• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Crystal Structure of a Dinuclear Cu(II) Complex Based on a Carboxyl-substituted 1H-1,2,3-Triazole and Its DNA Cleavage Activity①

    2015-07-18 11:14:49LIUWenQianZHOUShiLeiFANMingZhuPANZhiQuanCHENYunFeng
    結(jié)構(gòu)化學(xué) 2015年6期

    LIU Wen-Qian ZHOU Shi-Lei FAN Ming-Zhu PAN Zhi-Quan CHEN Yun-Feng

    (School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China)

    Synthesis and Crystal Structure of a Dinuclear Cu(II) Complex Based on a Carboxyl-substituted 1H-1,2,3-Triazole and Its DNA Cleavage Activity①

    LIU Wen-Qian ZHOU Shi-Lei FAN Ming-Zhu PAN Zhi-Quan CHEN Yun-Feng②

    (School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China)

    The novel dinuclear copper complex [Cu2(H2O)2(DMF)2(L)2] (1, H2L = 5-phenyl-2H-1,2,3-triazole-4-carboxylic acid, DMF = N,N-dimethyl-formamide) has been synthesized and characterized by X-ray single-crystal diffraction.The compound crystallizes in triclinic system, space group P1 with a = 9.591, b = 10.508, c = 15.515 ?, β = 75.11°, V = 1446.2 ?3, Z = 2, Mr= 683.62, Dc= 1.570 g/cm3, μ = 1.531 mm-1, F(000) = 700, the final R = 0.0404 and wR = 0.1130 for 5327 observed reflections with I > 2σ(I).In each unit of the complex, two Cu2+ions coordinated with two triazole ligands to form a dimeric [5,6,5] tricyclic structure.The central Cu atom is five-coordinated, and each copper atom shows a square pyramidal geometry.The crystal structure is stabilized by the inversion-related O–H··O hydrogen bond and C–H··O hydrogen bonding interactions to form a layer structure.Fluorescent spectra show an obvious quenching of fluorescence compared with free 1,2,3-triazole ligand.The results of agarose gel electrophoresis indicate that this complex can cleave the plasmid supercoiled DNA within shorter time in the 50-folds excess of ascorbate under physiological conditions, providing a new example in the research for artificial metal nucleic acid enzyme.

    1,2,3-triazole, copper complex, crystal structure, fluorescent property, DNA cleavage activity;

    1 INTRODUCTION

    Design and syntheses of metal coordination complexes which can cleave DNA and RNA are the topics of modern bioinorganic chemistry[1].Many of these reagents have already provided useful footprinting reagents in vitro.However, the reagents which show indeed applications in intracellular were rare to date[2].There were some challenges to accomplish this goal, especially the toxic xenobiotics for normal cellular of metal complexes.Therefore, the choice of ligand and the coordination mode of complexes were the key factors for finding metal complexes as enzyme-like reagents.N-heterocycles are important ligands for transition metal chemistry, so far, some N-heterocycles, such as imidazoles, benzoimidazoles, pyrazoles, pyridines and 1,2,4-triazoles have been widely used as coordination ligand for transition metals[3].The 1,2,3-triazoles, which bear three successive nitrogen atoms, showunique properties by contrast with their isomeric 1,2,4-triazoles.The bioisosteres of amide show good thermal stability and resist the oxidative or reductive reagents.More importantly, the 1,2,3-triazoles show lower toxicity against the normal cell.Indeed, 1,2,3-triazoles and their derivatives have been widely used in many fields, especially in betalactamase inhibitors[4], bacteriostat[5], antineoplastic[6], anti-epileptic[7]and relieve pain[8].For the abundant coordination nitrogen atoms and high electron density of the 1,2,3-triazole ring together with their strong stability, they are also be used as ligands to form metal complexes, such as Cu, Zn, Co, Ni, Pd, etc[9-17].Some of them show intriguing structural features and unique properties.Carboxylatesubstituted 1,2,3-triazoles are good ligands for the syntheses of metal complexes.However, most of them are based on 1,2,3-triazole-4,5-dicarboxylic acid[18-22].Metal complexes based on unsymmetric carboxylate-substituted 1,2,3-triazoles ligands are rare so far.For example, there is no metal complex based on 5-phenyl-2H-1,2,3-triazole-4-carboxylic acid.There are three successive nitrogen atoms and a carboxyl group which can coordinate with different metal ions.Herein, we synthesize a dinuclear Cu(II)-ligand complex [Cu2(H2O)2(DMF)2(L)2].It is found that this complex can insert DNA grooves to cleave the DNA effectively.We proposed that the coordination environment and the special structure of this complex were the reasons for its high DNA-cleavage activity.At the same time, the controlled experiments also showed oxidative mechanism for its unique DNA-cleavage activity.

    2 EXPERIMENTAL

    2.1 Materials and general method

    All chemicals were commercially available and used without further purification.Tris(hydroxymethyl) amino-methane (Tris), bromophenol blue, ethidium bromide (EB), agarose gel and pBR322 DNA were purchased from TOYOBO.CO.

    The buffer solutions were prepared with doubledistilled water.TAE buffer: 60.5 g Tris-base, 14.3 mL acetic acid and 9.3 g EDTA in 250 mL water, pH = 8; Reaction solution: VDMF:VTB= 3:1; BSE solution: 0.25% bromophenol blue, 40% (w/v) sucrose, and kept at 4 ℃; EB solution: ethidium bromide 0.1 g in 100 mL water.

    2.2 Synthesis of 5-phenyl-1H-1,2,3-triazole-4-carboxylic acid (L)

    The synthetic routine was shown in Scheme.1.Iodobenzene (2.04 g, 10 mmol), PdCl2(PPh3)2(350 mg, 0.5 mmol), CuI (95.3 mg, 0.5 mmol), K2CO3(2.76 g, 20 mmol) and PPh3(157.4 mg, 0.6 mmol) were added to a pear-shaped Schlenk tube charged with a magnetic stirrer.The tube was evacuated and backfilled with argon and then degassed THF (80 mL) was introduced, followed by introducing ethyl propiolate (1.47 g, 15 mmol).The mixture was heated at 60 ℃ for 5 h, then poured into water and extracted with EtOAc.The organic layer was further washed with brine and dried with anhydrous Na2SO4.After filtration through a short column (silica gel), the eluent was concentrated under reduced pressure to give oil which was redissolved in DMSO (20 mL).Subsequently, NaN3(0.98 g, 15 mmol) was added into the solution, then heated at 100 ℃.The reaction was monitored by TLC.After the completion of the reaction, the mixture was poured into water and extracted with EtOAc.The organic layer was washed with brine and dried with anhydrous Na2SO4.After filtration, the solution was concentrated under reduced pressure, the crude product was dissolved in MeOH, and then NaOH (2.2 g, 55 mmol) was added.The solution was stirred at room temperature for 3 h, followed by adding HCl (2N).After that, the solution was concentrated under reduced pressure.The obtained solid was washed with cold water, then recrystallized with MeOH to give the 5-phenyl-2H-1,2,3-triazole-4-carboxylic acid (0.98 g, 52.06%).m.p: 200~202 ℃.IR (KBr, v·cm-1): 3240, 1728, 1685, 1615.

    Scheme 1.Synthesis of 5-phenyl-2H-1,2,3-triazole-4-carboxylic acid

    2.3 Synthesis of complex [Cu2(H2O)2(DMF)2(L)2] (1)

    To a solution of 5-phenyl-2H-1,2,3-triazole-4-carboxylic acid (5 mg, 0.026 mol) in methanol (5 mL) was added Cu(OAc)2·H2O (15.6 mg, 0.078 mol) in one pot, then Et3N (5 mL) was added.The mixture was stirred at room temperature for 48 h.The obtained precipitate was filtered and washed with methanol twice to give a blue solid.This blue solid was dissolved with DMF, and the clear solution was kept in diethyl ether atmosphere at room temperature for 7 days, obtaining blue crystals of complex [Cu2(H2O)2(DMF)2(L)2] (17.5 mg, yield: 32.8%).Anal.Calcd.(%) for C24H28Cu2N8O8: C, 41.91; H, 4.30; N, 16.25.Found (%): C, 42.17; H, 4.13; N, 16.39.IR: ν(OH) 3242(s), ν(C=O) 1731(s), ν(C=N) 1645(s), 1589(w), 1408(w), 1259(w) cm-1.UV (DMF, 10-4M, λmax, 290 nm): 355 (s).

    2.4 X-ray data collection and refinement

    A blue single crystal of the complex with dimensions of 0.12mm × 0.10mm × 0.10mm was mounted at 293(2) K by using a graphite-monochromated MoKα (λ = 0.71073 ?) radiation with an ω-φ scan mode (2.03<θ<25.50o).A total of 10552 reflections were collected and 5327 were independent with Rint= 0.0258, of which 5327 were observed with I > 2σ(I).Data reduction and cell refinement were performed by AMART and SAINT programs[23].All calculations were performed using SHELXTL-97 crystallographic software package[24].All nonhydrogen atoms were refined anisotropically and all hydrogen atoms except those of aqua molecule were determined with theoretical calculations and refined isotropically.The final R = 0.0404, wR = 0.1130 (w(Δρ)max= 0.542 and (Δρ)min= –0.590 e/?3.The selected bond lengths and bond angles are listed in Table 1.

    Table 1.Selected Bond Lengths (?) and Bond Angles (°)

    2.5 Physical measurements

    IR spectra were recorded on a vector 22 FI-IR spectrophotometer using KBr disk.Elemental analyses were performed on a Perkin-Elmer 240 analyzer.UV-Vis spectra were recorded on an UV-2450 spectrophotometer.The liquid-state fluorescence emission/excitation spectra were recorded on a Hitachi F-7500 fluorescence spectrophotometer equipped with a continuous Xe-900 xenon lamp and a μF900 microsecond flash lamp.The Agarose gelelectrophoresis patterns were analyzed by UVPGDS-8000 gel imaging analysis system.

    2.6 Experiment of agarose gel electrophoresis

    Negative supercoiled pBR322 DNA (1 μL, 0.25 μg·μL-1) was treated with different concentration of complexes (3 μL) in Tris-HCl buffer (1 μL, 50 mmol·L-1Tris-HCl, 50 mmol·L-1NaCl, pH = 7.2).After mixing, the DNA solutions were incubated at room temperature for 1 h.The reactions were quenched by the addition of sterile solution (1 μL, 0.25% bromophenol blue and 40% w/v sucrose).The samples were then analyzed by electrophoresis for 45 min at 120 V on agarose gel in TAE buffer (40 mmol·L-1Tris-base, 40 mmol·L-1acetic acid and 1 mmol·L-1EDTA, pH = 7.4).The gel was stained with EB (1μg·μL-1) for 2 min after electrophoresis and then photographed.

    3 RESULTS AND DISCUSSION

    The symmetric unit of 1 contains two crystallographically unique complexes.Each complex includes two Cu2+ions, two water molecules, two DMF molecules and two 1,2,3-triazole ligands, as shown in Fig.1.The coordination configuration around each Cu(II) ion can be described as a square pyramid, in which the oxygen atom of DMF occupies the apical position, while two nitrogen atoms (from two triazoles) and two oxygen atoms (from carboxylate and H2O) are located on the base plane.Deviations of Cu(1) and Cu(2) atoms from the mean plane, formed by O(2), O(4), N(2) and N(3), as well as O(5), O(8), N(6) and N(7), are 0.099 and 0.120 ?, respectively.The coordination environments for these two Cu(II) ions are litter different for their bond distances and bond angles.The distances of Cu–O (H2O) are 1.981(4) and 1.995(3) ?, and those of Cu–O (COO–) are 1.960(3) and 1.955(3) ?, which show strong coordination, while the Cu–O (DMF) bonds are 2.413(3) and 2.380(3) ?, respectively, longer than Cu–O (H2O) and Cu–O (COO-).It reveals that the coordination of DMF is liable.By the way, although the central metal Cu(II) ions could form tetragonal bipyramidal structures, the potential steric repulsion maybe induces the formation of this pyramidal structure.Moreover, there are abundant hydrogen bonding interactions in the crystal structure, which play an important role in forming the 2D structure, as shown in Table 2.(a) H-bonding between the water and carboxylate O atom of H2L O(4)–H(4A)××O(2)#3 (d = 2.49(6) ?, q= 120(6)°); (b) H-bonding between the coordination water and N atoms from 1,2,3-tiazole O(4)–H(4B)××N(1) (d = 2.50(6) ?, q = 112(5)°); (c) H-bonding between the DMF and O atoms of carboxylate group C(10)–H(10)××O(6)#6 (d = 2.53 ?,q = 126.4°); (d) H-bonding between the water from one crystallographically unique complex and carboxylate O atom of another H2L molecule O(8)–H(8A)××O(1) (d = 2.259(14) ?, q = 170(6)°); (e) H-bonding between water and carboxylate O atom in the same molecule O(8)–H(8B)××O(5)#5 (d = 2.39(5) ?, q = 134(6)°); (f) H-bonding between the DMF from one crystallographically unique complex and O atom of the carboxylate group from another C(12)–H(12C)××O(6)#6 (d = 2.51 ?, q = 130.7°); (g) H-bonding between the methyl of DMF from the crystallographically unique complex and O atom of the carboxylate group from another C(22)–H(22)××O(1)#4 (d = 2.42 ?, q = 128.5°).With the contribution of these abundant hydrogen bonds, two complex molecules were connected to form a 3-D supramolecular network structure, as shown in Fig.2.

    The fluorescence of the complex and ligand has been recorded in the DMF solution (10-4mmol·L-1) at room temperature.From Fig.3, the emission peaks have been observed at 352 nm (λex= 298) for H2L and 355 nm (λex= 290) for complex 1.The complex and ligand had different fluorescence intensity when tested in the same emission wavelength, and this difference could be attributed to the classic photoinduced electron transfer (PET) mechanism[25-28].When the triazole rings and the carboxylate group of the host formed a complex with the metal, the excited electron state of the1,2,3-triazole ring was then transferred to the LUMO of Cu2+, which induced the fluorescence quenching.

    Fig.1.Binuclear structure of complex 1.Symmetry transformation for the compound: #1: –x, –y, –z+1; #2: –x+1, –y+2, –z

    Fig.2.3-D structure of the complex

    Fig.3.Fluorescence spectra of the complex and free ligand

    Table 2.Hydrogen Bond Lengths (?) and Bond Angles (°)

    Because each central copper(II) ion exhibits a square pyramidal structure, together with a liable coordinated DMF molecule, we proposed that this complex can form a flat structure by releasing the coordinated DMF molecules, which have the potential to insert DNA groove.So, the cleavage of supercoiled plasmid pBR322 DNA by the complex was studied in the presence of ascorbate and H2O2.As shown in Fig.4, with increasing the concentration of the complex, the amount of form I (supercoiled form) of DNA diminished obviously, whereas that of form III (linear form) increased.When the concentration of the complex was 150 μmmol·L-1, no fluorescent stripe could be seen, and we propose this form to be the smaller nicked DNA fragment.These results suggest that this complex indeed has DNA cleavage efficiency.At the same time, time dependence of the cleavage ability of DNA with the complex reveals that the cleavage of DNA increased with increasing the incubation time (Fig.5).The DNA cleavage activity is higher than the 1,10-phenanthroline-cuprous complex to some extent[29].Furthermore, the comparison experiments with typical scavengers also identify that this complex cleaves the DNA (Fig.6) via the general three steps procedure[30-32]: (1) complex binding with DNA, (2) the formation of reactive metal-oxo species (RMOS) because meta-dicopper structure favors RMOS in a synergic manner in the presence of O2, (3) the RMOS, which acts as a double strands DNA scissors, finally cleaved the supercoil DNA (form I) into linear DNA (form Ⅲ).The formation of cuprous complex is essential to the active oxygen to form a RMOS, so the ascorbate was needed to translate the Cu(Ⅱ) to Cu(I) in this reaction.

    Fig.4.Agarose gel electrophoresis patterns for the cleavage of pBR322 DNA plasmid DNA by [Cu2(H2O)2(DMF)2(L1)2] in the presence of 50-fold excess of ascorbate and H2O2; Conditions: 0.25 μg.μL-1DNA 1 μL; 3 μL complex; 1 μL bromophenol-blue terminate agent; 50 fold ascorbate and H2O2; at room temperature for 60 min.Lane1: DNA control; Lane2-6: DNA and ascorbate and 25 μmol·L-1, 50 μmol·L-1, 100 μmol·L-1, 150 μmol·L-1or 200 μmol·L-1of the complex, respectively; Lane7-12: DNA and H2O2and 25 μmol·L-1, 50 μmol·L-1, 100 μmol·L-1, 150 μmol·L-1or 200 μmol·L-1of complex, respectively

    Fig.5.Agarose gel electrophoresis patterns for the cleavage of pBR322 DNA plasmid DNA by [Cu2(H2O)2(DMF)2(L1)2] in the presence of 50-fold excess of ascorbate for different time; Conditions: 0.25 μg·μL-1DNA 1 μL; 3 μL complex (150 μmol·L-1); 1 μL bromophenol-blue terminate agent; 50 fold ascorbate; at room temperature; Lane1: DNA control Lane2-5: DNA, complex and ascorbate after 15, 30, 45 and 60 min, respectively

    Fig.6.Agarose gel electrophoresis patterns for the cleavage of pBR322 DNA plasmid DNA by [Cu2(H2O)2(DMF)2(L1)2], and in the presence of DMSO, NaN3, KI and ascorbate, respectively; Conditions: 0.25 μg·μL-1DNA 1 μL; 3 μL complex; 1 μL bromophenol-blue terminate agent; 3 μL DMSO, NaN3, KI and ascorbate; at room temperature for 60 min; Lane1: DNA control; Lane2-6: DNA and complex, DNA, complex and DMSO (5 mmol·L-1), DNA, complex and NaN3(5 mmol·L-1), DNA ,complex and KI (5 mmol·L-1), DNA, complex and ascorbate (5 mmol·L-1), respectively

    4 CONCLUSION

    In summary, the 5-phenyl-2H-1,2,3-triazole-4-carboxylic acid ligand and its’ binuclear copper complex [Cu2(H2O)2(DMF)2(L1)2] 1 were synthesized, and its structure was characterized by single-crystal X-ray diffraction techniques.The central metal Cu(II) ions exhibit a square pyramidal geometry with a liable coordinated DMF.The fluorescence analysis reveals the quenching of the fluorescence properties.And this complex showed great cleavage activity towards pBR322 DNA in the presence of ascorbate.Within increasing the contractions and time, the supercoil DNA could be cleaved into linear DNA or even unrecognized fragments, and this potential flat dinuclear copper(II) structure may be the reason for interaction with DNA effectively.The mechanism of the complex DNA cleavage activity may prefer oxidative DNA cleavage, and further researches on its’ detail mechanism are underway.

    REFERENCES

    (1) Sigman, D.S.; Mazumder, A.; Perri, D.M.Chemical nuclease.Chem.Rev.1993, 93, 2295–2316.

    (2) Yue, L.; Zhou, Y.Z.Chromium complexes with cleaving DNA activity.Prog.Chem.2009, 21, 2093–2099.

    (3) Li, J.; Xiong, P.P.; Bu, H.Y.; Chen, S.P.Syntheses, structures, antifungal activities and DNA cleavage of transition metal coordination compounds with 4-(1H-1,2,4-triazol-1-ylmethyl).Acta Phys-Chim.Sin.2014, 30, 1354–1362.

    (4) Kuzin, A.P.; Nukaga, M.; Nukaga, Y.; Hujer, A.; Bonomo, R.A.; Knox, J.R.Inhibition of the SHV-1 β-lactamase by sulfones: crystallographic observation of two reaction intermediates with tazobactam.Biochemistry 2001, 40, 1861–1866.

    (5) Karanam, M.; Dev, S.; Choudhury, A, R.New polymorphs of fluconazole: results from cocrystallization experiments.Cryst.Growth Des.2012, 12, 240–252.

    (6) Bratsos, I.; Urankar, D.; Zangrando, E.; Genova-Kalou, P.; K?smrlj, J.; Alessio, E.; Turel, I.1-(2-picolyl)-substituted 1,2,3-triazole as novel chelating ligand for the preparation of ruthenium complexes with potential anticancer activity.Dalton Trans.2011, 40, 5188–5199.

    (7) Fisher, S.Z.; Aggarwal, M.; Kovalevsky, A, Y.; Silverman, D.N.; McKenna, R.Neutron diffraction of acetazolamide-bound human carbonic anhydrase II reveals atomic details of drug binding.J.Am.Chem.Soc.2012, 134, 14726?14729.

    (8) Gall, M.; Kamdar, B.V.; Collins, R.J.Pharmacology of some metabolites of triazolam, alprazolam, and diazepam prepared by a simple, one-step oxidation of benzodiazepines.J.Med.Chem.1978, 21, 1290?1294.

    (9) Hu, M.C.; Wang, Y.; Zhai, Q.G.; Li, S.Y.; Jiang, Y.C.; Zhang, Y.Synthesis, crystal structures, and photoluminescent properties of the Cu(I)/X/α,ω-bis(benzotraizole)alkane hybrid family (X = Cl, Br, I, and CN).Inorg.Chem.2009, 48, 1449–1468.

    (10) Huang, S.; Clark, R.J.; Zhu, L.Highly sensitive fluorescent probes for zinc ion based on triazolyl-containing tetradentate coordinate motifs.Org.Lett.2007, 9, 4999–5002.

    (11) Schweinfurth, D.; Demeshko, S.; Khusniyarov, M.M.; Dechert, S.; Gurram, V.; Buchmeiser, M.R.; Meyer, F.; Sarkar, B.Capped-tetrahedrally coordinated Fe(II) and Co(II) complexes using a ''click''-derived tripodal ligand: geometric and electronic structures.Inorg.Chem.2012, 51, 7592?7597.

    (12) Schweinfurth, D.; Krzystek, J.; Schapiro, I.; Demeshko, S.; Klein, J.; Telser, J.; Ozarowski, A.; Su, C.Y.; Meyer, F.; Atanasov, M.; Neese, F.; Sarkar, B.Electronic structures of octahedral Ni(II) complexes with "click" derived triazole ligands: a combined structural, magnetometric,spectroscopic, and theoretical study.Inorg.Chem.2013, 52, 6880?6892.

    (13) Kilpin, K.J.; Gavey, E.L.; McAdam, C.J.; Anderson, C.B.; Lind, S.J.; Keep, C.C.; Gordon, K.C.; Crowley, J.D.Palladium(II) complexes of readily functionalized bidentate 2-pyridyl-1,2,3-triazole ''click'' ligands: a synthetic, structural, spectroscopic, and computational study.Inorg.Chem.2011, 50, 6334–6346.

    (14) Zhou, X.H.A dinuclear Ni(Ⅱ) complex [Ni2(Htda)2(H2O)6]·4H2O: synthesis, crystal structure and properties.Chem.J.Chin.Uni.2010, 26, 801–806.

    (15) Urankar, D.; Pinter, B.; Pevec, A.; Proft, F.D.; Turel, I.; Kosmrlj, J.Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent.Inorg.Chem.2010, 49, 4820–4829.

    (16) Yue, Y.F.; Wang, B.W.; Gao, E.Q.; Fang, C.J.; He, C.; Yan, C.H.A novel three-dimensional heterometallic compound: templated assembly of the unprecedented planar ‘‘Na∈[Cu4]’’ metalloporphyrin-like subunits.Chem.Commun.2007, 2034–2036.

    (17) Li, Y.J.; Huffman, J.C.; Flood, A.H.Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem.Commun.2007, 2692–2694.

    (18) (a) Zhang, W.X.; Xue, W.; Lin, J.B.; Zheng, Y.Z.; Chen, X.M.3D geometrically frustrated magnets assembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate as triangular nodes.CrystEngComm.2008, 10, 1770–1776.(b) Zhang, W.X.; Xue, W.; Chen, X.M.Flexible mixed-spin Kagomé coordinationpolymers with reversible magnetism triggered by dehydration and rehydration.Inorg.Chem.2011, 50, 309–316.(c) Zhang, W.X.; Xue, W.; Zheng, Y.Z.; Chen, X.M.Two spin-competing manganese(II) coordination polymers exhibiting unusual multi-step magnetization jumps.Chem.Commun.2009, 3804–3806.

    (19) (a) Yuan, G.; Shao, K.Z.; Wang, X.L.; Lan, Y.Q.; Du, D.Y.; Zhong, M.S.A series of novel chiral lanthanide coordination polymers with channels constructed from 16Ln-based cage-like building units.CrystEngComm.2010, 12, 1147–1152.(b) Yuan, G.; Shao, K.Z.; Du, D.Y.; Wang, X.L.; Zhong, M.S.Syntheses, structures, and photoluminescence of d10coordination architectures: from 1D to 3D complexes based on mixed ligands.Solid State Sciences 2011, 13, 1083–1091.

    (20) Shi, W.; Chen, X.Y.; Xu, N.; Song, H.B.; Zhao, B.; Cheng, P.; Liao, D.Z.; Yan, S.P.Synthesis, crystal structures, and magnetic properties of 2D manganese(II) and 1D gadolinium(III) coordination polymers with 1H-1,2,3-triazole-4,5-dicarboxylic acid.Eur.J.Inorg.Chem.2006, 4931–4937.

    (21) Wang, S.; Zhao, T.T.; Li, G.H.; Wojtas, L.; Huo, Q.S.; Eddaoudi, M.; Liu, Y.L.From metal-organic squares to porous zeolite-like supramolecular assemblies.J.Am.Chem.Soc.2010, 132, 18039–18041.

    (22) Net, G.; Bayón, J.C.; Esteban, P.; Rasmussen, P.G.; Alvarez-Larena, A.; Piniella, dinuclear rhodium(I) and iridium(I) dicarboxytriazolate complexes and their oxidation products.Crystal structures of [NBu4][Rh2(Dcbt)(CO)4]·0.4CH2C12and [NBu4][Rh2(Dcbt)(CO)2(PPh3)2].Inorg.Chem.1993, 32, 5313–5321.

    (23) SMART and SAINT.Area Detector Control and Integration Software.Siemens analytical X-ray systems, Inc., Madison, WI 1996.

    (24) Sheldrick, G.M.SHELXTL V5.1.Software Reference Manual.AXS Bruker, Inc., Madison, Wisconsin, USA 1997.

    (25) Xu, J.T.; Jung, K.; Boyer, C.Oxygen tolerance study of photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization mediated by Ru(bpy)3Cl2.Macromolecules 2014, 47, 4217?4229.

    (26) Jonas, M.; Blechert, S.; Steckhan, E.Photochemically induced electron transfer (PET) catalyzed radical cyclization: a practical method for inducing structural changes in peptides by formation of cyclic amino acid derivatives.J.Org.Chem.2001, 66, 6896–6904.

    (27) Ashokkumar, P.; Ramakrishnan, V.T.; Ramamurthy, P.Photoinduced electron transfer (PET) based Zn2+fluorescent probe: transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile.J.Phys.Chem.A 2011, 115, 14292–14299.

    (28) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Taglietti, A.A zinc(II)-driven intramolecular photoinduced electron transfer.Inorg.Chem.1996, 35, 1733–1736.

    (29) Thederahn, T.B.; Kuwabara, M.D.; Larsen, T.A.; Sigman, D.S.Nuclease activity of 1,10-phenanthroline-copper: kinetic mechanism.J.Am.Chem.Soc.1989, 111, 4941–4946.

    (30) Humphreys, K.J.; Karlin, K.D.; Rokita, S.E.Efficient and specific strand scission of DNA by a dinuclear copper complex: comparative reactivity of complexes with linked tris(2-pyridylmethyl)amine moieties.J.Am.Chem.Soc.2002, 124, 6009–6019.

    (31) Dhar, S.; Senapati, D.; Das, P.K.; Chattopadhyay, P.; Nethaji, M.; Chakravarty, A.R.Ternary copper complexes for photocleavage of DNA by red light: direct evidence for sulfur-to-copper charge transfer and d-d band involvement.J.Am.Chem.Soc.2003, 125, 12118–12124.

    (32) Sun, H.; Yang, W.Q.; He, W.J.; Guo, Z.J.Oxidative DNA cleavage mediated by copper complexes.Chem.J.Chin.Uni.2011, 32, 437–450.

    13 January 2015; accepted 25 March 2015 (CCDC 1042995)

    ① This work was supported by the National Natural Science Foundation of China (No.21002076) and Wuhan Youth Chenguang Program of Science and Technology (No.201271031374)

    ② Corresponding author.Chen Yun-Feng.E-mail: chyfch@hotmail.com

    10.14102/j.cnki.0254-5861.2011-0634

    99久久精品热视频| 男人舔女人下体高潮全视频| 岛国毛片在线播放| 久久久久久久久久黄片| 国产精品人妻久久久影院| 亚洲欧美精品专区久久| 成人亚洲欧美一区二区av| 2022亚洲国产成人精品| 国产三级在线视频| 久久这里只有精品中国| 久久久久久久久久黄片| 日本免费a在线| 亚洲综合精品二区| 欧美成人精品欧美一级黄| 国产欧美日韩精品一区二区| 欧美最新免费一区二区三区| 亚洲激情五月婷婷啪啪| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产av玫瑰| 少妇的逼好多水| 久久99热这里只频精品6学生| 好男人在线观看高清免费视频| 51国产日韩欧美| 99热这里只有是精品在线观看| 少妇人妻精品综合一区二区| 亚洲av在线观看美女高潮| 国产激情偷乱视频一区二区| 国产精品不卡视频一区二区| 国内精品一区二区在线观看| 人妻夜夜爽99麻豆av| 2021天堂中文幕一二区在线观| 久久精品夜夜夜夜夜久久蜜豆| 午夜激情久久久久久久| 搡老妇女老女人老熟妇| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的 | 人妻制服诱惑在线中文字幕| 黄色日韩在线| 一个人看的www免费观看视频| 精品国产露脸久久av麻豆 | 99久久精品热视频| 777米奇影视久久| 18禁在线播放成人免费| 卡戴珊不雅视频在线播放| 午夜福利视频1000在线观看| 久99久视频精品免费| 一级av片app| av线在线观看网站| 午夜精品一区二区三区免费看| 人人妻人人看人人澡| 中国美白少妇内射xxxbb| 欧美日本视频| 亚洲欧美日韩东京热| 欧美人与善性xxx| 精品不卡国产一区二区三区| av.在线天堂| 午夜日本视频在线| 在线观看一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇高潮的动态图| 九九在线视频观看精品| 成人毛片60女人毛片免费| 亚洲精品,欧美精品| 日韩伦理黄色片| 亚洲av成人av| 日本av手机在线免费观看| 欧美成人一区二区免费高清观看| 日韩欧美精品免费久久| 久久久色成人| 免费在线观看成人毛片| 免费黄网站久久成人精品| 免费观看精品视频网站| 搞女人的毛片| 亚洲成人av在线免费| 国产精品国产三级专区第一集| 日本色播在线视频| 亚洲精品乱久久久久久| 国产综合精华液| 国产精品嫩草影院av在线观看| 又爽又黄无遮挡网站| 日本三级黄在线观看| 美女被艹到高潮喷水动态| 国产成人一区二区在线| 免费av不卡在线播放| 亚洲精品自拍成人| 日韩中字成人| 国产一区亚洲一区在线观看| 2018国产大陆天天弄谢| 美女xxoo啪啪120秒动态图| 国产成人a∨麻豆精品| 简卡轻食公司| 亚洲人与动物交配视频| 非洲黑人性xxxx精品又粗又长| 91精品国产九色| 国产成人精品一,二区| 国产探花极品一区二区| 亚洲成人av在线免费| 日韩精品青青久久久久久| 少妇丰满av| 欧美精品国产亚洲| 女人十人毛片免费观看3o分钟| av女优亚洲男人天堂| 最新中文字幕久久久久| 精品人妻视频免费看| 亚洲国产欧美在线一区| 亚洲国产精品成人综合色| 久久99热6这里只有精品| 免费人成在线观看视频色| 人体艺术视频欧美日本| 欧美bdsm另类| 一夜夜www| 少妇熟女欧美另类| 久久精品熟女亚洲av麻豆精品 | xxx大片免费视频| 日韩av在线大香蕉| 99热6这里只有精品| 乱码一卡2卡4卡精品| 欧美+日韩+精品| av网站免费在线观看视频 | 日韩av在线大香蕉| 亚洲国产精品成人久久小说| 国产麻豆成人av免费视频| 春色校园在线视频观看| 亚洲欧美中文字幕日韩二区| 国产精品蜜桃在线观看| 国产大屁股一区二区在线视频| 国产午夜精品一二区理论片| 色综合色国产| 国内精品美女久久久久久| 亚洲精品日韩av片在线观看| 国产亚洲91精品色在线| 视频中文字幕在线观看| 能在线免费观看的黄片| 国产91av在线免费观看| 国产免费又黄又爽又色| kizo精华| 精品一区二区三区人妻视频| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区三区四区久久| 午夜福利在线观看吧| 亚洲精品中文字幕在线视频 | 别揉我奶头 嗯啊视频| 可以在线观看毛片的网站| 黄色日韩在线| 日韩精品青青久久久久久| 在线观看一区二区三区| 精品一区在线观看国产| 午夜精品在线福利| 亚洲欧美中文字幕日韩二区| 色视频www国产| 午夜激情欧美在线| 一本一本综合久久| 熟女人妻精品中文字幕| 亚洲国产精品成人久久小说| 五月天丁香电影| 大香蕉97超碰在线| 精品久久久精品久久久| 国产av国产精品国产| 久久久国产一区二区| 一级a做视频免费观看| 欧美性感艳星| 嫩草影院入口| 国产人妻一区二区三区在| 三级国产精品片| 狠狠精品人妻久久久久久综合| 国产一区有黄有色的免费视频 | 久久久久久久久久人人人人人人| 中文字幕av成人在线电影| 国产真实伦视频高清在线观看| 有码 亚洲区| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 亚洲性久久影院| av在线蜜桃| 亚洲精品日韩av片在线观看| 九色成人免费人妻av| 91精品伊人久久大香线蕉| 亚洲成人久久爱视频| 精品99又大又爽又粗少妇毛片| 精品久久久久久久人妻蜜臀av| 精品不卡国产一区二区三区| 日韩精品有码人妻一区| 欧美另类一区| 日韩av在线大香蕉| 99久国产av精品| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 日韩 亚洲 欧美在线| 搞女人的毛片| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 国产爱豆传媒在线观看| 国产精品久久久久久av不卡| 中文资源天堂在线| 亚洲自偷自拍三级| 亚洲av电影不卡..在线观看| 2022亚洲国产成人精品| 国产精品熟女久久久久浪| 亚洲性久久影院| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 国产成人精品福利久久| 噜噜噜噜噜久久久久久91| 国产在线一区二区三区精| 日韩人妻高清精品专区| 亚洲欧美清纯卡通| 少妇熟女aⅴ在线视频| 国产男人的电影天堂91| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 精品一区二区三卡| 国产伦精品一区二区三区视频9| 久99久视频精品免费| 女人久久www免费人成看片| 精品久久国产蜜桃| 国产综合懂色| 3wmmmm亚洲av在线观看| 麻豆精品久久久久久蜜桃| 在线a可以看的网站| or卡值多少钱| 久久精品熟女亚洲av麻豆精品 | 欧美极品一区二区三区四区| 午夜福利网站1000一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久久欧美国产精品| 亚洲怡红院男人天堂| 一本一本综合久久| 精品国内亚洲2022精品成人| 人体艺术视频欧美日本| 国内揄拍国产精品人妻在线| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| .国产精品久久| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久视频播放| 晚上一个人看的免费电影| 欧美+日韩+精品| 婷婷色麻豆天堂久久| 九色成人免费人妻av| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播| 高清视频免费观看一区二区 | 久久精品国产亚洲网站| 成人欧美大片| 亚洲欧美一区二区三区黑人 | 爱豆传媒免费全集在线观看| 午夜福利成人在线免费观看| 蜜臀久久99精品久久宅男| 性色avwww在线观看| 国产精品99久久久久久久久| 色综合站精品国产| 精品久久久噜噜| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 两个人的视频大全免费| 一级毛片我不卡| 欧美+日韩+精品| 高清av免费在线| 亚洲美女搞黄在线观看| 91av网一区二区| 国产成人aa在线观看| 九九在线视频观看精品| 美女内射精品一级片tv| www.av在线官网国产| 男女边吃奶边做爰视频| 亚洲在线自拍视频| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 人人妻人人澡欧美一区二区| 乱系列少妇在线播放| 少妇高潮的动态图| 啦啦啦中文免费视频观看日本| 国产在线男女| 日韩av免费高清视频| 国产在线一区二区三区精| av播播在线观看一区| 成人av在线播放网站| .国产精品久久| 一个人免费在线观看电影| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 午夜日本视频在线| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站 | 国产在线男女| 亚洲欧洲日产国产| 大又大粗又爽又黄少妇毛片口| 草草在线视频免费看| 亚洲一区高清亚洲精品| 亚洲精品久久久久久婷婷小说| 免费观看的影片在线观看| 岛国毛片在线播放| 亚洲18禁久久av| 成人二区视频| 极品少妇高潮喷水抽搐| 中文字幕人妻熟人妻熟丝袜美| 日韩av不卡免费在线播放| 色播亚洲综合网| 日韩电影二区| 欧美日韩精品成人综合77777| 欧美zozozo另类| 乱码一卡2卡4卡精品| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6| 国产免费又黄又爽又色| 久久久久精品久久久久真实原创| 久久久久精品性色| av福利片在线观看| 舔av片在线| 最近最新中文字幕大全电影3| 街头女战士在线观看网站| 国语对白做爰xxxⅹ性视频网站| 免费av观看视频| 亚洲欧美成人综合另类久久久| 97热精品久久久久久| 国产高清三级在线| 91久久精品电影网| 乱人视频在线观看| 国产一级毛片在线| 看免费成人av毛片| 亚洲国产av新网站| 久久国内精品自在自线图片| 欧美潮喷喷水| 人人妻人人澡欧美一区二区| 69人妻影院| 高清毛片免费看| 国内精品美女久久久久久| 一级毛片电影观看| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 久久久成人免费电影| 中文乱码字字幕精品一区二区三区 | 精品人妻视频免费看| 一级黄片播放器| 精品一区二区三区人妻视频| 久久久久网色| 国内少妇人妻偷人精品xxx网站| 国产精品熟女久久久久浪| 国产有黄有色有爽视频| 久久国内精品自在自线图片| 身体一侧抽搐| 国产精品嫩草影院av在线观看| 全区人妻精品视频| 高清欧美精品videossex| 九九在线视频观看精品| 男插女下体视频免费在线播放| 欧美日韩综合久久久久久| 性插视频无遮挡在线免费观看| 黄色一级大片看看| 亚洲精品影视一区二区三区av| 欧美激情久久久久久爽电影| 色播亚洲综合网| 伦理电影大哥的女人| 国产av国产精品国产| 亚洲最大成人中文| 亚洲国产精品成人综合色| 看免费成人av毛片| 亚洲精品影视一区二区三区av| 白带黄色成豆腐渣| 嫩草影院入口| 国产熟女欧美一区二区| 最后的刺客免费高清国语| 欧美日韩综合久久久久久| 午夜福利在线观看吧| 免费av不卡在线播放| 一区二区三区免费毛片| 高清午夜精品一区二区三区| 在现免费观看毛片| 午夜福利高清视频| 秋霞在线观看毛片| 亚洲欧美精品专区久久| 18禁动态无遮挡网站| 看非洲黑人一级黄片| 久久久久久久国产电影| 美女国产视频在线观看| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 99热全是精品| 亚洲国产精品sss在线观看| 啦啦啦啦在线视频资源| 日本色播在线视频| 亚洲图色成人| 91午夜精品亚洲一区二区三区| 久久午夜福利片| 丝瓜视频免费看黄片| 日本一二三区视频观看| 日韩视频在线欧美| 亚洲欧美精品专区久久| 国模一区二区三区四区视频| 欧美日本视频| 精品一区二区免费观看| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 国产男人的电影天堂91| 国产精品久久久久久久久免| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 别揉我奶头 嗯啊视频| 男女边摸边吃奶| 午夜福利在线观看吧| 看黄色毛片网站| 精品一区二区免费观看| a级毛色黄片| 成年女人看的毛片在线观看| 日韩成人av中文字幕在线观看| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 久久久久久久久中文| 中国国产av一级| 精品少妇黑人巨大在线播放| 毛片一级片免费看久久久久| 国产精品久久久久久久电影| 男人爽女人下面视频在线观看| ponron亚洲| 久久精品国产亚洲网站| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲av中文字字幕乱码综合| 国产综合精华液| 国产成人精品福利久久| 婷婷色综合www| 午夜福利网站1000一区二区三区| 免费在线观看成人毛片| 3wmmmm亚洲av在线观看| 国产亚洲av片在线观看秒播厂 | 国产麻豆成人av免费视频| 国产亚洲5aaaaa淫片| 超碰97精品在线观看| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频 | 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 欧美变态另类bdsm刘玥| 69人妻影院| 久久久久久久久久人人人人人人| 久久久久网色| 久久99蜜桃精品久久| 如何舔出高潮| 国产 亚洲一区二区三区 | 国产高清三级在线| 成人特级av手机在线观看| 国产伦一二天堂av在线观看| 亚洲aⅴ乱码一区二区在线播放| 精品不卡国产一区二区三区| 乱系列少妇在线播放| 久久99蜜桃精品久久| 亚洲久久久久久中文字幕| av免费在线看不卡| 久久这里有精品视频免费| 舔av片在线| 国产精品一区二区三区四区免费观看| 久久国内精品自在自线图片| 日日啪夜夜撸| 九九爱精品视频在线观看| 观看美女的网站| 国产成人一区二区在线| av国产久精品久网站免费入址| 欧美三级亚洲精品| 三级国产精品片| 26uuu在线亚洲综合色| 国产 一区 欧美 日韩| 亚洲国产欧美人成| 亚洲最大成人中文| 国产亚洲av嫩草精品影院| 亚洲精品乱码久久久久久按摩| 婷婷色av中文字幕| 久久久久久久久大av| 欧美潮喷喷水| 啦啦啦中文免费视频观看日本| 精品国产一区二区三区久久久樱花 | 午夜福利高清视频| 99久国产av精品| 美女黄网站色视频| 中文字幕av在线有码专区| 日本爱情动作片www.在线观看| 波野结衣二区三区在线| 水蜜桃什么品种好| 看非洲黑人一级黄片| 又黄又爽又刺激的免费视频.| 精品一区在线观看国产| 看十八女毛片水多多多| 成人性生交大片免费视频hd| 少妇人妻一区二区三区视频| 丝袜喷水一区| 最近视频中文字幕2019在线8| 国产精品.久久久| 2021少妇久久久久久久久久久| 神马国产精品三级电影在线观看| 亚洲精品乱码久久久v下载方式| 午夜激情久久久久久久| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 91午夜精品亚洲一区二区三区| 亚洲国产成人一精品久久久| 亚洲av成人av| 国产一区二区三区综合在线观看 | 亚洲精品,欧美精品| 中文字幕免费在线视频6| 精品午夜福利在线看| 国产成人a区在线观看| 国产成年人精品一区二区| 国产日韩欧美在线精品| 日本免费a在线| 久久久久久久久久久免费av| 六月丁香七月| 九九在线视频观看精品| 国产麻豆成人av免费视频| 少妇丰满av| 青春草视频在线免费观看| 校园人妻丝袜中文字幕| 精品熟女少妇av免费看| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 亚洲av中文字字幕乱码综合| 国产成人a∨麻豆精品| 国产精品综合久久久久久久免费| 欧美极品一区二区三区四区| 少妇的逼好多水| 看免费成人av毛片| 麻豆成人午夜福利视频| eeuss影院久久| 国产成人a区在线观看| 国产综合精华液| 亚洲电影在线观看av| 成年免费大片在线观看| 日韩欧美三级三区| 国产成人一区二区在线| 毛片女人毛片| 久久国产乱子免费精品| 亚洲在线观看片| 日本免费a在线| 天堂中文最新版在线下载 | 日韩欧美国产在线观看| 国产精品精品国产色婷婷| 三级男女做爰猛烈吃奶摸视频| 乱系列少妇在线播放| 成人国产麻豆网| 午夜视频国产福利| 大片免费播放器 马上看| 亚洲精品视频女| 久久久久久久久久久丰满| 丰满乱子伦码专区| 亚洲成人av在线免费| 人妻系列 视频| 美女国产视频在线观看| 国产午夜精品论理片| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 真实男女啪啪啪动态图| 校园人妻丝袜中文字幕| 亚洲精品aⅴ在线观看| 18禁动态无遮挡网站| 一边亲一边摸免费视频| 国产黄片美女视频| 午夜激情福利司机影院| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 国产精品久久久久久av不卡| 久久久午夜欧美精品| 国产亚洲av片在线观看秒播厂 | a级一级毛片免费在线观看| av卡一久久| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 校园人妻丝袜中文字幕| 一区二区三区高清视频在线| 亚洲不卡免费看| 搡老乐熟女国产| 精品国产一区二区三区久久久樱花 | 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 少妇的逼好多水| 亚洲经典国产精华液单| 亚洲精品第二区| 丰满人妻一区二区三区视频av| 搞女人的毛片| 久99久视频精品免费| 久久久成人免费电影| 人妻一区二区av| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 天堂俺去俺来也www色官网 | 精品一区在线观看国产| 99re6热这里在线精品视频| 欧美成人a在线观看| av.在线天堂| 国产麻豆成人av免费视频| 国产一区二区三区av在线| 别揉我奶头 嗯啊视频| 精品午夜福利在线看| 欧美高清成人免费视频www| 校园人妻丝袜中文字幕| 亚洲成色77777| 久久国内精品自在自线图片| 久久久亚洲精品成人影院| 青春草国产在线视频| 久久精品国产自在天天线| 国产综合懂色| 久久精品综合一区二区三区| 99re6热这里在线精品视频| 国产精品久久视频播放| 日韩欧美 国产精品| 又爽又黄无遮挡网站| 色综合亚洲欧美另类图片| 青春草视频在线免费观看| 久久综合国产亚洲精品| 免费av不卡在线播放| 成人性生交大片免费视频hd| 黄片无遮挡物在线观看| 日本三级黄在线观看|