• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure and Quantum Mechanical Calculations of Methyl 2-(5-((Quinolin-8-yloxy)-methyl)-1,3,4-oxadiazol-2-ylthio)-acetate

    2015-07-18 11:14:50AAMERSAEEDFOUZIAPERVEENNAEEMABBASSIDRAJAMALULRICHFLRKEcDeprtmentofChemistryQuidAzmUniversityIslmd45320PkistnReserchCenterforModelingndSimultionsNtionlUniversity
    結(jié)構(gòu)化學(xué) 2015年6期

    AAMER SAEEDFOUZIA PERVEENNAEEM ABBASSIDRA JAMALULRICH FL?RKEc(Deprtment of Chemistry, Quid-I-Azm University, Islmd 45320, Pkistn)(Reserch Center for Modeling nd Simultions, Ntionl University

    of Sciences and Technology, H-12 Campus, Islamabad, Pakistan)c(Department Chemie, Fakult?t fur Naturwissenschaften, Universit?t Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany)

    Synthesis, Structure and Quantum Mechanical Calculations of Methyl 2-(5-((Quinolin-8-yloxy)-methyl)-1,3,4-oxadiazol-2-ylthio)-acetate

    AAMER SAEEDa①FOUZIA PERVEENbNAEEM ABBASaSIDRA JAMALaULRICH FL?RKEca(Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan)b(Research Center for Modeling and Simulations, National University

    of Sciences and Technology, H-12 Campus, Islamabad, Pakistan)c(Department Chemie, Fakult?t fur Naturwissenschaften, Universit?t Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany)

    The title compound was synthesized by the base catalyzed reaction of 5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)-thione with methyl chloroacetate.The structure was supported by the spectroscopic data and unambiguously confirmed by single-crystal X-ray diffraction studies.It crystallizes from a methanol solution in the triclinic space group P1 with unit cell dimensions a = 7.4509(9), b = 10.2389(12), c = 12.2299(15) ?, α = 74.771(2), β = 77.956(2), γ = 69.263(2)°, V = 834.98(17) ?3 and Z = 2.In order to gain some valuable insights into the molecular structure, the quantum mechanical calculations were performed using both HF and time-dependent density functional theory at the B3LYP/6-31G(d,p) level.The molecular geometry from X-ray determination of the title compound in the ground state has been compared using the Hartree-Fock (HF) and density functional theory (DFT) with the 6-31G(d) basis set.The calculated results show that the DFT and HF can well reproduce the structure of the title compound.The energetic behavior of the title compound was examined using the B3LYP method with the 6-31G(d) basis set.The harmonic vibrational frequencies calculated have been compared with the experimental FTIR and FT-Raman spectra.The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the13C and1H NMR chemical shifts of the title compound.Moreover, molecular electrostatic potential and thermodynamic parameters of the title compound were investigated by theoretical calculations.

    methyl 2-(5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetate, crystal structure, conformer, quantum chemical calculations, vibrational studies;

    1 INTRODUCTION

    1,3,4-Oxadiazol-2H-thiones are amongst the most important scaffolds in medicinal chemistry and versatile intermediates in organic synthesis.1,3,4-Oxadiazoles exhibit a range of biological activities like antitumor, anti-inflammatory, hypoglycemic, antifungal, and antibacterial activities[1,2].Sub-stituted 1,3,4-oxadiazol-2-thioesters are widely used for the treatment of pain and inflammation, particularly arthritis and also active components of nonsteroidal anti-inflammatory drugs[3,4].These are the common intermediates in different biosynthetic reactions and play an important role in the tagging of protein.Compounds containing 1,3,4-oxadiazol ring and thioester could provide antitumor activity and adhesive ability[5].The title compound was prepared to synthesize as a precursor towards a diversity of quinoline linked heterocylic systems for biological and theoretical studies.

    By means of increasing the development of computational chemistry in the past decade, the research on theoretical modeling of drug design, functional material design, etc., has become much more mature than ever.Many important chemical and physical properties of biological and chemical systems can be predicted from the first principles by various computational techniques[6,7].

    In recent years, density functional theory (DFT) has been a shooting star in theoretical modeling.The development of better and better exchange-correlation functionals made it possible to calculate many molecular properties with comparable accuracies to the traditionally correlated ab initio methods, with more favorable computational costs.The literature survey revealed that the DFT has a greater accuracy in reproducing the experimental values of geometry, dipole moment and vibrational frequency[8-12].

    In this paper, we report the synthesis, characterization and crystal structure of the compound methyl 2-(5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetate as well as the theoretical studies on it by using the HF/6-31G(d) and DFT/B3LYP/6-31G(d) methods.The properties of structural geometry, molecular electrostatic potential (MEP) and thermodynamic properties, nonlinear optical properties of the title compound at the B3LYP/6-31G(d) level were studied.These calculations are valuable for providing insight into the molecular properties of the title compound.The aim of the present work was to study the one electron properties of thiones using DFT methods.

    2 EXPERIMENTAL

    Synthesis and characterization

    The melting points were recorded using a digital Gallenkamp (SANYO) model MPD.BM 3.5 apparatus1H and13C NMR spectra were recorded in CDCl3at 300 and 75 MHz respectively with a Bruker 300 MHz spectrophotometer.FTIR spectra were recorded on an IR Shimadzu 460 spectrophotometer as KBr pellets and elemental analyses were conducted using a LECO-183 CHNS analyzer.

    2.1 Synthesis of methyl 2-(quinolin-8-yloxy)acetate (2)

    Methyl chloroacetate (2.17 mL, 20 mmol) was added dropwise during 5 min.To a solution of 8-hydroxyquinoline (1, 3 g, 20 mmol) in 15 mL of DMF, the reaction mixture was heated for 12 h.The reaction mixture was poured into ice cold water and precipitates obtained were recrystallized from ethanol (yield 86%, m.p: 70~73 ℃).

    2.2 Synthesis of 2-(quinolin-8-yloxy)acetohydrazide (3)

    Hydrazine hydrazide (1.2 mL, 40 mmol) was added dropwise in an ethanolic solution of methyl 2-(quinolin-8-yloxy)acetate (2, 4.5 g, 20 mmol) and the reaction mixture was refluxed for 24 h.The progress of the reaction was monitored by TLC.Upon completion of the reaction, the solvent was evaporated and the precipitate was recrystallized from ethanol (yield 89%, m.p: 138~140 ℃).

    2.3 Synthesis of 5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)-thione (4)

    2-(Quinolin-8-yloxy)acetohydrazide (3, 2.1 g, 10 mmol) was dissolved in ethanol.To this solution KOH (0.5 g, 10 mol) was added on heating and carbon disulfide (18.5 mL, 10 mmol) was added dropwise.The reaction mixture was refluxed for 3 h.On completion, the reaction mixture was poured into water and the pH was adjusted to 6.The solid appeared was filtered and recrystallized from ethanol (yield 86%, m.p: 224 ℃).1H NMR (300MHz, CDCl3δ, ppm): 14.7 (broad, 1H, NH), 8.88~8.90 (dd, 1H, J = 6.6, 3.0Hz, Ar-H), 8.35~8.38 (dd, 1H, J = 8.4, 1.5Hz, Ar-H), 7.52~7.64 (m, 3H, Ar-H), 7.36~38 (m, 1H, Ar-H), 5.47 (s, 2H, CH2)13C NMR (75MHz, CDCl3, δ, ppm) 61.0 (CH2), 111.9, 122.0, 122.5, 127.0, 129.6, 136.5, 139.9, 149.9, 153.2, 160.0, 178.6.

    2.4 Synthesis of methyl 2-(5-((quinolin-8-yloxy)-methyl)-1,3,4-oxadiazol-2-ylthio)acetate (5)

    Anhydrous K2CO3(1.72 g, 10 mmol) was added to a stirred solution of 5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)-thione (3 g, 10 mmol) in 20 mL of DMF.Methyl chloroacetate (2.17 mL, 20 mmol) was added dropwise during 5 min and the reaction mixture was heated for 20 h.The progress of the reaction was monitored by TLC.Upon completion of the reaction, the reaction mixture was poured into ice cold water and the solid obtained was recrystallized from methanol to afford as colorless crystals (yield 89%, m.p: 75 ℃).1H NMR (300 MHz, CDCl3δ, ppm): 8.87~8.88 (m, 1H, Ar-H), 8.34~8.37 (m, 1H, Ar-H), 7.51~7.63 (m, 3H, Ar-H), 7.36~7.38 (m, 1H, Ar-H), 5.61 (s, 2H, OCH2), 4.27 (s, 2H, SCH2), 3.67 (s, 3H, OCH3)13C NMR (75MHz, CDCl3, δ, ppm) 34.0 (OCH3), 53.2 (SCH2), 60.8 (OCH3) 111.8, 121.9, 122.5, 127.0, 129.6, 136.4, 140.1, 149.9, 153.3, 164.3, 164.7, 168.5.

    2.5 X-ray data collection and structure refinement

    Colorless single crystal C15H13N3O4S, 2H2O, Mr= 367.38, size 0.42mm ′ 0.38mm ′ 0.20mm, triclinic, space group P1, a = 7.4509(9), b = 10.2389(12), c = 12.2299(15) ?, α = 74.771(2), β = 77.956(2), γ = 69.263(2)°, Z = 2, ρcalc= 1.461 mg/cm3, μ = 0.232 mm?1and F(000) = 384.Data were collected at 130(2) K on a Bruker[13]AXS SMART APEX CCD diffractometer using MoKα radiation; 7936 reflections collected in the range of 1.74<θ<27.88°.Structure solved by direct methods[14], full-matrix leastsquares refinement[14]on F2 and 241 parameters for 3965 unique intensities.All but H atoms were refined anisotropically, and H atoms from difference Fourier maps were refined on the idealized positions with Uiso= 1.2Ueq(C) or 1.5Ueq(C methyl/O water) and C–H distances of 0.95~0.99 ?, H(water)-positions were refined with DFIX O–H 0.84 and H··H 1.4 ?.H(Cmethyl) were allowed to rotate but not to tip.Selected bond lengths and bond angles are given in Table 1.In general, here are no unexpected geometric parameters.

    Table 1.Selected Bond Lengths (?) and Torsion Angles (°)

    3 RESULTS AND DISCUSSION

    3.1 Synthesis and characterization

    Methyl 2-(5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetate (5) was synthesized in four steps starting from commercial 8-hydroxyquinoline (1) according to the route depicted in Scheme 1.Thus, 5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2(3H)thione (4) was obtained from 1 via corresponding acetate (2) and hydrazide (3) followed by base-catalyzed cyclization using carbon disulphide.Treatment of 4 with methyl cholroacetate in the presence of K2CO3in dry DMF afforded the title ester (5) in excellent yield.

    Formation of ester was indicated in FTIR spectrum by stretchings at 1724 cm-1for C=O, at 1601 cm-1for C=N as well as others at 1160 cm-1for C–O–C.1H-NMR spectrum showed signals at δ7.3~8.8 ppm for aromatic protons, and two 2H singlets δ 5.61 and 4.27 indicated the presence of OCH2and SCH2, and a 3H singlet at δ 3.67 suggested the presence of the ester methyl group.

    Scheme 1 Synthetic route to 2-(5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetate

    3.2 X-ray molecular structure

    The molecular structure of the title compound is depicted in Fig.1; the unit cell with intermolecular H-bonding pattern is shown in Fig.2a.Tables 1 and 2 give selected geometric parameters.The molecule is almost planar with torsion angles O(2)–C(3)–C(2)–N(2) 5.5(2)°, N(1)–C(1)–S(1)–C(13) –5.7(2)°, and O(4)–C(14)–O(3)–C(15) –0.5(2)°.The geometry of the oxadiazole moiety is similar to that of the CSD entries XARGII and XARGOO[15].The enclosed solvent water molecules are part of intermolecular O(water)-H××N(oxadiazole), O(water)-H××N(quinoline) and O(water)–H××O(water) hydrogen bond interactions given in Table 2 and depicted in Fig.2a.π-π interactions (Fig.2b) between oxadiazole and the C6part of quinoline planes result in 2-D stacking of the molecules in sheets with a separation of 3.499(2) ?.

    Table 2.Intermolecular Hydrogen Bonds (? and °)

    Fig.1.Molecular structure of (5).Anisotropic displacement ellipsoids are drawn at the 50% probability level

    Fig.2a.Crystal packing of (5) viewed along the b-axis with intermolecular hydrogen bonding pattern shown as dotted lines.H atoms not involved are omitted

    Fig.2b.Crystal packing appr.viewed along [011].Water molecules and all H-atoms are omitted.Dashed lines indicate the π-π stacking of oxadiazole and quinoline-C6-ring planes

    3.3 Computational investigations

    3.3.1 Molecular geometry

    Optimized structure with electronic charge distribution is shown in Fig.3.The optimized structural parameters of the title compound B3LYP/6-31G (d,p) are listed in Table 3 in accordance with the atom numbering scheme given in Fig.3.As experimental values of some geometric parameters of the title compound are known from X-ray analysis, the theoretically calculated values may supply an insight into the verification of geometric parameters of the compound and also give an idea that how the geometry of the molecule changes from the ab initio method of calculation and the DFT-B3LYP method of calculation.

    A statistical treatment of these data shows that, for the bond length measurement, DFT B3LYP/6-31G(d,p) method is better than the RHF/6-31G(d,p)because interatomic bond lengths and bond angles calculated from the DFT B3LYP method are closer to the values obtained from experimental XRD data.The agreement for bond angles is not as good as that for the bond distances.

    Fig.3.Optimized structure of methyl 2-(5-((quinolin-8-yloxy)methyl)-1,3,4-oxadiazol-2-ylthio)acetate using the DFT/B3LYP functional and the 6-31G(d,p) basis set

    Table 3.Selected Comparison between the Calculated and Experimental Values of Geometrical Parameters of Methyl 2-(5-((Quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2-ylthio)acetate

    3.3.2 Electronic properties

    Qualitative Molecular Orbital theory is a fascinating aspect of organic chemistry that can provide a remarkable insight into the workings of organic reactions based on how orbitals interact to control the outcome of reactions.The energies of the important molecular orbitals of the compound, the lowest unoccupied molecular orbitals (LUMO) and the highest occupied molecular orbitals (HOMO) were calculated and are provided in Figs.4 and 5,respectively.It is interesting to see that both orbitals are substantially distributed over the conjugation plane.

    Fig.4.HOMO’s for methyl 2-(5-((quinolin-8-yloxy) methyl)-1,3,4-oxadiazol-2-ylthio) acetate ELUMO= 0.011 eV

    Fig.5.LUMO’s for methyl 2-(5-((quinolin-8-yloxy) methyl)-1,3,4-oxadiazol-2-ylthio) acetate EHOMO= –0.090 eV

    ELUMOis proportional to reduction potential or the electron affinity and EHOMOto oxidation or the ionization potential of the compound.The HOMO and LUMO values for methyl 2-(5-((quinolin-8-yloxy) methyl)-1,3,4-oxadiazol-2-ylthio) acetate were found to be –0.090 and 0.011 eV, respectively with the band gap of 0.079.The lower values in the HOMO and LUMO energy gaps explain the eventual charge transfer interaction taking place within the molecule.

    HOMO and LUMO were obtained in order to determine which part of the compound is involved in oxidation or reduction respectively from their delocalization behavior.The band gap measures the extent of excitation of the frontier orbitals and is directly proportional to the reactivity.Orbital shapes of HOMO and LUMO are respectively displayed in Figs.4 and 5.It is clear from Fig.4 that HOMO’s are delocalized on planar aromatic ring, implying that this part may be involved in the reduction process.Fig.5 shows that LUMO’s are delocalized on a five-membered ring including planar aromatic ring and S atom, which may be involved in oxidation process.However, O atoms are not involved in the reduction or oxidation process of methyl 2-(5-((quinolin-8-yloxy) methyl).A consideration of symmetry shows that a molecule can not have a dipole moment if it possesses a center of symmetry.The dipole moment, which is the first derivative of the energy with respect to an applied electric field asa measure of asymmetry in the molecular charge distribution, was found to be 7.3600 Debye which shows that the molecule is asymmetric with C1 point group.Hardness of the molecule calculated from the information of band gap is 0.0395 eV.Chemical Potential was found to be 0.050 eV.

    3.3.3 Natural population analyses

    The calculation of effective atomic charges plays a dominant role in the application of quantum mechanical calculations to molecular systems.Our interest here is in the computation of electron distribution in the title compound as broad as possible.The calculated natural atomic charge values from the natural population analysis (NPA) and Mulliken population analysis (MPA) procedures using the DFT methods are listed in Table 4.According to Reed et al.[16], NPA scheme shows greater numerical stability and better describes the electron distribution in compounds of high ionic character.So, we also concluded that NPA from the NBO method is better than the MPA scheme.Table 4 compares the atomic charge site of the title compound from both MPA and NPA methods.Moreover, we see that C(2) has a positive value in MPA, whereas negative in NPA because the surrounding atoms, O(18), C(1) (negative) will not give a positive value for the C(2) atom.Similarly, C(3) has positive value in MPA whereas negative NPA because the surrounding atoms N(16) and C(4) (negative) will not give a positive value for C(3).These are two of the evidences that NPA is better than MPA.The NPA of the title compound shows that the presence of three nitrogen atoms (N(16) =?0.519, N(24) = ?0.44978, N(26) = 0.22672) imposes large positive charges on the carbon atoms (C(3) = 0.15777, C(12) = 0.21014, C(21) = 0.11151, C(22) = 0.34330).However, the nitrogen atoms N(16), N(24) and N(26) possess large negative charges, resulting in the positive charges on the carbon atoms C(3), C(12), C(21) and C(22).

    Table 4.Natural Atomic Charges and Mullikan Atomic Charges of Methyl 2-(5-((Quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2-ylthio)acetate

    To be continued

    3.3.4 Molecular electrostatic potential

    The MEP is related to the electronic density and is a very useful descriptor in determining the sites for electrophilic and nucleophilic reactions as well as hydrogen bonding interactions[17,18].The electrostatic potential V(r) is also well suited for analyzing processes based on the 'recognition’ of one molecule by another, as in drug-receptor and enzyme-substrate interactions, because it is through their potentials that the two species first “see” each other[19].Being a real physical property, V(r) can be determined experimentally by diffraction or by computational methods[21].To predict reactive sites for electrophilic and nucleophilic attack for the investigated molecule, the MEP at the B3LYP/ 6-31G(d) optimized geometry was calculated.The negative (red and yellow) regions of MEP are related to electrophilic reactivity and the positive (blue) regions to nucleophilic reactivity, as shown in Fig.4.As can be seen from the figures, this molecule has many possible sites for electrophilic attack.Negative regions are mainly localized over the O(18), O(23), S(28), O(33) and O(38) atoms.Also, a negative electrostatic potential region is observed around the C(1), C(2), C(5) and C(6) atoms of the benzene ring.The negative V(r) values are ?9.860 e-2a.u.However, a maximum positive region is localized on C(11), C(12) and N(16) with a value of 9.860 e-2a.u., indicating a possible site for the nucleophilic attack.According to these calculated results, the MEP map shows that the negative potential sites are on electronegative O atoms as well as the positive potential sites are around the carbon and hydrogen atoms.These sites give information about the region from which the compound can have intermolecular interactions.Fig.8 confirms the existence of intermolecular C–H··O and C–H··S interactions.

    3.3.5 Vibrational spectra C-H vibrations

    Harmonic vibrational frequencies of the title compound were calculated using the DFT/B3LYP with the 6-31G(d) basis set.The vibrational band assignments were made using the Gauss-View molecular visualization program.In order to facilitate assignment of the observed peaks, we analyzed the vibrational frequencies.According to theoretical calculations, the title compound has a non-planar structure of C1 point group symmetry.The molecule has 38 atoms and 108 normal modes of vibration active in IR.The IR spectrum of the title compound is shown in Fig.7.The aromatic structure shows the presence of C–H stretching vibrations in the region of 2900~150 cm-1, which is the characteristic region for the identification of C–H stretching vibrations.In this region, the bands are not appreciably affected by the nature of the substituent.The C–H aromatic stretching mode was calculated at 3150 cm-1for B3LYP.

    N-H vibrations

    The infrared spectrum of the title compound is present in Fig.7.In all the heterocyclic compounds, the N–H stretching vibrations occur in the 3,500~3,000 cm-1region[20].Fig.8 shows the high frequency region, where CH and NH stretchingmodes are expected to be observed.However, not all the observed bands are associated with fundamental vibrations, since some overtones and combinations of lower-energy modes originating in anharmonic effects are usually present in this region.Thus, the band placed around 3,260 cm-1may be assigned to the worst overtone of ν(C=O).Some contribution of the bands around 3,236 cm-1may be associated with the only ν(NH) mode expected in the title compound.

    Fig.6.Molecular electrostatic potential map calculated at the B3LYP/6-31G (d) level

    Fig.7.FT-IR spectrum of the title compound calculated from Gaussian 03 package

    Fig.8.NMR spectra of methyl 2-(5-((quinolin-8-yloxy) methyl)-1,3,4-oxadiazol-2-ylthio)acetate calculated from Gaussian 03 package

    C-N vibrations

    The C–N stretching frequency is a very difficult task since it falls in a complicated region of the vibrational spectrum, i.e., mixing of several bands is possible in this region[20].C–N stretching absorption appears in the 1,386~1,266 cm-1region for aromatic amines.The IR bands appearing at 1,298 and 1,272 cm-1have been assigned to the C–N stretching vibration.

    3.3.613C and1H NMR chemical shift assignment

    The13C NMR spectrum theoretically with the aid of the Gaussian software program is shown in Fig.8.

    3.3.7 Thermodynamic properties

    The total energy of a molecule is the sum of translational, rotational, vibrational, and electronic energies, i.e., E = Et + Er + Ev + Ee.Thus, the molecular partition function is the product of translational, rotational, vibrational, and electronic partition functions of the molecule[21].The relations between partition functions and various thermodynamic functions were used to evaluate the latter due to the translational, vibrational, and rotational degrees of the freedom of molecular motions.The statistical thermochemical analysis of the title compound is carried out considering the molecule to be at room temperature of 298.15 K and under atmospheric pressure.In the present analysis using B3LYP, the contributions due to internal rotations are not considered.The free energy of the molecule is calculated including zero-point vibrational energy.The values of zero-point energy of the molecule were 141.17830 kcal/mol by DFT method and 148.14892 kcal/mol by RHF method, respectively.Microscopically, the thermal energy is the kinetic energy of a system's constituent particles, which may be atoms, molecules, electrons, or particles in plasmas.Table 5 summarizes the calculated thermodynamic parameters, namely heat capacity, entropy, rotational constants, and dipole moments of the title compound.Knowledge at the permanent dipole moment of a molecule provides a wealth of information to determine the exact molecular conformation.The total dipole moment of the title compound by DFT-B3LYP is 7.8940 and by HF is 7.3600.

    4 CONCLUSION

    An efficient synthesis of a novel thiourea-biphenyl hybrid compound 1 is described.It is not only a versatile ligand for complexation but also an intermediate towards the synthesis of a range of heterocycles.The structural assignment was supported by spectroscopy, elemental analysis data and the crystallographic studies.

    Table 5.Calculated Thermodynamic Parameters of Methyl 2-(5-((Quinolin-8-yloxy)methyl)-1,3,4-oxadiazole-2-ylthio)acetate

    REFERENCES

    (1) Khan, S.A.; Kumar, P.; Joshi, R.; Iqbal, P.F.; Saleem, K.Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives.Eur.J.Med.Chem.2008, 43, 2029–2034.

    (2) Sahin, G.; Palaska, E.; Ekizoglu, M.; Ozalp, M.Antimycobacterial activity of 5-arylidene aromatic derivatives of hydantoin.Farmaco 2002, 57, 539–547.

    (3) Palomer, A.; Cabre, F.; Espinosa, A.; Campos, J.T.M.A.; Entrena, A.; Gallo, M.A.; García, L.; Mauleón, D.; Espinosa, A.Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models.J.Med.Chem.2002, 45, 1402–1407.

    (4) Sorbera, L.A.; Lesson, P.A.; Castanar, J.; Castanar, R.M.Design, synthesis and evaluation of antiinflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives.Drug Future 2008, 126, 133–137.

    (5) Zhang, L.R.; Liu, Z.J.; Zhang, H.; Sun, J.; Luo, Y.; Zhao, Y.L.; Zhao, T.T.; Gong, H.B.; Zhu, H.L.Synthesis, biological evaluation and molecular docking studies of novel 2-(1,3,4-oxadiazol-2-ylthio)-1-phenylethanone derivatives.Bioorg.Med.Chem.2012, 20, 3615–3618.

    (6) Matulkova, I.; Nemec, I.; Teubner, K.; Nemec, P.; Micka, Z.Novel compounds of 4-amino-1,2,4-triazole with dicarboxylic acids – crystal structures, vibrational spectra and non-linear optical properties.J.Mol.Struct.2008, 873, 46–50.

    (7) Boo, B.H.; Lee, J.K.; Lim, E.C.Novel compounds of 4-amino-1,2,4-triazole with dicarboxylic acids – crystal structures, vibrational spectra and non-linear optical properties.J.Mol.Struct.2008, 892, 110–115.

    (8) Tanak, H.; Er?ahin, F.; K?ysal, Y.; A?ar, E.; I??k, ?.; Yavuz, M.Theoretical modeling and experimental studies on N-n-decyl-2-oxo-5-nitro-1-benzylidene-methylamine.J.Mol.Mod.2009, 15, 1281–1284.

    (9) Kurt, M.; Sertbakan, T.R.; Ozduran, M.An experimental and theoretical study of molecular structure and vibrational spectra of 3- and 4-pyridineboronic acid molecules by density functional theory calculations.Spectrochim.Acta Part A 2008, 70, 664–667.

    (10) Jian, F.F.; Zhao, P.S.; Bai, Z.S.; Zhang, L.Tautomerism, structure in solution and in the solid state of 1:9,5:10-anthradipyrazole.Struct.Chem.2005, 16, 635–640.

    (11) Sun, Y.X.; Hao, Q.L.; Wei, W.X.; Yu, Z.X.; Lu, L.D.; Wang, X.A theoretical study of CH3ONO + H reaction.J.Mol.Struct.Theochem.2009, 904, 74–79.

    (12) Sun, Y.X.; Hao, Q.L.; Yu, Z.X.; Wei, W.X.; Lu, L.D.; Wang, X.Formation and microstructure of carbon encapsulated superparamagnetic Co nanoparticles.Mol.Phys.2009, 107, 223–227.

    (13) Bruker (2002).SMART (Version 5.63), SAINT (Version 6.02).Bruker AXS Inc., Madison, Wisconsin, USA.

    (14) Sheldrick, G.M.A short history of SHELX.Acta Cryst.2008, A64, 112–122.

    (15) Jones, P.G.Private Communication to the Cambridge Structural Database, Deposition Numbers CCDC 2012, 93, 533.

    (16) Reed, A.; Weinstock, R.B.; Weinhold, F.Natural population analysis.J.Chem.Phys.1985, 83, 735–746.

    (17) Scrocco, E.; Tomasi, J.Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials.J.Adv.Quantum.Chem.1978, 11, 115–193.

    (18) Luque, F.J.; Lopez, J.M.; Orozco, M.Perspective on electrostatic solute with a continuum.A direct utilization of ab initio molecular potentials for prevision of solvent effects.Theor.Chem.Acc.2000, 103, 343–345.

    (19) Politzer, P.; Truhlar, D.G.Chemical Applications of Atomic and Molecular Electrostatic Potentials.Plenum: New York 1981.

    (20) Becke, A.D.Density-functional exchange-energy approximation with correct asymptotic behavior.Phys.Rev.A 1988, 38, 3098–3100.

    (21) Lee, C.; Yang, W.; Parr, R.G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.1988, 37, 785–789.

    10.14102/j.cnki.0254-5861.2010-1491

    25 April 2014; accepted 9 April 2015 (CCDC 935330)

    ① Corresponding author.aamersaeed@yahoo.com

    日韩精品免费视频一区二区三区| 伦理电影免费视频| 男女做爰动态图高潮gif福利片| 男女那种视频在线观看| 中文字幕人妻熟女乱码| 免费看美女性在线毛片视频| 日本五十路高清| 老熟妇乱子伦视频在线观看| 成人18禁高潮啪啪吃奶动态图| 国产欧美日韩一区二区精品| 亚洲av电影在线进入| 亚洲国产毛片av蜜桃av| 国产精品1区2区在线观看.| 50天的宝宝边吃奶边哭怎么回事| 97超级碰碰碰精品色视频在线观看| 叶爱在线成人免费视频播放| 国产免费av片在线观看野外av| 曰老女人黄片| 国产在线精品亚洲第一网站| 欧美丝袜亚洲另类 | 亚洲专区国产一区二区| 黄色丝袜av网址大全| 精品无人区乱码1区二区| 一个人观看的视频www高清免费观看 | 美国免费a级毛片| 人人澡人人妻人| 久久伊人香网站| 真人一进一出gif抽搐免费| 久久亚洲真实| www.999成人在线观看| 久久人人精品亚洲av| 在线观看免费视频日本深夜| 国产亚洲精品av在线| 国产精品 欧美亚洲| 国产成人一区二区三区免费视频网站| 久久亚洲真实| 黑丝袜美女国产一区| 国产私拍福利视频在线观看| 久久欧美精品欧美久久欧美| 一级a爱视频在线免费观看| 黄色a级毛片大全视频| 久久精品国产99精品国产亚洲性色| 欧美成人一区二区免费高清观看 | www.精华液| 久99久视频精品免费| 18禁美女被吸乳视频| 久久精品国产亚洲av香蕉五月| 日韩免费av在线播放| 国产精品99久久99久久久不卡| 国产成人精品久久二区二区免费| 亚洲中文日韩欧美视频| 成人国产综合亚洲| 亚洲国产欧美日韩在线播放| 亚洲中文字幕一区二区三区有码在线看 | ponron亚洲| www.自偷自拍.com| 999久久久国产精品视频| 亚洲国产高清在线一区二区三 | 午夜视频精品福利| 岛国在线观看网站| 免费在线观看日本一区| av片东京热男人的天堂| 18美女黄网站色大片免费观看| 成人亚洲精品一区在线观看| 久热这里只有精品99| 成人av一区二区三区在线看| 国产精品乱码一区二三区的特点| 久久伊人香网站| tocl精华| 18美女黄网站色大片免费观看| 性色av乱码一区二区三区2| 国产精品日韩av在线免费观看| 免费av毛片视频| 91成人精品电影| 久久久久久九九精品二区国产 | 亚洲av成人一区二区三| 午夜久久久久精精品| 十分钟在线观看高清视频www| 欧美日韩福利视频一区二区| 日本免费a在线| 亚洲美女黄片视频| 久久久久久人人人人人| 亚洲电影在线观看av| 欧美又色又爽又黄视频| 亚洲全国av大片| 色婷婷久久久亚洲欧美| 午夜日韩欧美国产| 成人精品一区二区免费| 人妻丰满熟妇av一区二区三区| 日日夜夜操网爽| 麻豆一二三区av精品| 在线国产一区二区在线| 在线观看舔阴道视频| 精品久久久久久久人妻蜜臀av| 一级毛片女人18水好多| xxx96com| 久久午夜综合久久蜜桃| e午夜精品久久久久久久| 精品欧美国产一区二区三| 欧美乱妇无乱码| 久9热在线精品视频| 免费在线观看黄色视频的| 可以在线观看的亚洲视频| 一区二区三区精品91| 免费搜索国产男女视频| 日韩高清综合在线| 一边摸一边抽搐一进一小说| 午夜福利在线观看吧| 国产黄色小视频在线观看| 久久久久久大精品| 日韩三级视频一区二区三区| 一区福利在线观看| 巨乳人妻的诱惑在线观看| 精品人妻1区二区| 国产爱豆传媒在线观看 | 9191精品国产免费久久| 在线国产一区二区在线| 免费观看精品视频网站| 午夜久久久久精精品| 最近最新中文字幕大全免费视频| 精品一区二区三区四区五区乱码| 色精品久久人妻99蜜桃| 久久精品国产亚洲av高清一级| 天天添夜夜摸| 视频区欧美日本亚洲| 国产欧美日韩精品亚洲av| 波多野结衣高清作品| 亚洲熟妇中文字幕五十中出| 91麻豆精品激情在线观看国产| 一区福利在线观看| 国产av一区二区精品久久| 一a级毛片在线观看| 欧美av亚洲av综合av国产av| 日韩精品青青久久久久久| 日韩欧美国产一区二区入口| 老熟妇仑乱视频hdxx| 亚洲一区二区三区色噜噜| 亚洲电影在线观看av| 亚洲中文字幕日韩| 久久久久久免费高清国产稀缺| 久久香蕉精品热| 在线观看免费视频日本深夜| 精品少妇一区二区三区视频日本电影| 美女国产高潮福利片在线看| 757午夜福利合集在线观看| 欧美日韩瑟瑟在线播放| 亚洲天堂国产精品一区在线| 中出人妻视频一区二区| 精品一区二区三区四区五区乱码| 老司机午夜十八禁免费视频| 久久热在线av| 国产亚洲精品av在线| 国产激情欧美一区二区| 日韩大尺度精品在线看网址| 国产成人av激情在线播放| 黄片播放在线免费| 看免费av毛片| 啦啦啦韩国在线观看视频| 看免费av毛片| 99国产精品99久久久久| 国产1区2区3区精品| 中文字幕av电影在线播放| 成人欧美大片| 热re99久久国产66热| 中文字幕高清在线视频| 国产亚洲精品综合一区在线观看 | 国产日本99.免费观看| 夜夜夜夜夜久久久久| 在线av久久热| 老司机福利观看| 99热这里只有精品一区 | 国产成人影院久久av| 母亲3免费完整高清在线观看| 大香蕉久久成人网| 久99久视频精品免费| 亚洲欧美激情综合另类| 精品无人区乱码1区二区| 成年女人毛片免费观看观看9| svipshipincom国产片| 男女那种视频在线观看| 国产激情欧美一区二区| 在线观看舔阴道视频| 亚洲专区国产一区二区| 妹子高潮喷水视频| 日韩欧美 国产精品| 自线自在国产av| 精品久久久久久,| 精华霜和精华液先用哪个| 一区二区日韩欧美中文字幕| 国产精品二区激情视频| 成人亚洲精品一区在线观看| 狠狠狠狠99中文字幕| 亚洲国产欧美一区二区综合| 欧美乱妇无乱码| 中文字幕精品亚洲无线码一区 | 免费观看精品视频网站| 日日夜夜操网爽| 亚洲av片天天在线观看| 搡老岳熟女国产| 国产一卡二卡三卡精品| 黑丝袜美女国产一区| 1024视频免费在线观看| 日韩有码中文字幕| 欧美黄色淫秽网站| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 真人做人爱边吃奶动态| 欧美性长视频在线观看| 亚洲国产高清在线一区二区三 | 国产黄a三级三级三级人| 久久人妻福利社区极品人妻图片| 欧美zozozo另类| 真人一进一出gif抽搐免费| 99久久精品国产亚洲精品| 国产成人啪精品午夜网站| 两个人看的免费小视频| 91在线观看av| 亚洲欧美精品综合一区二区三区| 12—13女人毛片做爰片一| 婷婷精品国产亚洲av在线| 男女下面进入的视频免费午夜 | 欧美激情高清一区二区三区| 免费观看人在逋| 久久久久国内视频| 欧美日韩一级在线毛片| 国产单亲对白刺激| 国产aⅴ精品一区二区三区波| 免费在线观看日本一区| 超碰成人久久| 黑人巨大精品欧美一区二区mp4| 韩国精品一区二区三区| 啦啦啦免费观看视频1| 亚洲第一青青草原| 俄罗斯特黄特色一大片| 99riav亚洲国产免费| 女性生殖器流出的白浆| 女生性感内裤真人,穿戴方法视频| 国产伦人伦偷精品视频| 精品欧美国产一区二区三| 美女扒开内裤让男人捅视频| 日韩国内少妇激情av| 午夜视频精品福利| 欧美激情 高清一区二区三区| 亚洲九九香蕉| 午夜精品在线福利| xxxwww97欧美| 我的亚洲天堂| 国语自产精品视频在线第100页| 91字幕亚洲| 草草在线视频免费看| 琪琪午夜伦伦电影理论片6080| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 老熟妇乱子伦视频在线观看| 国内少妇人妻偷人精品xxx网站 | 久99久视频精品免费| 亚洲av电影不卡..在线观看| 成人精品一区二区免费| 亚洲欧美精品综合一区二区三区| 国产男靠女视频免费网站| 男女床上黄色一级片免费看| а√天堂www在线а√下载| 99在线视频只有这里精品首页| 亚洲avbb在线观看| 欧美日本视频| 成人特级黄色片久久久久久久| 男女午夜视频在线观看| 美女高潮喷水抽搐中文字幕| 精品国产乱码久久久久久男人| 成年人黄色毛片网站| 亚洲avbb在线观看| 搡老熟女国产l中国老女人| 精品国产超薄肉色丝袜足j| 一a级毛片在线观看| 亚洲人成77777在线视频| a在线观看视频网站| 老司机福利观看| 久久久久免费精品人妻一区二区 | 日韩精品免费视频一区二区三区| 嫩草影院精品99| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 欧美一区二区精品小视频在线| 久热这里只有精品99| 91成年电影在线观看| 麻豆av在线久日| 中出人妻视频一区二区| 校园春色视频在线观看| netflix在线观看网站| 老汉色∧v一级毛片| 精品国产美女av久久久久小说| 黄频高清免费视频| 欧美日韩一级在线毛片| 欧美大码av| 欧美精品啪啪一区二区三区| 亚洲一区二区三区色噜噜| 男女做爰动态图高潮gif福利片| 香蕉丝袜av| 国产欧美日韩一区二区精品| 成人三级做爰电影| 亚洲午夜理论影院| 在线观看66精品国产| 波多野结衣高清无吗| 国产精品一区二区三区四区久久 | 十八禁人妻一区二区| 成人国语在线视频| 色播在线永久视频| 动漫黄色视频在线观看| 亚洲片人在线观看| 亚洲九九香蕉| 午夜激情福利司机影院| 国产又黄又爽又无遮挡在线| 亚洲国产精品合色在线| 18禁观看日本| 免费高清视频大片| 中亚洲国语对白在线视频| 在线av久久热| 亚洲国产欧美网| 欧美亚洲日本最大视频资源| 香蕉av资源在线| 69av精品久久久久久| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 51午夜福利影视在线观看| 中文字幕精品亚洲无线码一区 | 免费无遮挡裸体视频| 村上凉子中文字幕在线| 久久久久久国产a免费观看| 国产色视频综合| 久久久久精品国产欧美久久久| 色老头精品视频在线观看| 日韩成人在线观看一区二区三区| 国产亚洲欧美在线一区二区| 禁无遮挡网站| 日韩欧美国产在线观看| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 成人亚洲精品av一区二区| netflix在线观看网站| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 亚洲在线自拍视频| ponron亚洲| 亚洲一码二码三码区别大吗| 久久精品国产99精品国产亚洲性色| 在线国产一区二区在线| 不卡一级毛片| 免费高清视频大片| 久9热在线精品视频| 久久青草综合色| 999精品在线视频| 国产精品九九99| 中文字幕人妻熟女乱码| 欧美最黄视频在线播放免费| 亚洲中文字幕一区二区三区有码在线看 | 黄片小视频在线播放| 在线观看免费日韩欧美大片| 亚洲av电影不卡..在线观看| 在线十欧美十亚洲十日本专区| 最好的美女福利视频网| 天天添夜夜摸| 在线播放国产精品三级| 亚洲 欧美 日韩 在线 免费| 久久久水蜜桃国产精品网| 操出白浆在线播放| 热re99久久国产66热| 国产成人系列免费观看| 欧美黑人巨大hd| 午夜成年电影在线免费观看| 国产精品国产高清国产av| 国产不卡一卡二| 久久久国产成人免费| netflix在线观看网站| 午夜福利在线在线| 久久久久久国产a免费观看| 久久久精品国产亚洲av高清涩受| 免费一级毛片在线播放高清视频| ponron亚洲| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 国产熟女xx| 国产不卡一卡二| 制服诱惑二区| 我的亚洲天堂| 久久久久久免费高清国产稀缺| 宅男免费午夜| 国产熟女午夜一区二区三区| 午夜日韩欧美国产| 午夜福利欧美成人| 在线观看免费日韩欧美大片| 中文资源天堂在线| 久久精品aⅴ一区二区三区四区| 久久性视频一级片| 久久精品亚洲精品国产色婷小说| 午夜福利一区二区在线看| 99在线视频只有这里精品首页| 在线国产一区二区在线| 亚洲欧美日韩无卡精品| 午夜免费激情av| 91九色精品人成在线观看| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 少妇熟女aⅴ在线视频| 亚洲精品美女久久av网站| xxxwww97欧美| 国产精品99久久99久久久不卡| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 久久久久国产精品人妻aⅴ院| 黄色女人牲交| 久久久精品国产亚洲av高清涩受| av免费在线观看网站| 欧美黑人欧美精品刺激| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 久久久久久久久久黄片| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 久久久国产精品麻豆| 久久久久久亚洲精品国产蜜桃av| 亚洲色图av天堂| 男女床上黄色一级片免费看| 桃色一区二区三区在线观看| 国产精品99久久99久久久不卡| 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 韩国av一区二区三区四区| 久热这里只有精品99| 国产精品美女特级片免费视频播放器 | 欧美精品啪啪一区二区三区| 丰满的人妻完整版| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 国产av一区二区精品久久| 热99re8久久精品国产| av免费在线观看网站| a级毛片a级免费在线| 亚洲第一电影网av| 成人av一区二区三区在线看| 国产高清有码在线观看视频 | 这个男人来自地球电影免费观看| 色综合欧美亚洲国产小说| 国产黄片美女视频| 岛国视频午夜一区免费看| 亚洲欧美激情综合另类| 美女国产高潮福利片在线看| 国产精品免费一区二区三区在线| 免费观看人在逋| 国产在线精品亚洲第一网站| 久久欧美精品欧美久久欧美| 中国美女看黄片| 国产伦在线观看视频一区| 两个人免费观看高清视频| bbb黄色大片| 国语自产精品视频在线第100页| 国产欧美日韩精品亚洲av| 亚洲国产精品久久男人天堂| 色老头精品视频在线观看| 丰满的人妻完整版| 精品一区二区三区四区五区乱码| 又紧又爽又黄一区二区| 制服丝袜大香蕉在线| 久久国产精品人妻蜜桃| 午夜福利18| 嫁个100分男人电影在线观看| 在线国产一区二区在线| www日本黄色视频网| 精品欧美国产一区二区三| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 少妇的丰满在线观看| 欧美亚洲日本最大视频资源| 国内毛片毛片毛片毛片毛片| 免费在线观看日本一区| av在线播放免费不卡| 午夜激情福利司机影院| 亚洲专区国产一区二区| 91成年电影在线观看| 成人18禁在线播放| 亚洲美女黄片视频| 国产精品美女特级片免费视频播放器 | 国产伦在线观看视频一区| 日韩欧美一区二区三区在线观看| 成年免费大片在线观看| 亚洲三区欧美一区| 久久久久久久精品吃奶| 国产激情欧美一区二区| 午夜福利一区二区在线看| 亚洲免费av在线视频| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| 日韩大尺度精品在线看网址| 国产高清激情床上av| 狂野欧美激情性xxxx| 18禁观看日本| 青草久久国产| 午夜激情av网站| 国产精品精品国产色婷婷| 一级毛片女人18水好多| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 妹子高潮喷水视频| 精品久久久久久久末码| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久 | 欧美 亚洲 国产 日韩一| 99在线人妻在线中文字幕| 级片在线观看| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 免费在线观看影片大全网站| 人成视频在线观看免费观看| 欧美乱码精品一区二区三区| 久久天堂一区二区三区四区| 精品欧美一区二区三区在线| 久久久久久人人人人人| 免费看十八禁软件| 欧美性长视频在线观看| 国产三级黄色录像| 一本精品99久久精品77| 在线视频色国产色| 麻豆国产av国片精品| 一级a爱视频在线免费观看| 51午夜福利影视在线观看| 看黄色毛片网站| 国产精品一区二区三区四区久久 | 久久久久国产精品人妻aⅴ院| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 99在线视频只有这里精品首页| 精品福利观看| 精品免费久久久久久久清纯| 国产成人精品久久二区二区免费| 中文字幕人妻丝袜一区二区| 精品午夜福利视频在线观看一区| 999久久久国产精品视频| 成年人黄色毛片网站| 国产精品免费视频内射| 黄频高清免费视频| 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 99精品在免费线老司机午夜| 香蕉av资源在线| 国产精品久久电影中文字幕| 国产野战对白在线观看| 黄色片一级片一级黄色片| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 搡老妇女老女人老熟妇| 免费一级毛片在线播放高清视频| АⅤ资源中文在线天堂| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 久久久久久人人人人人| 一本一本综合久久| 久久香蕉精品热| 国产成人精品久久二区二区91| 国产99久久九九免费精品| 在线免费观看的www视频| 制服人妻中文乱码| 亚洲激情在线av| 国产av一区在线观看免费| 国产精品久久久久久精品电影 | ponron亚洲| 在线观看日韩欧美| 国产高清视频在线播放一区| av福利片在线| 每晚都被弄得嗷嗷叫到高潮| 一本一本综合久久| 身体一侧抽搐| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久| 这个男人来自地球电影免费观看| 国语自产精品视频在线第100页| 亚洲精华国产精华精| 国产精品99久久99久久久不卡| 欧美黑人巨大hd| 国产精品免费视频内射| 又大又爽又粗| 成人特级黄色片久久久久久久| 又大又爽又粗| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站| 亚洲电影在线观看av| 给我免费播放毛片高清在线观看| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频| 老司机靠b影院| 可以在线观看的亚洲视频| 欧美+亚洲+日韩+国产| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 国产v大片淫在线免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲av第一区精品v没综合| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 757午夜福利合集在线观看| 国产成人精品无人区| 国产精品98久久久久久宅男小说| 国产精品久久久久久人妻精品电影| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说| 午夜两性在线视频|