• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Biological Activity of 2-(3,4-Dichloroisothiazol-5-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-yl-3-methylbenzoate①

    2015-07-18 11:14:50ZONGGungNingLIFengYunFANZhiJinMAOWuToSONGHiBinCHENLiZHUYuJieXUJingHuSONGYinQiWANGJiRnStteKeyLortoryofElementoorgnicChemistryCollortiveInnovtionCenterofChemiclSciencendEngineeringTinjinNnkiUniversityTinjin300071Chin
    結(jié)構(gòu)化學(xué) 2015年6期

    ZONG Gung-NingLI Feng-YunFAN Zhi-Jin②MAO Wu-ToSONG Hi-BinCHEN LiZHU Yu-JieXU Jing-HuSONG Yin-QiWANG Ji-Rn(Stte Key Lortory of Elemento-orgnic Chemistry, Collortive Innovtion Center of Chemicl Science nd Engineering (Tinjin), Nnki University, Tinjin 300071, Chin)(College of Chemistry nd Phrmcy Engineering, Nnyng Norml University, Nnyng, Henn 473061, Chin)

    Synthesis, Crystal Structure and Biological Activity of 2-(3,4-Dichloroisothiazol-5-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-yl-3-methylbenzoate①

    ZONG Guang-NingaLI Feng-YunaFAN Zhi-Jina②MAO Wu-TaobSONG Hai-BinaCHEN LaiaZHU Yu-JieaXU Jing-HuaaSONG Yin-QiaWANG Jia-Ranaa(State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China)b(College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061, China)

    The title compound diethyl 2-(3,4-dichloroisothiazol-5-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-yl-3-methylbenzoate (C15H9Cl2F3N2O2S2, Mr= 441.26) was prepared from methyl 3,4-dichloroisothiazole-5-carboxylate as the starting material by four steps of reaction.Its structure was characterized by IR,1H-NMR,13C-NMR, EA and single-crystal X-ray diffraction.The crystal of the title compound belongs to the monoclinic system, space group P21/c with a = 8.8437(18), b = 16.128(3), c = 12.305(3) ?, β = 91.68(3)o, V = 1754.4(6) ?3, Z = 4, Dc= 1.671 g/cm3, μ(MoKa) = 0.71073 mm-1, F(000) = 888, R = 0.0384 and wR = 0.0778.Weak π-π interactions occur between the isothiazole rings and phenyl rings of adjacent molecules to form a one-dimensional chain and stabilize the crystal structure.Bioassay indicates that the title compound has good activity against the fungi and TMV tested.

    isothiazole, 4,5-dihydrothiazole, synthesis, crystal structure, biological activity;

    1 INTRODUCTION

    Aggressive pathogens cause disease and great losses in agriculture all over the world[1].A great amount of fungicides are used to control plant disease every year.In contrast to traditional fungicide, plant elicitors induce systemic acquired resistance of host plant against abroad spectrum of disease without direct activities against pathogens itself[2-4].Heterocyclic compounds have various biological activities[5,6].Isotianil, a derivative of isothiazole-5-carboxylic acid, is a novel plant elicitor with broad spectrum of diseases controlling effects by cooperating with other fungicides or insecticides[7-9].Isothiazole and their derivatives present a wide range of biological activities including insecticidal activity[10,11], fungicidal activity[7,12], herbicidal activity[13], and systemic acquired resistance[3].Some isothiazoles also present pharmaceutical activity as of acyl guanidine inhibitors[14],antiglycation reagents[15]and dual functional inhibitors[16].

    Phytoalexins are antimicrobial substances produced by plants in response to infection or stress with low molecular weight[17].Types of phytoalexins produced by crucifers have good fungicidal activity, which have unique structures containing isothiazole or thiazole related rings and at least one sulfur atom, for example spirobrassinin[18].Research revealed that the heterocyclic ring with 4,5-dihydrothiazole of spirobrassinin and its analogs played a key role in keeping the antifungal activity[19,20].Some compounds bearing the 4,5-dihydrothiazole ring showed broad-spectrum biological activity[21].A series of substituted 2-(pyridin-3-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-yl benzoates has been found as potential fungicidal chemicals with good activity[22].

    Another type of heterocyclic compounds 2-(3,4-dichloroisothiazol-5-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-yl-3-methylbenzoate with active substructures of 3,4-dichloroisothiazole and 4,5-dihydrothiazole moieties were designed and synthesized here according to the principle of pesticide designation and the description in Scheme 1[2], and their crystal structure and activity were also evaluated.

    Scheme 1.Schematic structure and synthesis of the target compound

    2 EXPERIMENTAL

    All reagents and solvents for synthesis and analyses were of analytical grade and used without further purification.Column chromatography purification was carried out by using silica gel (200~300) with ethyl acetate and petroleum ether as eluent.The melting point was measured on an X-4 binocular microscope (Gongyi Tech.Instrument Co., Henan, China), and the temperature was not corrected.Infrared (IR) spectra were recorded on a Bruker Vector 22 Fourier transform infrared (FTIR) spectrometer using KBr pellets.Hydrogen Nuclear Magnetic Resonance (1H NMR) spectra were measured at 400 MHz using a Bruker AV-400 spectrometer with deutero-chloroform (CDCl3) as the solvent and tetramethylsilane (TMS) as the internal standard.Elemental analyses (EA) data were obtained on a Vario EL CUBE instrument made by German.The single-crystal structure was determined on a Rigaku Saturn 724 CCD diffractometer.The equipment was operated using Mo-Kα radiation (λ = 0.71073 ?).

    2.1 Synthesis

    Intermediate 4 was synthesized by a three-step process (Scheme 1).White solid, 3,4-dichloroisothiazole- 5-carboxamide, 2 was synthesized from 2.12 g (10 mmol) ethyl methyl 3,4-dichloroisothiazole-5-carboxylate 1 via an aminolysis reaction at room temperature in a good yield (96%);1H NMR(400 MHz, DMSO-d6): δ 8.35 (s, br, 1H), 8.08 (s, br, 1H).Lawson’s reagent (2.42 g, 6 mmol) was added to a solution of compound 2 (1.97 g, 10 mmol) in anhydrous toluene (50 mL).After refluxing for 3 hours and concentrated under reduced pressure, the obtained residue was purified by chromatography on silica gel (petroleum ether : ethyl acetate, 3:1, v/v) to give a white solid, 3,4-dichloroisothiazole-5-carbothioamide 3;1H NMR(400 MHz, CDCl3): δ 6.80 (s, br, 1H), 6.24 (s, br, 1H).A solution of compound 3 (1.0 g, 5.0 mmol) and 3-bromo-1,1,1-trifluoropropan-2-one (1.0 g, 5.0 mmol) in anhydrousethanol (20 mL) was refluxed and stirred for 16 h.After concentration under reduced pressure, the residue was purified by chromatography on silica gel (petroleum ether : ethyl acetate, 10:1, v/v) to give a yellow solid, 2-(3,4-dichloroisothiazol-5-yl)-4-(trifluoromethyl)-4,5-dihydrothiazol-4-ol 4;1H NMR (400 MHz, CDCl3): δ 3.76 (dd, J=54.5 Hz, 10.2 Hz, 2H), 3.65(s, 1H).

    To a stirred solution of compound 4 (0.32 g, 1.0 mmol) and 3-methylbenzoyl chloride in anhydrous CH2Cl2(15 mL) at 0 ℃ was added triethylamine (0.15 g, 1.5 mmol) dropwise.After being wormed to ambient temperature gradually, the resulting mixture was stirred for about 10 h.Then, the reaction mixture was diluted with CH2Cl2(20 mL) and washed with aqueous HCl (2 mol/L), saturated aqueous NaHCO3and brine, and finally dried over anhydrous Na2SO4.After concentration, the crude product was purified by chromatography on silica gel using petroleum ether (60~90 ℃) and ethyl acetate (v/v = 10:1) as the eluent.The pure title compound was obtained as a white solid with the yield of 65%; m.p.: 100~102 ℃.IR (KBr pellet press, ν, cm-1): 2921 (CH3), 1741 (C=O), 1573(Ar, C=C), 1506(Ar, C=C), 1425(Ar, C=C).1H NMR (400 MHz, CDCl3) δ 7.87 (d, J = 5.7 Hz, 2H), 7.46 (d, J = 7.5 Hz, 1H), 7.40 (d, J = 7.9 Hz, 1H), 3.99 (s, 2H), 2.44 (s, 3H).13C NMR (101 MHz, CDCl3) δ 168.29 (s), 163.80 (s), 152.32 (s), 138.58 (s), 134.97 (s), 130.58 (s), 128.58 (s), 127.29 (s), 124.24 (s), 123.77 (s), 120.94 (s), 108.44~107.50 (q), 36.69 (s), 21.27 (s).EA clacd.for C15H9Cl2F3N2O2S2: C, 40.83; H, 2.06; N, 6.35%.Found: C, 41.14; H, 2.08; N, 6.37%.

    2.2 Crystal data and structure determination

    The crystal of the target compound was cultivated from the mixture of ethyl acetate and dichloromethane with 1:1 (v/v).The colorless crystal of the title compound with dimensions of 0.20mm × 0.18mm × 0.12mm was selected and mounted on a glass fiber for X-ray diffraction analysis.All measurements were made on a Rigaku Saturn 724 CCD diffractometer MoKα radiation (λ = 0.71073 ?).The data were collected at 113(2) K and the crystal is of monoclinic system, space group P21/c, with a = 8.8437(18), b = 16.128(3), c = 12.305(3) ?, β = 91.68(3)o, V = 1754.4(6) ?3, Z = 4, density (calculated) = 1.671 g/cm3, and linear absorption coefficient 0.200 mm-1.In the range of 2.08≤θ≤27.90°, 17654 integrated reflections were collected, reduced to a data set of 4182 unique with Rint= 0.0384, and completeness of data (to theta = 25.02°) of 99.9%.Data were collected and processed using Crystal Clear (Rigaku).An empirical absorption correction was applied using Crystal Clear (Rigaku).The structure was solved by direct methods with the SHELXS-97 program[23].Refinements were done by the full-matrix least-squares on F2with SHELXL-97[24].All of the non-H atoms were refined anisotropically by full-matrix least-squares to give the final R = 0.0384 and wR = 0.0778 ((0.0310P)2+ 0.6562P], where P =with (Δ/σ)max= 0.004 and S = 1.036 by using the SHELXL program.The hydrogen atoms were located from a difference Fourier map and refined isotropically.The corrections for absorption was multi-scan, Tmin= 0.8808 and Tmax= 0.9259.

    2.3 Biological screening Fungicide screening

    Preliminary screening was conducted by fungi growth inhibition method according to the reference using potato dextrose agar (PDA) as cultivation medium[25].A stock solution of the target compound was prepared at 500 μg/mL using sterilized water containing 2 drops of N,N-dimethylformamide (DMF) as a solvent, then 1 mL of the stock solution was transferred into a 10 cm diameter of Petri dish.9 mL of PDA was then added to prepare the plate containing 50 μg/mL of the test compound.Before the plate solidification, the PDA was thoroughly mixed by turning around the Petri dish in the sterilized hood 5 times to scatter the compound in PDA evenly.Then, a fungi cake in 4 mm diameter was inoculated on the plate and cultured in the culture tank at 24~26 ℃.The diameter of fungi spread was measured 2 days later.Growth inhibitionwas then calculated using the corresponding control.Representative fungi used in this study included Alternaria solani (AS), Botrytis cinerea (BC), Cercospora arachidicola (CA), Gibberella zeae (GZ), Phytophthora infestans (Mont) de Bary (PI), Physalospora piricola (PP), Pellicularia sasakii (PS), Sclerotinia sclerotiorum (SS), and Rhizoctonia cerealis (RC).

    Insecticide activity of the target compound against Mythimna separata

    Insecticidal activity of the target compounds against M.separata was tested using the leaf-disk method[26,27].Fresh corn leaves were dipped into the 200 μg/mL test water solution for 10 s which was prepared with a 5% of acetone to help the compound dissolve.After air-drying for evaporating off the acetone and water, the treated leaves were cut into small pieces and placed in Petri dishes with a 10 cm diameter.Thirty individuals of M.separata were transferred into each Petri dish.The Petri dishes were finally fastened with rubber bands and placed in a standard cultivation room for 72 h at 25 ℃ with 80% humidity.The percentage of mortalities was evaluated according to the corresponding CK which uses water to dispose only.The insects having no reaction by touching with a brush pen were regarded as a death.

    Curative effect of the target compounds on TMV in vivo

    Healthy fresh tobacco plants at six-leaf stage were selected for the tests.TMV at a concentration of 5.88 × 10-2μg/mL was inoculated on the whole leaves using the conventional juice robbing method.After the leaves were dried in greenhouse, the compound solution (100 μg/mL) was smeared on the upper three leaves, and the solvent was smeared on the lower three leaves as control.The local lesion numbers were then recorded 2~3 days after inoculation.Three replicates were performed for the target compound, respectively.

    The activities of protection, inactivation, and curative effects against TMV were calculated by the average number of viral inflammations on the inoculated leaves with the corresponding control according to equation (1):

    Where Y is the antivirus inhibition ratio (protection, inactivation, and curative effects in vivo) (%), CK is the average number of viral inflammations on the control leaves in vivo, and A is the average number of viral inflammations on the target compound treated leaves in vivo.

    Protective effect of the target compound against TMV in vivo

    Healthy fresh tobacco plants at six-leaf stage were selected for the tests.The target compound solution (100 μg/mL) was smeared on the whole leaves, and then the leaves were dried in the greenhouse.After 12 h, TMV at a concentration of 5.88×10-2μg/mL was inoculated on the upper three leaves using the conventional juice robbing method, and the solvent was smeared on the lower three leaves as a control.The local lesion numbers were then recorded 2~3 days after inoculation.Three replicates were performed for the target compound, respectively.

    Inactivation effect of the target compounds against TMV in vivo

    Healthy fresh tobacco plants at six-leaf stage were selected for the tests.The TMV virus at a concentration of 5.88×10-2μg/mL was inhibited by mixing with the target compound solution (100 μg/mL) at the same volume for 30 min.Then the mixture was inoculated on the upper three leaves using the conventional juice robbing method, and the solvent was smeared on the lower three leaves as a control.The local lesion numbers were then recorded 2~3 days after inoculation.Three replicates were performed for the target compound, respectively.

    Screening for systemic acquired resistance

    Systemic acquired resistance of the target compound was detected using tobacco against the tobacco mosaic virus (TMV) system as described in Ref.2.The induction activity was evaluated using the antivirus inhibition ratio, which was calculatedby the average number of viral inflammations on the inoculated leaves with the corresponding control accordingly.Tiadinil, ribavirin and ningnanmycin were used as positive controls, respectively, and the target compound was tested at the concentration of 100 μg/mL.

    3 RESULTS AND DISCUSSION

    The molecular structure is shown in Fig.1.The selected bond lengths, bond angles and torsion angles are listed in Table 1.

    Fig.1.Molecular structure of the title compound shown as thermal probability

    Table 1.Selected Bond Lengths (?), Bond Angles (°) and Torsion Angles (°) for the Title Compound

    As shown in Table 1, bond lengths and bond angles within the isothiazole ring agree well with the values reported[28].The sum of N(2)–C(4)–C(3), N(2)–C(4)–S(2) and C(3)–C(4)–S(2) angles is 360°, indicating the sp2hybridization state of C(4) atom.The dihedral angle between the isothiazole ring and the plane formed by N(2), C(4) and S(2) atoms is 3.318(12)°, which indicates the existence of strong conjugative effect between the imine group including S(2) atom and isothiazole ring; due to this strong conjugative effect, the bond length of C(3)–C(4) is 1.467(3) ?, which is slightly shorter than that of a typical C–C bond (1.53 ?)[29].The torsion angles of C(6)–N(2)–C(4)–S(2) and C(5)–S(2)–C(4)–N(2) are 1.4(2) and 1.02(17)°, respectively, indicating the obvious distortion of the non-aromatic 4,5-dihydrothiazole ring; it is very interesting that, all five atoms of the 4,5-dihydrothiazole ring almost exist coplanar.In the crystal structure, because of sp3hybridization state of the C(6) atom, the stable conformation of the molecule looks like a “L” in Fig.1.Owing to the p-πconjugate effect, the bond lengths of S(1)–C(3) and O(1)–C(8) are 1.7138(19) and 1.370(3) ?, respectively, which are much shorter than that of the S(2)–C(5) (1.810(2) ?) and O(1)–C(6) (1.437(2) ?) bonds.Due to the π-π conjugation of phenyl ring and the carbonyl group at C(9)–C(8)–O(2), the bond length of C(8)=O(2) (1.204(2) ?) is slightly shorter than that of the normal C=O bond (1.22 ?)[30].Not only weak π-π interactions occur between the isothiazole and phenyl rings of the adjacent molecules, but also exist between isothiazole and isothiazole rings, phenyl and phenyl rings of the adjacent molecules, which form a one-dimensional chain structure (Fig.2).

    Fig.2.Crystal packing of the title compound

    Table 2.Fungicidal Activity of the Title Compound (Inhibition Rate, %, 50 μg/mL)

    Table 3.Antiviral Activity of the Title Compound against Tobacco Mosaic Virus (%, 100 μg/mL)±SD

    4 BIOLOGICAL ACTIVITY

    The inhibition effects of the title compound against nine typical fungi were tested.The results as compared with commercialized azoxystrobin are shown in Table 2.The preliminary screening results indicated that the title compound presents good fungicidal activity against GZ, BC and PS with the inhibition rates of 82.35%, 87.18% and 87.95%, respectively, which is higher than that of the azoxystrobin.The title compound also possesses good fungicidal activity against PP, SS and RC with the inhibition rates of 91.03%, 95.77% and 88.10%, respectively, equal to that of azoxystrobin.Furthermore, the title compound showed a potential fungicidal activity with broad-spectrum as above 48% of the inhibition rate against nine fungi.Screening against TMV of the title compound was conducted for protection, inactivation, and curative effect and induction activities in vivo (Table 3).The induction of systemic acquired resistance for tobacco against tobacco mosaic virus (TMV) determination was also detected under the concentration of 100 μg/mL according to the reported reference[2].The result indicated that the title compound had a good antiviral activity as comparedwith the positive controls tiadinil, ribavirin and ningnanmycin, especially it has moderate degree of induction effect with 39.64% of the activity.This is higher than that of ribavirin (23.87%) and ningnanmycin (17.57 %), which is almost equal to that of TDL at 100 μg/mL; moreover, the curative effect is higher than that of ningnanmycin (28.89%) and tiadinil (14.67%); however, inactivation and protection effects were lower than ningnanmycin.The larvicidal activity of the target compound against M.separata was tested by leaf disk method[26,27], and the insect mortality was 35% at 200 μg/mL.The result demonstrated that the title compound had certain extent of insecticidal activity.

    As discussed above, the isothiazole title compound was designed by the principle of combination of bioactive substructure with four steps.The X-ray diffraction confirmed its structure.Bioassay results indicated that the title compound was a good pesticide lead with various biological activities.Dihydrothiazole group will be derived with other sulfur containing heterocycles to enhance its biological activity.

    REFERENCES

    (1) Bos, L.Crop losses caused by viruses.Crop Prot.1982, 1, 263–282.

    (2) Fan, Z.J.; Shi, Z.G.; Zhang, H.K.; Liu, X.F.; Bao, L.L.; Ma, L.; Zuo, X.; Zheng, Q.X.; Mi, N.Synthesis and biological activity evaluation of 1,2,3-thiadiazole derivatives as potential elicitors with highly systemic acquired resistance.J.Agric.Food Chem.2009, 57, 4279–4286.

    (3) Chen, X.Y.; Dai, L.Y.; Li, Y.D.; Mao, W.T.; Fang, Z.; Li, J.J.; Wang, D.; Tatiana, K.; Fan, Z.J.Synthesis and biological activity of 3,4-dichloroisothiazole-5-carboxylic amides.Chin.J.Pest.Sci.2013, 15, 140–144.

    (4) Guo, D.D.; Wang, Z.W.; Fan, Z.J.; Zhao, H.; Zhang, W.; Cheng, J.G.; Yang, J.Q.; Wu, Q.J.; Zhang, Y.J.; Fan, Q.Synthesis, bioactivities and structure activity relationship of N-4-methyl-1,2,3-thiadiazole-5-carbonyl-N?-phenyl ureas.Chin.J.Chem.2012, 30, 2522–2532.

    (5) Hua, X.W.; Mao, W.T.; Fan, Z.J.; Ji, X.T.; Li, F.Y.; Zong, G.N.; Song, H.B.; Li, J.J.; Zhou, L.K.; Zhou, L.F.; Liang, X.W.; Wang, G.H.; Chen, X.Y.Novel anthranilic diamide insecticides: design, synthesis, and insecticidal evaluation.Aust.J.Chem.2014, 67, 1491–1503.

    (6) Kalinina T.A.; Shakhmina Y.S.; Glukhareva T.V.; Morzherin Y.Y.; Fan Z.J.; Borzenkova, R.A.; Skolobanova, E.S.; Kiseleva, I.S.1,2,3-Thiadiazolyl isocyanates in the synthesis of biologically active compounds.Study of the cytotoxic activity of N-(4-methyl-1,2,3-thiadi-azolyl-5-yl)-N'-(4-methylphenyl)urea.Chem.Heterocycl.Comp.2014, 50, 1039–1046.

    (7) Assmann, L.; Elbe, H.L.; Kuhnt, D.; Hanssler, G.; Kuck, K.H.; Kitagawa, Y.; Sawada, H.; Sakuma, H.Isothiazole carboxylic acid amides.WO2000015622 2000.

    (8) Dahmen, P.; Wachendorff-Neumann, U.; Pontzen, R.; Abmann, L.; Sawada, H.Fungicidal active substance combinations.WO2005009130 2005.

    (9) Dahmen, P.; Wachendorff-Neumann, U.; Pontzen, R.; Abmann, L.; Sawada, H.Active compound combinations.EP 2070413 2009.

    (10) Pilkington, B.L.; Armstrong, S.; Barrens, N.J.; Barnett, S.P.; Clarke, E.D.; Fraser, T.E.; Hughes, D.J.; Mathews, C.J.; Salmon, R.; Smith, S.C.; Viner, R.; Whittingham, W.G.; Williams, J.; Whittle, A.J.; Mound, W.R.; Urch, C.J.; Crowley, P.J.Isothiazole derivatives and their use as pesticides.EP1686128 2006.

    (11) Watanabe, Y.; Yamszakid, D.; Otsu, Y.; Shibuya, K.Isothiazolylaminocarbonyl derivatives as pesticides.WO2003051123 2003.

    (12) Yoshikawa, Y.; Kawashimah, H.; Tomitanik, K.; Inami, S.; Tomura, N.; Kishi, A.Preparation of isothiazolecarboxylic acid derivatives as agrochemical fungicides.JP08277277 1996.

    (13) Armstrony, S.; Barnes, N.J.; Barnett, S.P.; Clarke, E.D.; Crowley, P.J.; Fraser, T.E.M.; Hughes, D.J.; Mathews, C.J.; Salmom, R.; Smith, S.C.; Viner, R.; Whittingham, W.G.; Williams, J.; Whittle, A.J.; Mound, W.R.; Urch, C.J.Isothiazole derivatives and their use as pesticides.WO2001055140 2001.

    (14) Gerritz, S.W.; Zhai, W.X.; Shi, S.H.; Zhu, S.R.; Toyn, J.H.; Meredith, J.E.; Iben, L.G.; Burton, C.R.; Albright, C.F.; Good, A.C.; Tebben, A.J.; Muckelbauer, J.K.; Camac, D.M.; Metzler, W.; Cook, L.S.; Padmanabha, R.; Lentz, K.A.; Sofia, M.J.; Poss, M.A.; Macor, J.E.; Thompson, L.A.Acyl guanidine inhibitors of β-secretase (BACE-1): optimization of a micromolar hit to a nanomolar lead via iterative solid- and solution-phase library synthesis.J.Med.Chem.2012, 55, 9208?9223.

    (15) Sharma, A.; Suhas, R.; Gowda, D.C.Ureas/thioureas of benzo[d]isothiazole analog conjugated glutamic acid: synthesis and biological evaluation.Arch.Pharm.Chem.Life Sci.2013, 346, 359–366.

    (16) Shang, E.C.; Wu, Y.R.; Liu, P.; Liu, Y.; Zhu, W.; Deng, X.B.; He, C.; He, S.; Li, C.; Lai, L.H.Benzo[d]isothiazole 1,1-dioxide derivatives as dual functional inhibitors of 5-lipoxygenase and microsomal prostaglandin E2synthase-1.Bioorg.Med.Chem.Lett.2014, 24, 2764–2767.

    (17) Jeandet, P.; Clément, C.; Courot, E.; Cordelier, S.Modulation of phytoalexin biosynthesis in engineered plants for disease resistance.Int.J.Mol.Sci.2013, 14, 14136–14170.

    (18) Monde, K.; Osawa, S.; Harada, N.; Takasugi, M.; Suchy, M.; Kutschy, P.; Dzurill, M.Synthesis and absolute stereochemisty of a cruciferous phytoalexin, (?)-spirobrassinin.Chem.Lett.2000, 8, 886–887.

    (19) Monde, K.; Taniguchi, T.; Miura, N.; Kutschy, P.; Curillova, Z.; Pilatova, M.; Mojzis, J.Chiral cruciferous phytoalexins: preparation, absolute configuration, and biological activity.Bioorg.Med.Chem.2005, 13, 5206–5212.

    (20) Pedras, M.S.C.; Hossain, M.Metabolism of crucifer phytoalexins in Sclerotinia sclerotiorum: detoxification of strongly antifungal compounds involves glucosylation.Org.Biomol.Chem.2006, 4, 2581–2590.

    (21) Hazra, A.B.; Han, Y.; Chatterjee, A.; Zhang, Y.; Lai, R.Y.; Ealick, S.E.; Begley, T.P.A missing enzyme in thiamin thiazole biosynthesis: identification of tenl as a thiazole tautomerase.J.Am.Chem.Soc.2011, 133, 9311–9319.

    (22) Mori, T.; Sato, J.; Matsunaga, A.Preparation of thiazoline compounds plant pest control agents containing them, and control of plant pest.JP2005330258 2005.

    (23) Sheldrick, G.M.SHELXS-97, Program for Solution of Crystal Structures.University of Gottingen, Germany 1997.

    (24) Sheldrick, G.M.SHELXL-97, Program for Crystal Structure Refinement.University of Gottingen, Germany 1997.

    (25) Fan, Z.J.; Yang, Z.K.; Zhang, H.K.; Mi, N.; Wang, H.; Cai, F.; Zuo, X.; Zheng Q.X.; Song, H.B.Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole-containing 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles.J.Agric.Food Chem.2010, 58, 2630–2636.

    (26) Xu, H.; Zhang, J.L.Natural products-based insecticidal agents 11.Synthesis and insecticidal activity of novel 4α-arylsulfonyloxybenzyloxy-2β-chloropodophyllotoxin derivatives against Mythimna separata walker in vivo.Bioorg.Med.Chem.Lett.2011, 21, 5177-5180.

    (27) Cui, J.; Li, M.L.; Yuan, M.S.Antifeedant activities of tutin and 7-hydroxycoumarin acylation derivatives against mythimna separate.J.Pestic.Sci.2012, 37, 95-98.

    (28) Yan, S.Q.; Appleby, T.; Gunic, E.; Shim, J.H.; Tasu, T.; Kim, H.; Yao, N.H.Isothiazoles as active-site inhibitors of HCV NS5B polymerase.Bioorg.Med.Chem.Lett.2007, 17, 28–33.

    (29) Gong, X.W.; Li, X.; Li, W.L.; Gao, X.; Xu, W.F.; Zhai, H.M.Synthesis and crystal structure of (E)-4-(benzyloxy)-2-(cinnamoyloxy)-N,N,N-trimethyl-4-oxobutan-1-aminium chloride as a double-prodrug.Chin.J.Struct.Chem.2008, 27, 177-182.

    (30) Alberth, L.; Matuesz, B.P.; Simon, J.C.; Gregory, J.R.; Stephen, P.D.; Mark, E.S.; John, V.H.; John, D.W.Models for incomplete nucleophilic attack on a protonated carbonyl group and electron-deficient alkenes: salts and zwitterions from 1-dimethylaminonaphthalene-8-carbaldehyde.Org.Biomol.Chem.2012, 10, 7763–7779.

    (31) Bondi, A.Van der waals volumes and radii.J.phys.Chem.1964, 68, 441–451.

    10.14102/j.cnki.0254-5861.2011-0598

    8 December 2014; accepted 31 March 2015 (CCDC 1028315)

    ① This study was funded in part by the Tianjin Natural Science Foundation (No.14JCYBJC20400), the "111" Project of Ministry of Education of China (No.B06005) and NFFTBS (No.J1103306)

    ② Corresponding author.Fan Zhi-Jin, born in 1968, professor.E-mail: fanzj@nankai.edu.cn

    精品99又大又爽又粗少妇毛片| 一级黄片播放器| 狠狠狠狠99中文字幕| 97在线视频观看| or卡值多少钱| 久久久久网色| 男女那种视频在线观看| 永久网站在线| 国产精品人妻久久久影院| 毛片一级片免费看久久久久| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜添av毛片| 国产av码专区亚洲av| 国产不卡一卡二| 日本免费a在线| 一级黄片播放器| 国产伦精品一区二区三区四那| 精品不卡国产一区二区三区| 国产私拍福利视频在线观看| 亚洲最大成人手机在线| 在线播放国产精品三级| 你懂的网址亚洲精品在线观看 | 亚洲精品一区蜜桃| 美女脱内裤让男人舔精品视频| 亚洲成人中文字幕在线播放| 日本免费a在线| 建设人人有责人人尽责人人享有的 | 亚洲av不卡在线观看| 尾随美女入室| 免费看a级黄色片| 丰满乱子伦码专区| 桃色一区二区三区在线观看| 国产高清三级在线| 国产精品99久久久久久久久| 日韩欧美精品v在线| 舔av片在线| 国产人妻一区二区三区在| 国产日韩欧美在线精品| 日本-黄色视频高清免费观看| 亚洲av男天堂| 国产老妇伦熟女老妇高清| 乱码一卡2卡4卡精品| 国语自产精品视频在线第100页| 亚洲精品,欧美精品| 男女国产视频网站| 亚洲精品456在线播放app| 97超碰精品成人国产| 日韩av不卡免费在线播放| 亚洲内射少妇av| 一本一本综合久久| 久久精品熟女亚洲av麻豆精品 | 午夜福利在线在线| 精品免费久久久久久久清纯| 日本三级黄在线观看| 三级经典国产精品| 免费不卡的大黄色大毛片视频在线观看 | 免费观看的影片在线观看| 国产乱人偷精品视频| 亚洲色图av天堂| 日韩精品有码人妻一区| 69av精品久久久久久| 久99久视频精品免费| 欧美色视频一区免费| 欧美成人a在线观看| 一个人观看的视频www高清免费观看| 国语对白做爰xxxⅹ性视频网站| 水蜜桃什么品种好| 欧美3d第一页| 天堂影院成人在线观看| 美女被艹到高潮喷水动态| av在线亚洲专区| 久久久久久久久久久免费av| 国产爱豆传媒在线观看| 哪个播放器可以免费观看大片| 美女国产视频在线观看| 少妇的逼好多水| 深爱激情五月婷婷| 一区二区三区乱码不卡18| 国产亚洲一区二区精品| 丝袜喷水一区| 少妇高潮的动态图| 国产免费一级a男人的天堂| 色吧在线观看| 欧美成人a在线观看| 亚洲精品456在线播放app| 国产精品不卡视频一区二区| 亚洲av日韩在线播放| 婷婷色综合大香蕉| 超碰av人人做人人爽久久| 日韩亚洲欧美综合| 在线播放国产精品三级| 日本av手机在线免费观看| 99久久精品国产国产毛片| 女人被狂操c到高潮| 久久久a久久爽久久v久久| 伦精品一区二区三区| 三级国产精品欧美在线观看| 国产精品福利在线免费观看| 亚州av有码| 69av精品久久久久久| 能在线免费观看的黄片| 老师上课跳d突然被开到最大视频| 午夜精品一区二区三区免费看| 国产精品乱码一区二三区的特点| 人体艺术视频欧美日本| 一区二区三区高清视频在线| 亚洲欧美成人综合另类久久久 | 亚洲va在线va天堂va国产| 狂野欧美白嫩少妇大欣赏| 色视频www国产| 久久精品国产亚洲av天美| 天堂av国产一区二区熟女人妻| 欧美不卡视频在线免费观看| 人妻夜夜爽99麻豆av| 深夜a级毛片| 国产男人的电影天堂91| 国产黄色小视频在线观看| 午夜精品在线福利| 一级av片app| 成人午夜精彩视频在线观看| av天堂中文字幕网| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的 | 亚洲乱码一区二区免费版| 狠狠狠狠99中文字幕| 18禁动态无遮挡网站| 99久久精品一区二区三区| 熟女电影av网| 成人国产麻豆网| 久久久精品94久久精品| 久久精品久久久久久久性| 岛国毛片在线播放| 国产成人精品婷婷| 桃色一区二区三区在线观看| 精品国内亚洲2022精品成人| 少妇高潮的动态图| 身体一侧抽搐| 九九久久精品国产亚洲av麻豆| 日本猛色少妇xxxxx猛交久久| 一边摸一边抽搐一进一小说| 久久久久久久国产电影| 不卡视频在线观看欧美| 午夜a级毛片| 成人午夜高清在线视频| 日韩一区二区三区影片| 久久久欧美国产精品| 永久网站在线| 国产极品天堂在线| 日日撸夜夜添| 免费在线观看成人毛片| 国产av一区在线观看免费| 91精品一卡2卡3卡4卡| 日本免费在线观看一区| 日韩欧美精品v在线| 色哟哟·www| 国产免费视频播放在线视频 | 女人被狂操c到高潮| 日韩视频在线欧美| 亚洲精品aⅴ在线观看| 亚洲综合色惰| 69人妻影院| 国产91av在线免费观看| 久久久久久九九精品二区国产| 免费看美女性在线毛片视频| 高清在线视频一区二区三区 | 亚洲五月天丁香| 国产成人精品一,二区| 只有这里有精品99| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 日韩精品有码人妻一区| 中文乱码字字幕精品一区二区三区 | 亚洲欧美日韩东京热| www.色视频.com| av女优亚洲男人天堂| 内射极品少妇av片p| 欧美日韩精品成人综合77777| 乱人视频在线观看| 亚洲欧美日韩卡通动漫| 女人十人毛片免费观看3o分钟| 99在线视频只有这里精品首页| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 在现免费观看毛片| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看 | 大话2 男鬼变身卡| 91精品伊人久久大香线蕉| 免费观看精品视频网站| 热99在线观看视频| 国产精品国产三级国产专区5o | 国产麻豆成人av免费视频| 免费看光身美女| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 国产精品一区二区性色av| 日本免费a在线| 男女那种视频在线观看| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 欧美日韩综合久久久久久| 国产精品日韩av在线免费观看| 中文字幕制服av| 永久网站在线| 精品久久久久久久末码| 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 国产精品伦人一区二区| 亚洲欧美精品自产自拍| 男女视频在线观看网站免费| 欧美日本视频| 欧美精品国产亚洲| av黄色大香蕉| 久久国产乱子免费精品| 乱系列少妇在线播放| 欧美不卡视频在线免费观看| 最近视频中文字幕2019在线8| 久久精品国产亚洲av天美| 男人舔奶头视频| 成人无遮挡网站| 中文资源天堂在线| 精品午夜福利在线看| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 国产精华一区二区三区| 网址你懂的国产日韩在线| 国产成人精品婷婷| 能在线免费观看的黄片| 久久这里有精品视频免费| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 国产精品电影一区二区三区| 国产毛片a区久久久久| 热99在线观看视频| 69人妻影院| 欧美极品一区二区三区四区| 国产免费男女视频| 一区二区三区高清视频在线| 高清av免费在线| 午夜激情福利司机影院| 啦啦啦观看免费观看视频高清| 国产精品1区2区在线观看.| 亚洲成人精品中文字幕电影| 淫秽高清视频在线观看| 在现免费观看毛片| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 亚洲av男天堂| 国产精品久久视频播放| 精品久久久久久成人av| 国产成人freesex在线| 汤姆久久久久久久影院中文字幕 | 最新中文字幕久久久久| 简卡轻食公司| 亚洲国产高清在线一区二区三| 国产黄片视频在线免费观看| 久久亚洲国产成人精品v| 97超视频在线观看视频| 亚洲av不卡在线观看| 日韩av在线免费看完整版不卡| 最后的刺客免费高清国语| 欧美人与善性xxx| 亚洲内射少妇av| 久久精品国产鲁丝片午夜精品| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 国产白丝娇喘喷水9色精品| 噜噜噜噜噜久久久久久91| videos熟女内射| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 欧美一区二区精品小视频在线| 丰满少妇做爰视频| 三级经典国产精品| 日日摸夜夜添夜夜爱| 亚洲成av人片在线播放无| 亚洲av成人av| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 美女高潮的动态| 国产爱豆传媒在线观看| 亚洲国产精品成人久久小说| 亚洲中文字幕一区二区三区有码在线看| 69av精品久久久久久| 中国美白少妇内射xxxbb| 床上黄色一级片| 国产 一区 欧美 日韩| 亚洲精品成人久久久久久| 免费黄色在线免费观看| 久久精品人妻少妇| 精品欧美国产一区二区三| 三级经典国产精品| 久久精品久久精品一区二区三区| 熟妇人妻久久中文字幕3abv| 免费观看人在逋| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 成人高潮视频无遮挡免费网站| 国产高清国产精品国产三级 | 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 最新中文字幕久久久久| 欧美另类亚洲清纯唯美| 精品久久久久久久久亚洲| 青春草国产在线视频| 我的老师免费观看完整版| 一区二区三区乱码不卡18| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 伊人久久精品亚洲午夜| 最近视频中文字幕2019在线8| 大又大粗又爽又黄少妇毛片口| 亚洲av男天堂| 乱码一卡2卡4卡精品| 久久这里只有精品中国| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 三级国产精品片| 国产高潮美女av| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 国产精品不卡视频一区二区| 成人漫画全彩无遮挡| 人人妻人人看人人澡| 又粗又硬又长又爽又黄的视频| 国产 一区 欧美 日韩| 亚洲怡红院男人天堂| 亚洲av不卡在线观看| 国产一区二区三区av在线| 午夜激情欧美在线| 国产精品国产三级专区第一集| 99在线视频只有这里精品首页| av天堂中文字幕网| 中文字幕熟女人妻在线| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| 村上凉子中文字幕在线| 久久99热6这里只有精品| 婷婷色麻豆天堂久久 | www日本黄色视频网| 桃色一区二区三区在线观看| 日韩欧美精品v在线| 成年免费大片在线观看| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 国产在视频线在精品| 亚洲欧美成人综合另类久久久 | 长腿黑丝高跟| 99热精品在线国产| 国产精品三级大全| 天堂av国产一区二区熟女人妻| 99在线人妻在线中文字幕| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 亚洲精华国产精华液的使用体验| 狂野欧美激情性xxxx在线观看| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区 | 亚洲欧美中文字幕日韩二区| 国产乱人视频| 国产中年淑女户外野战色| 亚洲精品自拍成人| 青春草国产在线视频| 久久99精品国语久久久| 麻豆av噜噜一区二区三区| 国产精品福利在线免费观看| 如何舔出高潮| 在线观看一区二区三区| 高清在线视频一区二区三区 | 亚洲av不卡在线观看| 五月伊人婷婷丁香| 日本三级黄在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 久久国产乱子免费精品| 老司机福利观看| 久久精品国产自在天天线| 亚洲人成网站在线播| 免费播放大片免费观看视频在线观看 | 国产免费男女视频| 少妇猛男粗大的猛烈进出视频 | 国产午夜精品论理片| 一级毛片久久久久久久久女| 国产成人freesex在线| 一区二区三区四区激情视频| av福利片在线观看| 亚洲最大成人手机在线| 久久久亚洲精品成人影院| 水蜜桃什么品种好| 男人舔奶头视频| 人妻系列 视频| av播播在线观看一区| 久久久国产成人精品二区| 哪个播放器可以免费观看大片| 中文字幕制服av| 草草在线视频免费看| 级片在线观看| АⅤ资源中文在线天堂| kizo精华| 亚洲av熟女| 99久久九九国产精品国产免费| 日韩成人av中文字幕在线观看| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 天堂中文最新版在线下载 | 国产黄a三级三级三级人| 久久这里有精品视频免费| 国产亚洲最大av| 日韩在线高清观看一区二区三区| 69人妻影院| 国产黄片美女视频| 免费观看的影片在线观看| 永久免费av网站大全| 午夜激情欧美在线| 哪个播放器可以免费观看大片| 久久久久久久国产电影| 国产精品,欧美在线| 亚洲三级黄色毛片| 亚洲最大成人av| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| 少妇高潮的动态图| 99久久精品国产国产毛片| 一区二区三区高清视频在线| 青春草国产在线视频| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 人人妻人人看人人澡| 亚洲av一区综合| 九草在线视频观看| 免费观看的影片在线观看| 成人毛片a级毛片在线播放| 麻豆乱淫一区二区| 最新中文字幕久久久久| 十八禁国产超污无遮挡网站| 精品久久国产蜜桃| 亚洲在久久综合| 性插视频无遮挡在线免费观看| 夜夜看夜夜爽夜夜摸| 深爱激情五月婷婷| 九九爱精品视频在线观看| 日日撸夜夜添| 99久久精品一区二区三区| 国产精品精品国产色婷婷| 亚洲最大成人中文| 日本一二三区视频观看| 久久欧美精品欧美久久欧美| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av.av天堂| 啦啦啦韩国在线观看视频| 中国国产av一级| 精品酒店卫生间| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 国产一级毛片在线| www.色视频.com| 又黄又爽又刺激的免费视频.| 床上黄色一级片| 久久久久免费精品人妻一区二区| 亚洲婷婷狠狠爱综合网| 我的老师免费观看完整版| 国产精品国产三级国产专区5o | 亚洲人成网站高清观看| 中文字幕熟女人妻在线| h日本视频在线播放| 亚洲四区av| 日韩,欧美,国产一区二区三区 | 久久人妻av系列| 精品久久久久久电影网 | 日本wwww免费看| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 亚洲国产精品成人久久小说| 欧美一区二区精品小视频在线| 精品人妻熟女av久视频| 日韩av不卡免费在线播放| 三级毛片av免费| 午夜日本视频在线| 久久精品国产亚洲网站| 蜜臀久久99精品久久宅男| 国产亚洲一区二区精品| 久久99热这里只有精品18| 天堂网av新在线| 18禁在线播放成人免费| 国产老妇女一区| 国产麻豆成人av免费视频| eeuss影院久久| 一级爰片在线观看| 99九九线精品视频在线观看视频| 一个人看的www免费观看视频| 久久久久网色| 精华霜和精华液先用哪个| 国产高清三级在线| av在线天堂中文字幕| 亚洲色图av天堂| 国产片特级美女逼逼视频| 深夜a级毛片| 观看免费一级毛片| 欧美性感艳星| 你懂的网址亚洲精品在线观看 | 日韩制服骚丝袜av| 赤兔流量卡办理| 国产免费视频播放在线视频 | 高清日韩中文字幕在线| 国产又黄又爽又无遮挡在线| 国产私拍福利视频在线观看| 天堂影院成人在线观看| 国产伦精品一区二区三区视频9| 亚洲国产精品国产精品| 亚洲国产精品专区欧美| 欧美高清性xxxxhd video| av国产免费在线观看| 99热这里只有是精品在线观看| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 久久热精品热| 嘟嘟电影网在线观看| 五月玫瑰六月丁香| 麻豆成人av视频| 日韩欧美精品免费久久| 亚洲真实伦在线观看| 国产久久久一区二区三区| 九色成人免费人妻av| 九草在线视频观看| 午夜爱爱视频在线播放| 久久亚洲精品不卡| 秋霞伦理黄片| av卡一久久| 91午夜精品亚洲一区二区三区| 18禁动态无遮挡网站| 国产黄a三级三级三级人| 大香蕉久久网| 亚洲人与动物交配视频| 菩萨蛮人人尽说江南好唐韦庄 | 免费电影在线观看免费观看| 国产精品不卡视频一区二区| 最近手机中文字幕大全| 亚洲欧美日韩无卡精品| 夜夜爽夜夜爽视频| 69av精品久久久久久| 22中文网久久字幕| 色尼玛亚洲综合影院| 噜噜噜噜噜久久久久久91| 精品不卡国产一区二区三区| 色视频www国产| 国产欧美另类精品又又久久亚洲欧美| 两性午夜刺激爽爽歪歪视频在线观看| 大香蕉97超碰在线| 五月伊人婷婷丁香| 99久久精品一区二区三区| 六月丁香七月| av在线观看视频网站免费| 国产色爽女视频免费观看| 日韩成人av中文字幕在线观看| 亚洲av日韩在线播放| 女的被弄到高潮叫床怎么办| 久久久久久国产a免费观看| av天堂中文字幕网| 久久精品久久久久久久性| 国产精品一区二区三区四区久久| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 亚洲欧美成人综合另类久久久 | 天天躁日日操中文字幕| 2022亚洲国产成人精品| 男女那种视频在线观看| 日日干狠狠操夜夜爽| 22中文网久久字幕| 又爽又黄a免费视频| 一级毛片久久久久久久久女| 成人毛片60女人毛片免费| 18禁动态无遮挡网站| 久久精品综合一区二区三区| 在线a可以看的网站| 干丝袜人妻中文字幕| АⅤ资源中文在线天堂| 亚洲成色77777| 国产视频内射| 亚洲av成人av| 一个人看的www免费观看视频| 三级国产精品片| 亚洲熟妇中文字幕五十中出| 岛国毛片在线播放| 少妇熟女欧美另类| av又黄又爽大尺度在线免费看 | 午夜亚洲福利在线播放| 永久免费av网站大全| 色尼玛亚洲综合影院| 亚洲av一区综合| 欧美一区二区精品小视频在线| 国产在线一区二区三区精 | a级一级毛片免费在线观看| 成人无遮挡网站| 免费观看a级毛片全部| 赤兔流量卡办理| 春色校园在线视频观看| 色噜噜av男人的天堂激情| kizo精华| 国产老妇伦熟女老妇高清| 九九久久精品国产亚洲av麻豆| 国产伦一二天堂av在线观看| 成人性生交大片免费视频hd| 免费av毛片视频| 久久鲁丝午夜福利片| 非洲黑人性xxxx精品又粗又长| 国产欧美另类精品又又久久亚洲欧美| 国产精品.久久久| 日本黄色片子视频| 国产国拍精品亚洲av在线观看| 人人妻人人澡人人爽人人夜夜 |