• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First Principle Study on the Rectification of Molecular Junctions Based on the Thiol-ended Oligosilane①

    2015-07-18 11:14:49ZHANGRongFngYANGELIYiLINLiXingLINGQiDnCollegeofMterilsScienceEngineeringFujinNormlUniversityFuzhou350007ChinCollegeofChemistryFuzhouUniversityFuzhou350116Chin
    結(jié)構(gòu)化學 2015年6期

    ZHANG Rong-FngYANG ELI YiLIN Li-XingLING Qi-Dn②(College of Mterils Science & Engineering, Fujin Norml University, Fuzhou 350007, Chin)(College of Chemistry, Fuzhou University, Fuzhou 350116, Chin)

    First Principle Study on the Rectification of Molecular Junctions Based on the Thiol-ended Oligosilane①

    ZHANG Rong-FangaYANG EaLI YibLIN Li-XiangaLING Qi-Dana②a(College of Materials Science & Engineering, Fujian Normal University, Fuzhou 350007, China)b(College of Chemistry, Fuzhou University, Fuzhou 350116, China)

    The electron transport properties of various molecular junctions based on the thiol-ended oligosilane are investigated through density functional theory combined with non-equilibrium Green’s function formalism.Our calculations show that oligosilanes doped by the phenyl and -C10H6groups demonstrate better rectifying effect and their rectification ratios are up to 15.41 and 65.13 for their molecular junctions.The current-voltage (I-V) curves of all the Au/ modified oligosilane/Au systems in this work are illustrated by frontier molecular orbitals, transmission spectra and density of states under zero bias.And their rectifying behaviors are analyzed through transmission spectra.

    first principle, thiol-ended oligosilane, rectification;

    1 INTRODUCTION

    In the past ten years, the field of silicon-based 1D nanowires has attracted more and more attention among researchers all over the world.With wellcharacterized silicon nanowires having been produced, they have been utilized in chemical or biological sensors[1,2]field-effect transistors[3], solar cells[4], and lithium battery anodes[5].And siliconbased 1D nanomaterials show some interesting conducting properties under doping conditions[6-9].One of the most promising candidates for research is oligosilane in molecular devices[10-14], such as nanodiodes and nanosensors[10,11].

    Molecule-level rectification plays an important role in molecular electronics.In 1974, Aviram and Ratner[15]proposed a donor-σ-bridge-acceptor (D-σ-A) model and opened up a new area of designing molecular rectifier.The σ-bridge provides a tunneling barrier for the electron transport between the donor and acceptor in a p-n junction semiconductor device.Based on D-σ-A proposal, Zhang and coworkers[13]designed and studied transport property of the p-n junction oligosilane nanowire caused by boron-doping and phosphorus-doping.It was found that the undoped oligosilane chain has no rectification character and the p-n junction oligosilane nanowire showed a satisfying rectification.Motivated by Aviram and Ratner’ model, more efforts have been devoted to search for other kinds of rectifiers[16-19].One research interest has been focused on the D-π-A molecules[17].Recently, Li andcoworkers have reported that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction[20].However, the rectification of oligosilane chains modified by bridge groups still lack report and the experiment report is also few.The semiconducting silicon nanowires used in electronic devices are strongly conditioned by the presence of doping impurities, which are able to displace the Fermi level close to the band edges[21,22].So, we design to introduce different σ-bridge groups and π-bridge groups into the oligosilane chains, such as -CH2, -CH2CH2, -CH=CH, -C≡C, -C6H4and -C10H6.Such successful bridge-doping upon the silicon nanowires to create rectifier would open up exciting opportunities in nanoscience and technology.

    Here, we investigate the transport properties of pure and doped oligosilanes in a systematic comparison way by using density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) approach.Our results show that the doped oligosilane exhibits higher rectification ratio by introducing phenyl and -C10H6groups.

    2 COMPUTATIONAL DETAILS

    Fig.1 illustrates the models of molecular junctions a~g with metal/molecule/metal structures.In each so-called two probe system, a thiolate-ended molecule based on oligosilane is sandwiched between two gold electrodes.The thiol end group is employed widely in the field of molecular devices.Molecules containing thiol end groups can be self-assembled on the Au substrate because the hydrogen atom in the thiol group will be dissociated and strong Au–S covalent bonds will form when the thiol group interacts with Au surface.The two Au(111)-(3×3) surfaces (i.e., each layer consisting of nine gold atoms) with periodic boundary conditions were used to model the left and right electrodes[23,24].The molecule in the central region of system a is a pure dithiolate-terminated oligosilane.-CH2and -CH2CH2groups are introduced into the oligosilane as σ-bridge in system b, thus forming two (SiH2)6-σ-(SiH2)5molecules.The groups of -CH=CH, -C≡C, -C6H4and -C10H6are introduced into the oligosilane as π-bridge in systems c~g, thus forming five (SiH2)6-π-(SiH2)5molecules.

    Fig.1.Schematic view of the single pure and modified oligosilane molecular junctions.“+” is replaced by -SiH2, -CH2, -CH2CH2, -CH=CH, -C≡C, -C6H4and -C10H6, corresponding to a~g, respectively.These thiolate-ended molecules self-assemble on the Au(111)-(3×3) surface, and consist of the two-probe Au/molecule/Au systems with right and left semi-infinite electrode and the scattering region

    The whole computation is composed of two procedures.First, the geometry optimizations and electronic structures of isolated molecules in the central region in Fig.1 are performed using the Gaussian03 program[25]at the hybrid DFT/B3LYP[26,27]level of theory with the 6-31G(d,p) basis set.The next procedure is the transport computation after the above geometry optimizations.The geometries of isolated molecules are extracted from the optimized extended molecules and then translated into the central region between the two gold electrodes, as illustrated in Fig.1.The two Au(111)-(3×3) sur-faces with periodic boundary conditions are used to model the left and right electrodes.The Au/molecule/Au configuration is divided into three parts: left electrode, right electrode, and central scatting region.In our models, there are three gold layers in each left and right electrode unit cells.The scattering region is composed of isolated molecules together with the respective three gold layers on the left and right sides.The distance between the Au(111) surface and the terminal S atom was 2.28 ?, which is in the range from 1.90 to 2.39 ? used by most studies[28].The electron-transport properties of the metal/molecule/metal systems were investigated using ab initio software package, Atomistix ToolKit (ATK)[29,30], which is based on density functional theory (DFT) combined with the first-principles non-equilibrium Green’s function(NEGF).In this work, a double-x polarization (DZP) basis set is used for all atoms of molecule with the exception of H, and a single-x with polarization (SZP) basis set is used for Au and H atoms.The exchange-correlation potential is described by the Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient approximation (GGA)[31,32].The convergence criterion is set to 1×10-5for grid integration to obtain accurate results.A k-point sampling of 1 × 1 × 100 is used for the metal-electrode models.On a realspace grid, a mesh cutoff energy of the charge density and potentials is set to150 Ry.

    In these molecular junctions, the current-voltage (I?V) characteristics are obtained from the Landauer-Büttiker formula[33].

    where 2e2/h = G0is the quantum unit of conductance, e expresses the elementary charge and h shows the Planck’s constant.f is the Fermi function, μRand μLare respectively for the electrochemical potentials of the right and left electrodes: μR(Vb) = Ef+ eVb/2 and μL(Vb) = Ef? eVb/2, where Efrepresents the Fermi energy of the electrode, and [μL(Vb), μR(Vb)] shows the current integral, known as the energy region or the bias window.T(E, Vb) is the transmission function for an incident electron with energy E at a bias voltage Vb.

    3 RESULTS AND DISCUSSION

    3.1 Electronic structures of the isolated molecules

    The molecular electronic structure can affect the conductance of the molecular transport junction.As suggested by Cohen et al.[34], the density distribution of frontier molecular orbital is intrinsic to the molecule rather than to the junction.It is an important factor determining the conductance of molecular transport junction.Therefore, the electronic structures of isolated molecules were investigated before the electron-transport calculations are performed.Fig.2 shows the frontier molecular orbital diagrams of the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO).The orbital density distributions of LUMO for all the molecules are delocalized almost completely.However, the cases of HOMO of these molecules are not fully delocalized and exhibit some obvious differences.For pristine oligosilane (a), the HOMO density distributions are nearly fully delocalized except one -SH group, because there is no orbital density distribution on it.The HOMO density distributions are similar for the -CH2and -CH2CH2groups modified oligosilane molecules (b and c).The HOMOs of molecule d are localized strongly on the Si5H10CH=CH part.The delocalized extent of HOMOs for molecule e is little stronger than that of system d.Though molecules f and g exhibit similar arch structures, the HOMO density distributions of f are almost delocalized except the -SiH2SH group, and the HOMOs of molecule g are nearly localized on the functionalized group -C10H6.

    The energy levels of the frontier molecular orbital and the related HOMO-LUMO gaps (HGLs) are shown in Fig.3.The change tendency of HOMO energy level for all the molecules is different from that of LUMO energy level.Different modifiedgroups in the oligosilane affect the energy levels obviously.In addition, introducing different groups into oligosilane leads to a rise of LUMO energy levels and has a few effects on the occupied molecular orbital (HOMO and HOMO-1) energy levels, except for the introduction of -C10H6group.When the -C10H6group is introduced into oligosilane by replacing the -SiH2group, the occupied molecular orbitals (HOMO and HOMO-1) and unoccupied molecular orbitals (LUMO and LUMO+1) energy levels are all reduced.As a result, the HGL of molecule g is reduced obviously.

    Fig.2.Frontier molecular orbital shapes of thiol-ended oligosilane and its derivatives

    Fig.3.Molecular energy levels HOMO-1, HOMO, LUMO and LUMO+1 of the isolated molecules and their HOMO-LUMO Gaps (HLGs)

    3.2 I-V characteristics and rectification

    The computed current-voltage (I-V) curves of the seven two-probe systems a~g are plotted in Fig.4.For the oligosilane and its functionalized molecules studied here, the I-V curves of molecule systems a~ e are nearly linear, and exhibit similar trends.The current of system a is consistent with the literature[13].Although the current change trends of systems a~e functionalized by -CH2, -CH2CH2, -CH=CH, and -C≡C groups are similar to the pureoligosilane, the currents of systems c, d and e decrease significantly compared with that of system a, and the current of system b is smaller than that of system a, lager than that of systems c, d and e.However, the I-V curves of molecule systems f and g are nonlinear.Under positive bias, the current of model f tends to be zero.The current value increases slowly about 0 to –1.58 V, then increases rapidly when the bias is above 1.58 V under negative bias.Thus, it is suggested that the doped groups -CH2, -CH2CH2, -CH=CH and -C≡C, and phenyl have obvious effects in declining the electron transport of oligosilane.For oligosilane derivative molecule doped by -C10H6, the I-V curve tends to be zero around the zero bias (about 0 to ±1.5 V).The current of model g increases rapidly when the bias is above about ±1.5 V.When the current value comes to a maximum, it begins to decrease at 1.83 V under positive bias voltage.This phenomenon is so-called negative differential resistance (NDR).The result shows that the -C10H6group may be more beneficial to the electronic transport of oligosilane at high bias voltage than others studied here.

    Fig.4.I-V curves of systems a~g in the bias range from–2.0 to +2.0.The positive current means that the current flows from the left electrode to the right electrode and vice versa.The inset shows the rectification ratio (R) as a function of applied voltage for systems a, f, and g

    As shown in Fig.3, the HOMO level of each molecule is aligned nearer to the work function of gold (approximate –5.1 eV) than its LUMO level.However, there are large energy level gaps (over 1.0 eV) between the HOMO level of molecular systems and the Fermi level of gold.And the HGLs of isolated molecules all exceed 4.0 eV.Consequently, no current value goes beyond 200 nA.As discussed in section 3.1, the HOMO density distributions of systems a~g exhibit the relative sequence a > b > c > f > e > d > g.The current flows increase in accord with the sequence a > b > f > c > e > g > d around the zero bias (about 0 to ±1.5 V).It seems that the equilibrium conductances of these oligosilane families are in good agreement with their density distributions of HOMOs of isolated molecules around the zero bias (about 0 to ±1.5 V), except molecular systems f and g.It may be related to the arch structures of systems f and g.

    Furthermore, the transmission coefficients and DOS of a~g two-probe systems under zero bias have been analyzed and give insights into the states contributing to conductivity.Fig.5 plots the DOS of a~g two-probe systems under zero bias with redlines.In the pure system at zero bias, two resonance peaks are observed at about –0.4 and –1.0 eV, only originating from the HOMO states.Introducing groups of -CH2, -CH2CH2, -CH=CH, -C≡C, and phenyl into the oligosilane nanowires have no obvious effect on the resonance peaks of DOS under zero bias, except introducing the -C10H6group.For the g system, there are three resonance peaks at about –0.4, –0.9 and –1.0 eV.However, the transmission spectra under the zero-bias of b~g are changed as introducing the groups into system a, as shown in Fig.5 with black lines.For the pure system, there lies a broad resonance peak between –0.3 and–1.1 eV, which has good correlation with one resonance peak –1.0 eV of its corresponding DOS.The high transmission coefficient lies in the energy position where one resonance peak of its DOS appears.Therefore, the transmission peak is located at –1.0 eV for the pure oligosilane two-probe system.Note that the broad resonant peak becomes smaller than that of the pure system when introducing the groups of -CH2, -CH2CH2, -CH=CH, -C≡C, and phenyl into oligosilanes as bridges.Although the transmission peaks of the d and f systems are dropped, they are still located at the same energy positions with the pure system.The broad resonant peak becomes narrower and higher at –0.9 eV for the g system, where the transmission peak forms.According to the current depending on their transmission peaks and coefficients, we can speculate that the current flows of a, d, f and g systems will become larger as the applied bias voltage exceeds the forward threshold voltage, in line with the I-V curves.The transmission coefficient of the c~e systems drops to about 1.5×10-4, zero and 1.0×10-4, respectively.Therefore, we can speculate that the current flows of the c~e systems will be nearly zero when applying the bias voltage, in line with the I-V curves.

    Fig.5.Transmission spectra (black lines) and DOS (red lines) spectra of the a~g two-probe systems under zero bias

    As a whole, the total transmission coefficient is almost zero in a region near the Fermi level in the pure system.The result of the pure system agrees with the report by Zhang and his coworkers[13].Like the pure system, all the bridge-doped systems have the same characteristics that their total transmission coefficients are almost zero in a region near the Fermi level.At the zero bias, the electron transmission mainly depends on the size of the transmission coefficient near the Fermi level.This means the electrons can not permeate effectively through the oligosilane chain, which indicates that bridgedopings with -CH2, -CH2CH2, -CH=CH, -C≡C, phenyl, and -C10H6groups do not improve the conductivity of such short oligosilane wire.On the basis of the resonances in the transmission spectra and the states of DOS spectra under zero bias, we can conclude that the HOMO states will mainly contribute to the current of the systems, and the bridge-dopings with -CH2, -CH2CH2, -CH=CH, -C≡C, phenyl, and -C10H6groups do not improve the conductivity of such short oligosilane wire.And thetransmission wave is very weak for all the molecular two-probe systems.This is also in good agreement with the weak currents in the I-V curves.

    In Fig.4, it is evident that the I-V curves of molecular systems f and g are obviously asymmetric at about zero bias.In order to reveal the features of the asymmetry in detail, the rectification ratios of systems f and g were computed.The rectification ratio is defined as

    By definition, R(V) = 1 means no rectification.R(V) > 1 shows that the current is larger in the negative direction than in the positive direction, and vice versa.

    According to our calculation, models f and g have obvious rectification effects.Their rectification values are up to 15.41 and 65.13, respectively, as shown in the inset in Fig.4.Rectification ratios of other models are close to 1 in the applied bias ranges.It comes out into that the modified groups -CH2, -CH2CH2, -CH=CH, and -C≡C have few effects on the oligosilane’ rectification.

    In this work, the rectifying for the molecular systems is interpreted by analyzing the transmission spectra.The current through a molecule system is determined by the transmission spectra within the bias window (L(Vb),R(Vb)).The region of the bias window is actually (–Vb/2, + Vb/2) if the Fermi level is set to zero.Theoretically, the transmission is determined by the molecular electronic structure modified by the applied bias and the coupling between molecule and electrode, etc.Fig.6 illustrates the transmission spectra of the two-probe systems a~g in the energy range from –1.5 to +1.5 eV at their bias voltages of the highest rectification ratios.

    Fig.6.Transmission spectra of two-probe systems a~g at special bias of each highest rectification ratio.Black, red and black dashed lines indicate positive bias voltage, negative bias voltage and bias windows at each bias voltage, respectively

    It is noted that transmission spectra of systems a~e exhibit a very small difference at the positive and negative bias voltages.The transmission resonance peaks within each bias windows of systems a~e at the negative bias are a bit broader and higher than those at the positive bias.Therefore, each rectification ratio of systems a~e all exhibits R > 1 slightly at bias ±2 V.In system f, there is a completetransmission peak within bias window under the negative bias.However, the peak almost disappears when the positive bias voltage is applied to the two-probe system.Consequently, the current of system f at the positive bias +1.96 V is nearly zero, then the rectification ratio of system f exhibits R = 15.41 at bias ±1.96 V.In system g, there is a bit transmission wave within bias window under the positive bias, and the transmission peak partly enters into the bias window when the negative bias voltage is applied.Therefore, the current of system g at the positive bias +1.58 V is very small, then the rectification ratio of system g exhibits R = 65.13 at bias ±1.58 V.

    In summary, our calculations show that the introducing groups of -CH2, -CH2CH2, -CH=CH, -C≡C, and phenyl into the oligosilane nanowires have no obvious effect on the resonance peaks of DOS under zero bias, the transmission spectra under the zero-bias of b~g are changed as introducing the groups into pure oligosilane nanowires, the bridgedopings with -CH2, -CH2CH2, -CH=CH, -C≡C, phenyl, and -C10H6groups do not improve the conductivity of such short oligosilane wire, the oligosilanes doped by phenyl and -C10H6groups demonstrate rectifying effect better than that of the pure oligosilane, and their rectification ratios are up to 15.41 and 65.13 for the corresponding Au/doped oligosilane/Au molecular junction.

    REFERENCES

    (1) Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M.Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.Science 2001, 293, 1289–1292.

    (2) Hahm, J.; Lieber, C.M.Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors.Nano.Lett.2004, 4, 51–54.

    (3) Cui, Y.; Lieber, C.M.Functional nanoscale electronic devices assembled using silicon nanowire building blocks.Science 2001, 291, 851–853.

    (4) Tian, B.; Zheng, X.; Kempa, T.J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M.Silicon nanowires as solar cells and nanoelectronic power sources.Nature 2007, 449, 885–889.

    (5) Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y.High-performance lithium batteryanodes using silicon nanowires.Nature Nanotech.2008, 3, 31–35.

    (6) Vallett, A.L.; Minassian, S.; Kaszuba, P.; Datta, S.; Redwing, J.M.; Mayer, T.S.Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors.Nano.Lett.2010, 10, 4813–4818.

    (7) Choi, J.S.; Moon, D.I.; Duarte, J.P.; Ahn, J.H.; Choi, Y.K.Physical observation of a thermo-morphic transition in a silicon nanowire.ACS Nano.2012, 6, 2378–2384.

    (8) Teo, B.K.; Huang, S.P.; Zhang, R.Q.; Li, W.K.Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes.Coord.Chem.Rev.2009, 253, 2935–2938.

    (9) Cui, Y.; Lieber, C.M.Functional nanoscale electronic devices assembled using silicon nanowire building blocks.Science 2001, 291, 851–853.

    (10) Ford, M.J.; Hoft, R.V.; McDonagh, A.M.; Cortie, M.B.Rectification in donor-acceptor molecular junctions.J.Phys.Condens.Matter.2008, 20, 374106(1)–374106(8).

    (11) Ventra, M.D.; Pantelides, S.T.; Lang, N.D.First-principles calculation of transport properties of a molecular device.Phys.Rev.Lett.2000, 84, 979?982.

    (12) Zhang, G.L.; Yuan, H.L.; Zhang, H.; Shang, Y.; Sun, M.; Liu, B.; Li, Z.S.Theoretical studies of the transport property of oligosilane.Sci.China.Chem.2010, 53, 2571–2588.

    (13) Zhang, G.L.; Yuan, H.L.; Zhang, H.; Shang, Y.; Sun, M.Theoretical studies on the transport property of oligesilane with p-n junction.Int.J.Quan.Chem.2011, 111, 4214–4223.

    (14) Yu, J.; Zhang, G.L.; Shang, Y.; Wang, K.D.; Zhang, H.; Sun, M.; Liu, B.; Zeng, T.Transport properties of CNT/oligosilane/CNT heterojunctions.Phys.B 2013, 410, 237–243.

    (15) Aviram, A.; Ratner, R.A.Molecular rectifiers.Chem.Phys.Lett.1974, 29, 277–283.

    (16) Staykov, A.; Nozaki, D.; Yoshizawa, K.Theoretical study of donor-σ-bridge-acceptor unimolecular electric rectifier.J.Phys.Chem.C 2007, 111, 11699–11705.

    (17) Li, Z.; Kosov, D.S.Orbital interaction mechanisms of conductance enhancement and rectification by dithiocarboxylate anchoring group.J.Phys.Chem.B 2006, 110, 19116–19120.

    (18) Metzger, R.M.; Chen, B.; Hopfner, U.; Lashmikantham, M.V.; Vuillaume, D.; Kawai, T.; Wu, X.L.; Tachibana, H.; Hughes, T.V.; Sakurai, H.; Baldwin, J.W.; Hosch, C.; Cava, M.P.; Brehmer, L.; Ashwell, G.J.Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide.J.Am.Chem.Soc.1997, 119, 10455–10466.

    (19) Zhao, J.; Yu, C.; Wang, N.; Liu, H.Molecular rectification based on asymmetry molecule-electrode contact.J.Phys.Chem.C 2010, 114, 4135–4141.

    (20) Li, X.F.; Qiu, Q.; Luo, Y.Tuning electron transport through a single molecular junction by bridge modification.J.Appl.Phys.2014, 116, 013701(1) –013701(5).

    (21) Byon, K.; Tham, D.; Fisher, J.E.; Johnson, A.T.Synthesis and post growth doping of silicon nanowires.Appl.Phys.Lett.2005, 87, 193104(1)–193104(3).

    (22) Wang, D.; Sheriff, B.; Heath, J.R.Silicon p-FETs from ultrahigh density nanowire arrays.Nano.Lett.2006, 6, 1096–1100.

    (23) Yuan, S.; Wang, S.; Mei, Q.; Ling, Q.; Wang, L.; Huang, W.First-principles study of rectification in bis-2-(5-ethynylthienyl) ethyne molecular junctions.J.Phys.Chem.A 2011, 115, 9033–9042.

    (24) George, C.B.; Ratner, M.A.; Lambert, J.B.Strong conductance variation in conformationally constrained oligosilane tunnel junctions.J.Phys.Chem.A 2009, 113, 3876–3880.

    (25) Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A.Gaussian, Inc., Pittsburgh PA 2003, Gaussian 03, Revision B.01.

    (26) Becke, A.D.A new mixing of hartree-fock and local density functional theories.J.Chem.Phys.1993, 98, 1372?1377.

    (27) Lee, C.; Yang, W.; Parr, R.G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.B 1988, 37, 785?789.

    (28) Yin, X.; Li, Y.W.; Zhang, Y.; Li, P.; Zhao, J.W.Theoretical analysis of geometry-correlated conductivity of molecular wire.Chem.Phys.Lett.2006, 422, 111–116.

    (29) Brandbyge, M.; Mozos, J.; Ordejon, P.; Taylor, J.; Stokbro, K.Density-functional method for nonequilibrium electron transport.Phys.Rev.B 2002, 65, 165401(1)–165401(17).

    (30) ATK, Trial Version13.8.0.QuantumWise A/S 2013 (www.quantumwise.com).

    (31) Hu, Y.B.; Zhu, Y.; Gao, H.J.; Guo, H.Conductance of an ensemble of molecular wires: a statistical analysis.Phys.Rev.Lett.2005, 95, 156803(1)–156803(4).

    (32) Soler, J.M.; Artacho, E.; Gale, J.D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez Portal, D.The SIESTA method for ab initio order-N materials simulation.J.Phys: Condens.Matter.2002, 14, 2745–2779.

    (33) Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S.Generalized many-channel conductance formula with application to small rings.Phys.Rev.B 1985, 31, 6207?6215.

    (34) Coben, R.; Stokbro, K.; Martin, J.M.L.; Ratner, M.A.Charge transport in conjugated aromatic molecular junctions: molecular conjugation and molecule-electrode coupling.J.Phy.Chem.C 2007, 111, 14893–14902.

    10.14102/j.cnki.0254-5861.2011-0590

    1 December 2014; accepted 2 March 2015

    ①This work was supported by National Natural Science Foundation of China (21401023 and 21203027), Cultivating Fund for Excellent Young Scholar of Fujian Normal University (FJSDJK2012063), and Program for Innovative Research Team in Science and Technology in Fujian Province University (IRTSTFJ)

    ②Corresponding author.E-mail: qdling@fjnu.edu.cn

    国产午夜精品论理片| 人妻夜夜爽99麻豆av| 97人妻精品一区二区三区麻豆| 老汉色av国产亚洲站长工具| 久久性视频一级片| 天堂影院成人在线观看| 欧美日韩精品网址| 亚洲午夜理论影院| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 少妇的逼水好多| 亚洲电影在线观看av| 精品国产三级普通话版| 中亚洲国语对白在线视频| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 午夜a级毛片| 制服丝袜大香蕉在线| 精品熟女少妇八av免费久了| 欧美最黄视频在线播放免费| 亚洲专区中文字幕在线| 久久久精品欧美日韩精品| 麻豆国产av国片精品| 日本在线视频免费播放| 麻豆成人av在线观看| 一区福利在线观看| 18美女黄网站色大片免费观看| 亚洲aⅴ乱码一区二区在线播放| 女同久久另类99精品国产91| 丁香欧美五月| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 国产aⅴ精品一区二区三区波| 精品福利观看| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 亚洲欧美精品综合久久99| 亚洲一区二区三区不卡视频| 丁香欧美五月| 亚洲国产精品成人综合色| 亚洲av电影不卡..在线观看| 女同久久另类99精品国产91| 国产av不卡久久| 亚洲av免费高清在线观看| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 亚洲18禁久久av| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式 | 国产欧美日韩精品亚洲av| 午夜福利视频1000在线观看| 久久久久久久亚洲中文字幕 | 真人一进一出gif抽搐免费| 级片在线观看| 婷婷精品国产亚洲av| 欧美日韩黄片免| 日本熟妇午夜| 亚洲五月天丁香| xxxwww97欧美| 成人一区二区视频在线观看| 精品不卡国产一区二区三区| 精品人妻偷拍中文字幕| avwww免费| 99在线人妻在线中文字幕| www.www免费av| 两人在一起打扑克的视频| 免费在线观看日本一区| 九九在线视频观看精品| 五月伊人婷婷丁香| 综合色av麻豆| 成年人黄色毛片网站| 熟女少妇亚洲综合色aaa.| 可以在线观看毛片的网站| 国产午夜精品论理片| 日韩欧美精品v在线| 亚洲av第一区精品v没综合| 特大巨黑吊av在线直播| 国产精品1区2区在线观看.| 男女做爰动态图高潮gif福利片| 一本精品99久久精品77| 国产成人av教育| 亚洲av中文字字幕乱码综合| 美女免费视频网站| 中亚洲国语对白在线视频| 级片在线观看| 精品人妻偷拍中文字幕| 嫩草影院精品99| 桃色一区二区三区在线观看| 国产毛片a区久久久久| www日本黄色视频网| 99国产精品一区二区蜜桃av| 观看免费一级毛片| 两个人的视频大全免费| 久久久久久国产a免费观看| 午夜激情福利司机影院| 亚洲最大成人中文| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 午夜日韩欧美国产| 国产一区二区在线观看日韩 | 热99在线观看视频| 母亲3免费完整高清在线观看| 国产高清videossex| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 久久九九热精品免费| 日韩大尺度精品在线看网址| 亚洲精品亚洲一区二区| 丝袜美腿在线中文| 国内精品久久久久精免费| 日本免费一区二区三区高清不卡| 亚洲av第一区精品v没综合| 亚洲国产精品久久男人天堂| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 国产单亲对白刺激| 少妇高潮的动态图| 色吧在线观看| 日韩av在线大香蕉| 久久草成人影院| 国产一区在线观看成人免费| 精品国产三级普通话版| 老汉色av国产亚洲站长工具| 在线国产一区二区在线| 亚洲专区国产一区二区| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 国产97色在线日韩免费| 在线国产一区二区在线| 精品国产亚洲在线| 岛国视频午夜一区免费看| 久久久久九九精品影院| 亚洲精品乱码久久久v下载方式 | 国产私拍福利视频在线观看| 最近最新免费中文字幕在线| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 美女大奶头视频| 搡老妇女老女人老熟妇| 熟女人妻精品中文字幕| 午夜福利在线在线| 在线观看一区二区三区| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 精品国产三级普通话版| 午夜激情福利司机影院| 日本成人三级电影网站| 嫩草影院精品99| 精品99又大又爽又粗少妇毛片 | 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 美女高潮喷水抽搐中文字幕| 国产视频内射| 一区二区三区激情视频| 午夜亚洲福利在线播放| 国产高清videossex| 日本免费一区二区三区高清不卡| 嫩草影院入口| 国产欧美日韩精品一区二区| 久久婷婷人人爽人人干人人爱| 一本一本综合久久| 内射极品少妇av片p| 国产伦精品一区二区三区视频9 | 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av| 19禁男女啪啪无遮挡网站| 乱人视频在线观看| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 久久性视频一级片| 亚洲欧美日韩东京热| 久久精品国产亚洲av香蕉五月| 成年人黄色毛片网站| 在线播放无遮挡| 精品国产三级普通话版| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 午夜福利免费观看在线| xxx96com| 国产一区在线观看成人免费| 1024手机看黄色片| 国产黄片美女视频| 成年女人永久免费观看视频| 天堂影院成人在线观看| 美女免费视频网站| 可以在线观看的亚洲视频| 国产免费男女视频| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 亚洲av一区综合| 观看免费一级毛片| 搡老岳熟女国产| 国产精品嫩草影院av在线观看 | 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 欧美性猛交╳xxx乱大交人| 老司机福利观看| 三级国产精品欧美在线观看| 啪啪无遮挡十八禁网站| 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 婷婷丁香在线五月| 中文字幕av成人在线电影| 免费搜索国产男女视频| 国产激情欧美一区二区| 久久久成人免费电影| 午夜激情福利司机影院| 国内精品美女久久久久久| 我要搜黄色片| 中文字幕av在线有码专区| 国产伦精品一区二区三区视频9 | 欧美一区二区精品小视频在线| 日本a在线网址| 夜夜躁狠狠躁天天躁| 18禁黄网站禁片免费观看直播| 日韩亚洲欧美综合| 757午夜福利合集在线观看| 国产国拍精品亚洲av在线观看 | 女人高潮潮喷娇喘18禁视频| 99riav亚洲国产免费| 亚洲午夜理论影院| 国产精品一及| 成人亚洲精品av一区二区| 老熟妇仑乱视频hdxx| 免费搜索国产男女视频| 老司机深夜福利视频在线观看| 十八禁人妻一区二区| 麻豆一二三区av精品| 黄色女人牲交| 精品日产1卡2卡| 欧美一区二区精品小视频在线| 欧美黑人巨大hd| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 国产69精品久久久久777片| 久久精品91蜜桃| 国产高清有码在线观看视频| av专区在线播放| 国产主播在线观看一区二区| 久久久久性生活片| 久久久久久人人人人人| 青草久久国产| av福利片在线观看| 两个人视频免费观看高清| 真人做人爱边吃奶动态| 长腿黑丝高跟| 最近最新中文字幕大全电影3| 久久人人精品亚洲av| tocl精华| 亚洲国产高清在线一区二区三| 两个人视频免费观看高清| 色哟哟哟哟哟哟| 我要搜黄色片| 亚洲国产日韩欧美精品在线观看 | 国产精品电影一区二区三区| 91麻豆精品激情在线观看国产| 欧美黄色淫秽网站| 日本五十路高清| 1024手机看黄色片| 午夜福利在线观看免费完整高清在 | 99久久无色码亚洲精品果冻| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 久久九九热精品免费| 手机成人av网站| 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 欧美色视频一区免费| 亚洲专区国产一区二区| 欧美性感艳星| 欧美日本视频| 亚洲无线在线观看| 天堂网av新在线| eeuss影院久久| aaaaa片日本免费| 12—13女人毛片做爰片一| 免费看十八禁软件| 国产精品1区2区在线观看.| 亚洲av一区综合| 成人欧美大片| 99精品欧美一区二区三区四区| 老司机福利观看| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 亚洲av二区三区四区| 国产黄色小视频在线观看| 麻豆一二三区av精品| 18禁国产床啪视频网站| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 亚洲真实伦在线观看| 精品一区二区三区视频在线 | 午夜激情福利司机影院| 国产三级中文精品| 操出白浆在线播放| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 岛国在线观看网站| 在线观看美女被高潮喷水网站 | 一个人看的www免费观看视频| 噜噜噜噜噜久久久久久91| 亚洲天堂国产精品一区在线| 日韩欧美一区二区三区在线观看| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 欧美av亚洲av综合av国产av| x7x7x7水蜜桃| 欧美三级亚洲精品| 久久久久九九精品影院| 免费av不卡在线播放| 成人午夜高清在线视频| 婷婷亚洲欧美| 色播亚洲综合网| 欧美日韩瑟瑟在线播放| 两个人视频免费观看高清| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 精品一区二区三区视频在线观看免费| 毛片女人毛片| 精品国产亚洲在线| 真人一进一出gif抽搐免费| 一区二区三区激情视频| 午夜精品在线福利| 人妻夜夜爽99麻豆av| 青草久久国产| 色哟哟哟哟哟哟| 久久九九热精品免费| 中文亚洲av片在线观看爽| av视频在线观看入口| 老司机深夜福利视频在线观看| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式 | 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| 十八禁人妻一区二区| 欧美日韩综合久久久久久 | 久久婷婷人人爽人人干人人爱| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片 | 日本与韩国留学比较| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 国产三级中文精品| 国产97色在线日韩免费| av国产免费在线观看| 99久国产av精品| 精华霜和精华液先用哪个| 少妇的丰满在线观看| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 日韩 欧美 亚洲 中文字幕| www国产在线视频色| 日韩欧美精品v在线| 国产单亲对白刺激| avwww免费| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 真实男女啪啪啪动态图| 十八禁网站免费在线| 免费在线观看日本一区| 90打野战视频偷拍视频| 成人精品一区二区免费| 成人特级av手机在线观看| 成人欧美大片| 舔av片在线| 在线播放无遮挡| or卡值多少钱| 欧美乱色亚洲激情| 国产高清有码在线观看视频| 波野结衣二区三区在线 | xxx96com| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| АⅤ资源中文在线天堂| 免费人成在线观看视频色| 亚洲国产欧美人成| 搡老熟女国产l中国老女人| 免费大片18禁| 手机成人av网站| 国产精品久久视频播放| 精品国产亚洲在线| 一进一出抽搐动态| 男女午夜视频在线观看| 99久国产av精品| 少妇人妻一区二区三区视频| 欧美中文日本在线观看视频| 精华霜和精华液先用哪个| 精品日产1卡2卡| 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 男女那种视频在线观看| www.999成人在线观看| 免费观看精品视频网站| 国产亚洲欧美在线一区二区| 小蜜桃在线观看免费完整版高清| 欧美最新免费一区二区三区 | а√天堂www在线а√下载| 亚洲国产精品合色在线| 国产精品久久视频播放| 精品一区二区三区人妻视频| 黄色片一级片一级黄色片| 日本黄大片高清| 在线观看免费午夜福利视频| 欧美一区二区精品小视频在线| 女警被强在线播放| 村上凉子中文字幕在线| 99热这里只有精品一区| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 长腿黑丝高跟| 国产亚洲精品一区二区www| 制服丝袜大香蕉在线| 少妇高潮的动态图| 亚洲最大成人手机在线| 亚洲精品亚洲一区二区| 啦啦啦观看免费观看视频高清| 老汉色av国产亚洲站长工具| 91九色精品人成在线观看| 黄色视频,在线免费观看| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 日本成人三级电影网站| 欧美色视频一区免费| 国产精品久久久久久亚洲av鲁大| 成年女人毛片免费观看观看9| 中文字幕人成人乱码亚洲影| xxx96com| 嫩草影院精品99| 欧美激情久久久久久爽电影| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| x7x7x7水蜜桃| 美女黄网站色视频| 欧美一级a爱片免费观看看| 成年女人永久免费观看视频| 99国产精品一区二区三区| 久久精品91无色码中文字幕| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 国产不卡一卡二| 国产综合懂色| 一个人免费在线观看的高清视频| 国产精品一区二区三区四区免费观看 | 一级毛片女人18水好多| 久久久精品欧美日韩精品| 日韩精品中文字幕看吧| 亚洲av免费高清在线观看| 久久欧美精品欧美久久欧美| 精品久久久久久成人av| 天堂动漫精品| 国产激情偷乱视频一区二区| 两个人视频免费观看高清| 在线天堂最新版资源| 亚洲成人久久爱视频| 欧美av亚洲av综合av国产av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲狠狠婷婷综合久久图片| 日韩精品中文字幕看吧| 国产精品嫩草影院av在线观看 | 久久精品国产亚洲av涩爱 | 99热这里只有是精品50| 国产一区二区三区在线臀色熟女| 国语自产精品视频在线第100页| 久久久色成人| 国产真实伦视频高清在线观看 | 99久久综合精品五月天人人| 岛国视频午夜一区免费看| 欧美高清成人免费视频www| 日韩av在线大香蕉| 亚洲成人久久性| 91九色精品人成在线观看| 亚洲黑人精品在线| 每晚都被弄得嗷嗷叫到高潮| 欧美丝袜亚洲另类 | 日本与韩国留学比较| 色尼玛亚洲综合影院| 久久香蕉国产精品| 国内精品一区二区在线观看| 久久九九热精品免费| 最好的美女福利视频网| 色尼玛亚洲综合影院| 亚洲精品国产精品久久久不卡| 亚洲中文日韩欧美视频| 露出奶头的视频| 中文资源天堂在线| 色吧在线观看| 两个人视频免费观看高清| 99国产精品一区二区三区| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 精品久久久久久久毛片微露脸| 欧美国产日韩亚洲一区| 精品乱码久久久久久99久播| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| 国产精品野战在线观看| 欧美性猛交黑人性爽| 特级一级黄色大片| 亚洲欧美一区二区三区黑人| 亚洲av二区三区四区| 桃红色精品国产亚洲av| 国产一区二区三区视频了| 午夜激情欧美在线| 日韩欧美精品v在线| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| 一级毛片女人18水好多| 乱人视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影| 国产精品一区二区三区四区免费观看 | 国产野战对白在线观看| 色视频www国产| 91av网一区二区| 日本在线视频免费播放| 18禁国产床啪视频网站| 天堂网av新在线| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 日韩欧美精品免费久久 | 国产午夜精品久久久久久一区二区三区 | 男插女下体视频免费在线播放| 一区二区三区高清视频在线| 一级黄片播放器| 久久精品国产自在天天线| 欧美国产日韩亚洲一区| 国产av不卡久久| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 亚洲中文字幕日韩| 亚洲人与动物交配视频| 久久久久亚洲av毛片大全| 久久草成人影院| 国产蜜桃级精品一区二区三区| 精品一区二区三区av网在线观看| 欧美一区二区国产精品久久精品| 欧美乱色亚洲激情| 一区二区三区免费毛片| 在线a可以看的网站| 一本一本综合久久| 人人妻,人人澡人人爽秒播| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 天堂网av新在线| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| 超碰av人人做人人爽久久 | 日本 av在线| 高潮久久久久久久久久久不卡| 噜噜噜噜噜久久久久久91| 国产精品一区二区三区四区免费观看 | 久久性视频一级片| 国产高清视频在线播放一区| 又爽又黄无遮挡网站| 色综合亚洲欧美另类图片| 日韩欧美在线二视频| АⅤ资源中文在线天堂| 亚洲无线观看免费| 久久天躁狠狠躁夜夜2o2o| 全区人妻精品视频| 国产麻豆成人av免费视频| 亚洲精品成人久久久久久| 国产在视频线在精品| 国产一区二区在线av高清观看| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 成人特级黄色片久久久久久久| 51国产日韩欧美| 亚洲国产精品999在线| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 欧美乱色亚洲激情| 嫁个100分男人电影在线观看| 国内少妇人妻偷人精品xxx网站| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 一本精品99久久精品77| 久久精品综合一区二区三区| 久久精品国产亚洲av涩爱 | 天堂动漫精品| 91在线观看av| 久久6这里有精品| 九九在线视频观看精品| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 精品午夜福利视频在线观看一区| 欧美大码av| 午夜福利免费观看在线| 国产精品一区二区三区四区免费观看 | 日韩欧美免费精品| 免费av不卡在线播放| 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 色综合欧美亚洲国产小说| 久久久成人免费电影| 啦啦啦韩国在线观看视频|