kamenetsky VS and Binns RA.2004.Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization.Nature,431(7011):975-978
Sun WD,Ding X,Hu YH and Li XH.2007.The golden transformation of the Cretaceous plate subduction in the West Pacific.Earth and Planetary Science Letters,262(3-4):533-542
Sun WD,Hu YH,Kamenetsky VS,Eggins SM,Chen M and Arculus RJ.2008.Constancy of Nb/U in the mantle revisited.Geochimica et Cosmochimica Acta,72(14):3542-3549
Sun WD,Ling MX,Yang XY,F(xiàn)an WM,Ding X and Liang HY.2010.Ridge subduction and porphyry copper-gold mineralization:An overview.Science China (Earth Sciences),53(4):475-484
Sun WD,Zhang H,Ling MX,Ding X,Chung SL,Zhou JB,Yang XY and Fan WM.2011.The genetic association of adakites and Cu-Au ore deposits.International Geology Review,53(5-6):691-703
Sun WD,Ling MX,Chung SL,Ding X,Yang XY,Liang HY,F(xiàn)an WM,Goldfarb R and Yin QZ.2012.Geochemical constraints on adakites of different origins and copper mineralization.Journal of Geology,120(1);105-120
Sun WD,Li S,Yang XY,Ling MX,Ding X,Duan LA,Zhan MZ,Zhang H and Fan WM.2013a.Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions.International Geology Review,55(3):311-321
Sun WD,Liang HY,Ling MX,Zhan MZ,Ding X,Zhang H,Yang XY,Li YL,Ireland TR,Wei QR and Fan WM.2013b.The link between reduced porphyry copper deposits and oxidized magmas.Geochimica et Cosmochimica Acta,103:263-275
Sun WD,Huang RF,Liang HY,Ling MX,Li CY,Ding X,Zhang H,Yang XY,Ireland T and Fan WM.2014.Magnetite-hematite,oxygen fugacity,adakite and porphyry copper deposits:Reply to Richards.Geochimica et Cosmochimica Acta,126:646-649
Sun WD,Huang RF,Li H,Hu YB,Zhang CC,Sun SJ,Zhang LP,Ding X,Li CY,Zartman RE and Ling MX.2015.Porphyry deposits and oxidized magmas.Ore Geology Reviews,65(Part 1):97-131
Takashima R,Nishi H,Yamanaka T,Hayashi K,Waseda A,Obuse A,Tomosugi T,Deguchi N and Mochizuki S.2010.High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific.Earth and Planetary Science Letters,289(3-4):570-582
Thiéblemont D,Stein G and Lescuyer JL.1997.Epithermal and porphyry deposits:The adakite connection.Comptes Rendus De L’Academie Des Sciences Serie IIA Earth and Planetary Science,325(2):103-109
Thompson JFH,Sillitoe RH,Baker T,Lang JR and Mortensen JK.1999.Intrusion-related gold deposits associated with tungsten-tin provinces.Mineralium Deposita,34(4):323-334
Tomkins AG.2010.Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis.Geochimica et Cosmochimica Acta,74(11):3246-3259
Turgeon S and Brumsack HJ.2006.Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous)in the Umbria-Marche Basin of central Italy.Chemical Geology,234(3-4):321-339
Turgeon SC and Creaser RA.2008.Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode.Nature,454(7202):323-U329
Wang CS,Hu XM,Jansa L,Wan XQ and Tao R.2001.The Cenomanian-Turonian anoxic event in southern Tibet.Cretaceous Research,22(4):481-490
Wille M,Nagler TF,Lehmann B,Schroder S and Kramers JD.2008.Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary.Nature,453(7196):767-769
Wilson PA and Norris RD.2001.Warm tropical ocean surface and global anoxia during the Mid-Cretaceous period.Nature,412(6845):425-429
Xie JC,Yang XY,Sun WD,Du JG,Xu W,Wu LB,Wang KY and Du XW.2009.Geochronological and geochemical constraints on formation of the Tongling metal deposits, Middle Yangtze metallogenic belt,east-central China.International Geology Review,51(5):388-421
Xie JC,Yang XY,Sun WD and Du JG.2012.Early Cretaceous dioritic rocks in the Tongling region,eastern China:Implications for the tectonic settings.Lithos,150:49-61
Yang MZ,Zeng JN,Qin YJ,Li FL and Wan SQ.2010.LA-ICP-MS zircon U-Pb and molybdenite Re-Os dating for Qian’echong porphytype Mo deposit in northern Dabie,China,and its geological significance.Geological Science and Technology Information,29(5):35-45 (in Chinese with English abstract)
Yin HF,Zhang KX and Feng QL.2004.The archipelagic ocean system of the eastern Eurasian Tethys.Acta Geologica Sinica,78(1):230-236
Zhai XM,Day HW,Hacker BR and You ZD.1998.Paleozoic metamorphism in the Qinling orogen,Tongbai Mountains,central China.Geology,26(4):371-374
Zhang GW,Meng QR,Yu ZP,Sun Y,Zhou DW and Guo AL.1996.Orogenesis and dynamics of the Qinling orogen.Science in China(Series D),39(3):225-234
Zhang H,Sun WD,Yang XY,Liang HY,Wang BH,Wang RL and Wang YX.2011.Geochronology and metallogenesis of the Shapinggou giant porphyry molybdenum deposit in the Dabie orogenic belt.Acta Geologica Sinica,85(12):2039- 2059 (in Chinese with English abstract)
Zhang H,Ling MX,Liu YL,Tu XL,Wang FY,Li CY,Liang HY,Yang XY,Arndt NT and Sun WD.2013.High oxygen fugacity and slab melting linked to cu mineralization:Evidence from dexing porphyry copper deposits,southeastern China.Journal of Geology,121(3):289-305
Zhang H,Li CY,Yang XY,Sun YL,Deng JH,Liang HY,Wang RL,Wang BH,Wang YX and Sun WD.2014.Shapinggou:The largest Climax-type porphyry Mo deposit in China.International Geology Review,56(3):313-331
Zhang ZW,Yang XY,Dong Y,Zhu BQ and Chen DF.2011.Molybdenum deposits in the eastern Qinling, central China:Constraints on the geodynamics.International Geology Review,53(2):261-290
Zhao XX and Coe RS.1987.Palaomagnetic constraints on the collision and rotation of North and South China.Nature,327(6118):141-144
Zheng YF,F(xiàn)u B,Gong B and Li L.2003.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:Implications for geodynamics and fluid regime.Earth-Science Reviews,62(1-2):105-161
Zhou B,Wang FY,Sun Y,Sun WD,Ding X,Hu YH and Ling MX.2008.Geochemistry and tectonic affinity of Shahewan orogenic rapakivi from Qinling.Acta Petrologica Sinica,24(6):1261-1272(in Chinese with English abstract)
Zhu RX,Yang ZY,Wu HN,Ma XH,Huang BC,Meng ZF and Fang DJ.1998.Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic.Science in China(Series D),41(Suppl.2):1-19
Zou YR,Kong F,Peng PA,Hu XM and Wang CS.2005.Organic geochemical characterization of Upper Cretaceous oxic oceanic sediments in Tibet, China: A preliminary study.Cretaceous Research,26(1):65-71
附中文參考文獻(xiàn)
包志偉,曾喬松,趙太平,原振雷.2009.東秦嶺鉬礦帶南泥湖-上房溝花崗斑巖成因及其對(duì)鉬礦成礦作用的制約.巖石學(xué)報(bào),25(10):2523-2536
陳紅瑾,陳衍景,張靜,陳秀忠,張懷東.2013.安徽省金寨縣沙坪溝鉬礦含礦巖體鋯石U-Pb 年齡和Hf 同位素特征及其地質(zhì)意義.巖石學(xué)報(bào),29(1):131-145
高陽,葉會(huì)壽,李永峰,羅正傳,李法嶺,熊必康,孟芳.2014.大別山千鵝沖鉬礦區(qū)花崗巖的SHRIMP 鋯石U-Pb 年齡、Hf 同位素組成及微量元素特征.巖石學(xué)報(bào),30(1):49-63
李永峰,毛景文,胡華斌,郭保健,白鳳軍.2005.東秦嶺鉬礦類型、特征、成礦時(shí)代及其地球動(dòng)力學(xué)背景.礦床地質(zhì),22(3):292-304
羅齊云,李吉林.2009.河南光山縣千鵝沖銅鉬多金屬礦床地質(zhì)特征及成因淺析.礦產(chǎn)與地質(zhì),23(6):495-499
毛景文,謝桂青,張作衡,李曉峰,王義天,張長(zhǎng)青,李永峰.2005.中國北方中生代大規(guī)模成礦作用的期次及其地球動(dòng)力學(xué)背景.巖石學(xué)報(bào),21(1):169-188
孟祥金,徐文藝,呂慶田,屈文俊,李先初,史東方,文春華.2012.安徽沙坪溝斑巖鉬礦鋯石U-Pb 和輝鉬礦Re-Os 年齡.地質(zhì)學(xué)報(bào),86(3):486-494
石英霞,李諾,楊艷.2009.河南省欒川縣三道莊鉬鎢礦床地質(zhì)和流體包裹體研究.巖石學(xué)報(bào),25(10):2575-2587
楊梅珍,曾鍵年,覃永軍,李法嶺,萬守權(quán).2010.大別山北緣千鵝沖斑巖型鉬礦床鋯石U-Pb 和輝鉬礦Re-Os 年代學(xué)及其地質(zhì)意義.地質(zhì)科技情報(bào),29(5):35-45
張紅,孫衛(wèi)東,楊曉勇,梁華英,王波華,王瑞龍,王玉賢.2011.大別造山帶沙坪溝特大型斑巖鉬礦床年代學(xué)及成礦機(jī)理研究.地質(zhì)學(xué)報(bào),85(12):2039-2059
周濱,汪方躍,孫勇,孫衛(wèi)東,丁興,胡艷華,凌明星.2008.秦嶺沙河灣造山帶型環(huán)斑花崗巖地球化學(xué)及構(gòu)造屬性討論.巖石學(xué)報(bào),24(6):1261-1272