• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mid-Infrared Raman Fiber Lasers

    2015-07-14 01:20:34CongLiuHanZhangChenWeiandYongLiu

    Cong Liu, Han Zhang, Chen Wei, and Yong Liu

    1. Introduction

    The Raman fiber laser (RFL) is an important application of stimulated Raman scattering (SRS). It refers to a specific type of fiber laser that uses SRS, instead of stimulated electronic transitions, to amplify light. Among different types of RFLs, rare earth ions doped RFLs are of most importance and grow rapidly. In comparison with conventional chemical and solid-state lasers, RFLs have the advantages of high conversion efficiency, compactness,excellent beam quality, and great heat dissipation. Moreover,based on the principle of SRS, applying pump sources with different wavelengths can lead to outputs with longer Stokes wavelength and wider tunable wavelength range.

    Near-infrared (1 μm to 2 μm) RFLs have been developed for years, the gain media are mainly oxide fibers such as silica fiber, phosphosilicate fiber, and germane silicate fiber. A cascaded RFL with output power of up to 301 W at 1480 nm has been reported[1]. This is also the RFL with the highest output power at 1.5 μm. The Shanghai Institute of Optics has demonstrated a RFL yielding 300 W at 1120 nm by using a new type of Yb3+-integrated Raman fiber amplifier[2]. Subsequently,with further system optimization, they successfully increased the output power by an order of magnitude to 1.3 kW[2]. Recently, National University of Defense Technology has built a RFL at 1090 nm by utilizing six cascading fiber lasers at 1018 nm to pump Yb3+-doped silica fiber. Eventually, the maximum output power of 2.14 kW has been obtained[3].

    Mid-infrared (MIR) lasers with output wavelength of over 2 μm have wide spread and important applications in the fields of communication, national defense, biomedical science, and so on[4]. For instance, this kind of laser can be used in laser radar, laser ranging, and air communication as a result of the atmosphere transparent window ranging from 3 μm to 5 μm. Moreover, it locates in the operation band of most military detectors and is widely applied in many military fields including laser guidance, telemetry, and optical-electronic countermeasures. Additionally, since water molecules have a strong absorption peak at 2.94 μm wavelength, it can also be used in laser surgery exhibiting the advantages of rapid blood coagulation, small surgical wounds, and excellent hemostatic effects[5]. Traditional oxide fibers, especially silica fibers, are not suitable for MIR RFLs since they have a high transmission loss for the wavelength beyond 2 μm as a result of their high phonon energy. In order to obtain MIR wavelength output exceeding 2 μm, fibers with low phonon energy and small transmission loss in MIR band are required. Currently,fluoride and chalcogenide fibers are the most common gain media in MIR RFLs because of their excellent performances at that wavelength[6],[7].

    This article introduces current research on MIR RFLs based on fluoride and chalcogenide fibers, respectively.The performances of both MIR RFLs have been compared and analyzed. In the end, the prospect of future development of MIR RFLs is discussed.

    2. Theoretical Outline

    In a RFL, the Raman gain coefficient (gR) is a basic parameter to describe the Raman scattering. It can be obtained by experimental measurement. The Raman on-off gain (G) is defined as the ratio of the output powers when the pump power is on and off[8]:

    where P0isthe input puump power,Leffis thefiber efffective lengthh, and Aeffiss the fiber efffective modefield arrea. Thus gRccan be calculated after measuring the on-off gaain G. The Raaman gain coeefficient of fluuoride fibers iis 5.7 times of that oof silica fiberrs[9]. Chalcoggenide fibershave RRaman gain cooefficient 50times to 350times higherthan thhat of fluoridee fibers (20×110-12m/W to51×10-12m/WW for AAs-Se fibers aand 4.357×10--12m/W to 55.7×10-12m/WW for AAs-S fibers[10]]). The highh Raman gaiin coefficients of flluoride and chhalcogenide fiibers make itpossible to obtain RRa man laser ouutputs with shhort gain fiberss.

    Accordingto the specifiic pump waveelength, the Stokes ouutput peak waavelength canbe theoreticallly calculatedwith thhe equation beelow:

    w

    where λpis the pump waveelength, λsisthe Stokes ouutput wwavelength, annd Δν is the RRaman frequency shift (RFSS). If itt is a second-oorder cascadestructure, thee first order Sttokes wwill be servedd as the pummp to obtainthe second-oorder Stokes laser.The RFS offluoride fibbers is about579 cmm-1[11], higherr than that off chalcogenidee fibers (240cm-1foor As-Se fiberrs and 340 cmm-1As-S fibeers[12]). It indicates thhat the achievved Stokes wwavelength offluoride fibers is loonger than thhat of chalcoogenide fiberss under the same puump conditionn.

    3. Development of Fluoride Raman Fiber Laser

    The most ccommon fluorride fiber is ZBBLAN fiber wwith a mmixture of 53mol.% ZrF4,20 mol.% BaaF2, 4 mol.%LaF3,3mol.% AlF3,and 20 mol.%% NaF. The ZZBLAN fiberhas a loow-loss transmission winddow rangingfrom 0.35 μm to 4μm. Currentlyy, rare earth ioons (such as TTm3+, Ho3+, orr Er3+)dooped fluoridefiber lasers ccan generate ooutput with 2 μm to 3μm wavelength[13]-[16]. Hoowever, the llack of MIRfiber BBragg grating(FBG) hindeers the furtheer developmeent of MMIR RFLs tosome extentt. Recently, tthe FBG hasbeen suuccessfully innscribed in afluoride fiberr using an 8000 nm feemtosecond laaser[17]and thhen the firstRFL based oon the flluoride fiber hhas been buillt[11]. The expperimental settup is shhown in Fig.1. Here, a Tmm3+-doped sillica fiber laseer was seerved as thepump sourcee of the RFLwhich providded a mmaximum CWW power of 96W at 1940 nmm. The Tm3+-ddoped siilica fiber lasser was pumpped by a BriightLase Ultrra-100 diiode array froom QPC Laseers Inc. operatting at 792 nmm and deelivering a maximum poweer of 35 W. TThen it was cooupled innto a 29 m lonng fluoride fiber.

    Fig.1. Experimentaa l setup of 2185 nm RFL1].

    TThe core diammeter and nummerical apertture (NA) ofthe fluoride fiber are6.5 μm and 0.23 μm, respectively. A pairr of FBGs are inscribeed in both endds of the fiberr. They were aalso thermmally annealed at 100°CC for 5 minuutes in orderto imprrove long terrm stability. FFig. 2 showsthe laser outpput powwer as a functiion of the launnched pump ppower. The laaser threshold was 3.88 W. The maaximum outpuut power of 5580 mWW only limitedby the availabble pump powwer was obtainned withh a slope effficiency of 229%. In addiition, it canbe obseerved that theefficiency shows a significcant roll-overfor pummp power in exxcess of 4 W aand decreasess to about 14%% at thepump powerr of 7 W. Thhis decreaseis the resultof specctral broadeniing inside thee laser cavityy. Moreover,the corrresponding nuumerical simullation was also performed aand showwn in Fig. 2.The simulatiion results maatches well with the eexperimental rresults.

    Fig.2. Laser outpuut power as a function of the launched pu mp power[11].

    Fig. 3 presennts the Stokees output specctrum whenthe Stokes power wwas 280 mW,, and the innset showsthe transmittance speectra of the used FBGs. Itcan be observed thatthe Stokes peak wavelength of the RFL was 2185 nm.To ssum up, thouggh the MIR SStokes laser from the fluoride RFLL was obtainned, the leveels in termsof power and efficciencies werestill low.

    Fi g. 4. Experime ntal setup of 2231 nm RFL[18].

    Fig. 3. Stokes ooutput spectrumm when the Stookes power waas 280 mW. Inset: transmmittance chart oof the pair of FBBGs[11].

    Afterwardss, a watt-levvel RFL wwith an improved peerformance oover 2.2 μm bbased on thefluoride fibeer has beeen reported[118]. The experiimental setupis shown in Fig. 4.

    The cavitystructure was basically saame as that shhown inn Fig. 1. Theonly differencce was that annother FBG wwhich haad a high refllectivity at thee pump wavellength of 1981 nm wwas written intto the outputend of the fluuoride fiber. OOther mmaterials usedin this experiiment were the same as thoose of Fig. 1. The 19881 nm pump llaser was obtaained by utilizzing a 7991 nm laserdiode of 366 W to pummp an 8 mlong TTm3+-doped doouble-clad sillica fiber. Theen it was couupled innto a 26 m lonng fluoride fibber. Fig. 5 illuustrates the ouutput poower

    asafunnctionof pummp power. Thee maximum ouutput poowerof3.66Wwasobtaiinedwithasslopeefficienccyof 155% negligiblle. Meanwhile, the highreflectivity FFBGs ennhanced the innteraction streength of the ppump power in the RRaman cavityand compennsated the effficiency reduuction caaused by specctral broadeninng.

    Fi g. 5. Stokes ou tput power as a function of pu mp power[18].

    FFig. 6 (a) annd Fig. 6 (b)show the puump and Stokkes specctra, respectivvely. It can beobserved thaat no matter hhow theStokes powerr changes withh the pump poower, the Stokkes output peak wavelength is alwways locatedat 2231 nm.In addiition, both sppectra were bbroadened witth the increassed pummp power whhich is ubiquitous in a hiigh-power RFFL.Oncce the spectraa were broaddened beyondd the operation banddwidth of thee FBGs, the pperformanceof the RFL wwas serioously affectedd as a resultof laser poweer leakage. TThis wasmainly due too the low grouup velocity diispersion (GVVD)andthe reducedd FBG effecctive reflectivity. Sincethe fluoride fiber caan stably opeerate in the vvicinity of zero disppersion wavellength, the innfluence ofGVD couldbe neglligible. Meanwwhile, the higgh reflectivityFBGs enhanced theinteraction sttrength of thee pump poweer in the Raman caviity and compeensated the effficiency reduuction causedby specctral broadeninng.

    Fig.6. Spectra: (a) pump spectrum and (b) Stokes spectrum[18].

    In this expeeriment, onlythe optical-too-optical efficciency with respect too the original 7791 nm pump has been obttained due to the limittation of the eembedded cavity. In practicce, the conversion effiiciency with reespect to the 11981 nm pump was higher.

    4. Development of Chalcogenide Raman Fiber Laser

    Chalcogeniide fibers maiinly consist oof chalcogenssuch ass S, Se, and TTe. Then extraa Ge, As, Sb, aand other elemments arre added. Commpared with AAs-S fibers, AAs-Se fibers haave a wwider MIR loww-loss transmiission windoww (0.8 μm to 77 μm foor As-S fiberand 1 μm to10 μm for Ass-Se fiber[4]). PP. A.TThielen et al.have gained tthe Raman ammplification bbased onn the As-Se ffiber at 1.5 μmm[19]. S. D. Jaackson et al.have obbtained a RFLL with the ouutput power oof 0.64 W at2062 nmm by utilizingg a 2051 nm TTm3+-doped ssilica fiber lasser to puump a 0.5 m llong As2Se3fiiber[20].

    The develoopments of MMIR fiber laserrs over 3 μmlay a fooundation forr obtaining RRFLs with thhe longer Sttokes wwavelength. MM. Bernier et aal. have emplooyed a home-mmade 8000 nm femtoosecond pullse laser annd phase mmask teechnology tofabricate FBGGs in the loww-loss single-mmode chhalcogenide ffiber[21]andthen firstlyrealized theRFL yiielding the Sttokes outputwavelength oover 3 μm[22].The exxperimental seetup is shownn in Fig. 7.

    They emplloyed a quassi-continuouswave Er3+-ddoped flluoride fiber llaser at 3.005μm as the puump source, aa pair off non-sphericaal lens (L1 annd L2) were uused to couple the puump into the3 m long As22S3single-modde fiber whichh has anumerical aperture (NA) oof 0.36, a corediameter of 44 μm,annd a claddinng diameterof 145 μm.. As a resullt of seelf-collimationn measuremeent, the pummp power couupled innto the Ramann cavity was oonly 26% of tthe original power(ii.e., the maximmum pump poower was 10 WW, the actual ppump poower was oonly 2.6 W),the 74% looss includedd the transmission looss of L1, L22, and the loww pass filter (LLPF)and the mismattch loss betweeen the incideent light and AAs2S3siingle-mode fibber.

    Fii g. 7. Experime ntal setup of 3.34 μm RFL[22].

    Fig. 8 presents the spectra of the pump, FBGs,, and Stokes output. Comparedwith that of the pump,, the spectrum of Stokes output is significantlybroadened.

    Fig.8. Spectra of thh e pump, FBGss, and Stokes[22].

    Fig. 9 showsthe Stokes avverage power ((y-axis left) annd Stokes peak powwer (y-axis rright) as a ffunction of tthe launched pump aaverage powerr. It can be obbserved that the outpput powers inccrease linearlyy with the pump power. The maxximum averagge output poweer of 47 mW aand peak power of 0.6 W were obtained with aslope efficienncy of 39%. The corrresponding lasser threshold wwas 125 mW.

    Fig.9. Stokes averrage power and peak power as a functionof launcched average puump power[22].

    AAfterwards, MM. Bernier eet al. have demonstrateda secoond-order casscaded RFLbased on the chalcogenide fiberr. The Stokess wavelength was further extended to 3.77 μmwhich is alsoo the recordwavelength from MIR fiber laserrs at room teemperature[23]. The experimental setupis showwn in Fig. 10.

    TThey employyed the samme quasi-conntinuous waave Er3++-doped fluoriide fiber laseer at 3.005 μmm as the pummp sourrce and thesame self-collimation mmeasurementas showwn in Fig. 7. It was estimmated that thhe pump powwer couppled into thecascaded Ramman cavity was only 38%of theoriginal pumpp power, themaximum puump power wwas 3.9W with a 1000% couplingg efficiency assumption. The gainn medium wass a piece of 2..8 m As2S3sinngle-mode fibber withh same parameeters as that uused in the aboove experimennt.Twoo pairs of FBGs directly innscribed in thhe chalcogenide fiberr were serveed as the lasser cavities oof the RFL.A transmission filteer of the outpuut end was ussed to filter oout the rresidual pumpp light and thee first-order Sttokes light.

    FFig. 11 showws the spectraa of pump laaser, first-ordder Stokkes laser, annd second-ordder Stokes laaser. The peak wavvelengths of ffirst-order andd second-ordder Stokes laser are3.34 μm andd 3.766 μm,respectively.As the pump powwer increased,the spectrumm of first-ordder Stokes laser was obviouslybroadened whhile that of seecond-order Sttokes sttayed the samme. Fig. 12 sshows the avverage powerr and caalculated peakk power of thee second-ordeer Stokes laserr asa fuunction of thee average pummp power whhen the reflecttivity off the output ccoupler (OC) aat 3.77 μm was 98%, 92%, and 800%, respectivvely. It can bbe observed thhat both thelaser threshold andslope efficienncy increase wwith the increased reflectivity of tthe OC. Thecalculated sloope efficiency was 1.1%, 3.5%, aand 8.3%, resspectively. WWhen the OCwith 80% reflectivity wwas utilized, tthe maximumStokes averaage output power of9 mW corresponding to apeak powerof 114mW was obbtained at the launched ppump powerof 371mW. In the nnumerical stimmulation, whenn the reflectiviity of OC at 3.77 μmm was reducedto 60%, a peaak output power of 1158 mW witth a slope efficiency of12% couldbe acquuired. Howeveer, it cannot bbe realized exxperimentallyas a reesult of acciidentally nonnlinear fiberdamage when expeeriencing the cc ycle process of thermal annnealing.

    Fi g. 10. Experimental setup of 3.77 μm cascad ed RFL[23].

    Fig. 11. Spectrum: (a) pump spectrum, (b) Sto kes 1 spectrum, and(c) Stokes 2 spectrum[23].

    Fig. 12. Second-order Stokes average power and peak power as a function of the average pump power[23].

    TThe obtainedd wavelengthof 3.766 μmm is the longeest Stokes wavelenggth in RFLsfrom domesstic researchto foreign research.Above results present thee Stokes outpput power and slopee efficiencywere very low, it canbe improved by thee followingaspects: Redducing the loss caussed by FBGss (every FBGG has beentested and the averrage loss wwas 3% to4%), suppreessing spectral broaadening of thee first-order Sttokes light, annd so on.

    5. Conclusions

    WWe have brieffly introducedd the recent developments oon MIRR RFLs. Therare earth ioons doped oxxide RFLs haave reacched hundredss of watts orr even kilowwatts level wiith Stokkes wavelenngth less thhan 2 μm.Fluoride annd challcogenide RFLLs have yieldded the Ramaan laser outpuuts withh longer wavelength beyondd 2 μm. The ooutput powersof fluoride RFLs hhave reachedd watt-levelwith emissioon wavvelength of 2μm to 3 μm.The outputpower levelof challcogenide RFLLs is relativelly low at millliwatt level bbut withh a longerStokes waveelength of uup to 3.77 μmm.Commpared withthe researchlevel abroadd, the domesttic research in theMIR RFLss is still ata preliminaary statee[24]-[28]. Thouugh some proggresses on MIRR RFLs beyonnd 3 μmm have beenachieved, theere are still mmany challengges remaaining. In oorder to reallize high poower and higgh efficciency operatiion of RFLs aat longer MIRR wavelengths, a seriees of efforts sshould be depployed to imprrove the quality of nnonlinear MIRR fiber, fabriicate high-perrformance MIR all-ffiber passivecomponentss, increase thhe power, and exteend the outputwavelength oof the pump soource, etc.

    [1] V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Optics Letters, vol. 38, no. 14, pp. 2538-2541, 2013.

    [2] L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, and Y.Feng, “1.3 kW Raman fiber laser,” Chinese Journal of Lasers, vol. 6, pp. 22-22, Mar. 2014 (in Chinese).

    [3] H. Xiao, J. Leng, H. Zhang, L. Huang, S. Guo, P. Zhou, and J. Chen, “2.14 kW cascade-pumped Raman fiber amplifier,”High Power Laser and Particle Beams, vol. 27, no. 1, pp.010103-1-0.0103-2, 2015 (in Chinese).

    [4] J. S. Sanghera, L. B. Shaw, L.E. Busse, et al., “Infrared optical fibers and their applications,” in Proc. 1999 SPIE Conf., Boston, 1999, pp. 38-49.

    [5] M. Pollnau and S. D. Jackson, Advances in Mid-Infrared Fiber Lasers, Berlin: Springer, 2008, pp. 315-346.

    [6] P. W. France, M. G. Drexhage, and J. M. Parker, Fluoride Glass Optical Fibers, Glasgow: Blackie, 1990, ch. 1.

    [7] L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and L. D.Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE Journal of Quantum Electronics, vol. 48, no. 9, pp. 1127-1137,2001.

    [8] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. Oxford, U.K:Academic Press, 2013, ch. 8, pp. 299.

    [9] V. Fortin, M. Bernier, J. Carrier, and R. Vallee, “Fluoride glass Raman fiber laser at 2185 nm,” Optics Letters, vol. 36,no. 21, pp. 4152-4154, 2011.

    [10] R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3and As2Se3optical fibers,” Optics Letter, vol. 36, no. 12, pp.2351-2353, 2011.

    [11] T. Mizunami, H. Iwashita, and K. Takagi, “Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers,” Optics Communications, vol. 97, no.1-2, pp. 74-78, 1993.

    [12] J. S. Sanghera, L. Shaw, P. Pureza, et al., “Nonlinear properties of chalcogenide glass fiber,” Intl. Journal of Applied Glass Science, vol. 1, no. 3, pp. 296-308, 2010.

    [13] Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Optical Materials, vol. 17,no. 4, pp. 501-511, 2001.

    [14] S. D. Jackson, “Single-transverse-mode 2.5 W holmiumdoped fluoride fiber laser operating at 2.86 μm,” Optics Letters, vol. 29, no. 4, pp. 334-336, 2004.

    [15] D. Faucher, M. Bernier, N. Caron, and R. Vallee,“Erbium-doped all-fiber laser at 2.94 μm,” Optics Letters,vol. 34, no. 21, pp. 3313-3315, 2009.

    [16] S. D. Jackson, “High-power and highly efficient diodecladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Optics Letters, vol. 34, no. 15, pp.2327-2329, 2009.

    [17] M. Bemier, D. Faucher, R.Vallee, A. Saliminia, G. Androz, Y.Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Optics Letters, vol. 32, no. 5, pp. 454-456, 2007.

    [18] V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallee,“3.7 W fluoride glass Raman fiber laser operating at 2231 nm,” Optics Express, vol. 20, no. 17, pp. 19412-19419,2012.

    [19] P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S.Sanghera, and L. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Optics Letters, vol. 28, no. 16, pp.1406-1408, 2003.

    [20] S. D. Jackson and G. Sanchez, “A chalcogenide glass Raman fiber laser,” Applied Physics Letters, vol. 88, pp.221106-221109, May 2006.

    [21] M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq,and R. Vallee, “Writing of Bragg gratings through the polymer jacket of low-loss As2S3fibers using femtosecond pulses at 800 nm,” Optics Letters, vol. 37, no. 18, pp.3900-3902, 2012.

    [22] M. Bernier, M. Fortin, N.Caron, M. El-Amraoui, Y.Messaddeq, and R. Vallee, “Mid-infrared chalcogenide glass Raman fiber laser,” Optics Letters, vol. 38, no. 2, pp.127-129, 2013.

    [23] M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R.Vallee, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Optics Letters, vol. 39, no. 7,pp. 2052-2055, 2014.

    [24] G. Qin, S. Huang, H. Feng, A. Shirakawa, M. Musha, and K.I. Ueda, “Power scaling of Tm3+-doped ZBLAN blue upconversion fiber lasers modeling and experiments,” Applied Physics, vol. 82, no. 1, pp. 65-70, 2006.

    [25] J. Li, Y. Chen, M. Chen, et al., “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Optics Communications, vol. 284, no.5, pp.1278-1283, 2011.

    [26] J. Li, Z. Ou, Z. Dai, Z. Peng, L. Zhang, and Y. Liu,“Theoretical analysis and design of Mid-infrared ZBLAN Raman fiber laser,” Infrared and Laser Engineering, vol. 40,no. 8, pp. 1432-1437, 2011 (in Chinese).

    [27] H.-Y. Luo, J.-F. Li, J. Li, Y.-L. He, and Y. Liu, “Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+-doped fiber laser,”IEEE Photonics Journal, vol. 5, no. 2, pp. 2700211, 2013.

    [28] Y. Wang, Z. Q. Luo, F. Xiong, Z. P. Cai, and H. Y. Xu,“Numerical optimization of 3-5 μm mid-infrared ZBLAN fiber Raman lasers,” Laser & Optoelectronics Progress, vol.51, pp. 061405, Mar. 2014 (in Chinese).

    国产精品三级大全| 国产精品野战在线观看| 男人和女人高潮做爰伦理| 99在线视频只有这里精品首页| 国产精品久久久久久久久免| 中文字幕免费在线视频6| 午夜久久久久精精品| 小蜜桃在线观看免费完整版高清| 国产成人freesex在线 | 91久久精品国产一区二区三区| 国产精品人妻久久久影院| 97超视频在线观看视频| 国产精品人妻久久久影院| 最近视频中文字幕2019在线8| 亚洲av一区综合| 搡老妇女老女人老熟妇| 成人无遮挡网站| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 日日摸夜夜添夜夜添小说| 日本-黄色视频高清免费观看| 国产成人91sexporn| 欧美激情在线99| 亚洲精品456在线播放app| 国产亚洲精品av在线| 国产爱豆传媒在线观看| 中国国产av一级| 在线免费观看不下载黄p国产| 可以在线观看毛片的网站| 午夜福利在线观看免费完整高清在 | 国产高清视频在线播放一区| 日日撸夜夜添| 久久午夜亚洲精品久久| 国内精品久久久久精免费| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 国产亚洲精品久久久com| 最近最新中文字幕大全电影3| 国产高清不卡午夜福利| 深夜精品福利| 国产精品一区www在线观看| 天堂网av新在线| 日本-黄色视频高清免费观看| 久久久久久久久久黄片| 精品一区二区三区视频在线| 在线国产一区二区在线| 亚洲欧美日韩无卡精品| 精品久久久久久久末码| 久久久a久久爽久久v久久| 九九在线视频观看精品| 哪里可以看免费的av片| aaaaa片日本免费| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 在线国产一区二区在线| 99久国产av精品国产电影| 亚洲图色成人| 在线a可以看的网站| 免费av毛片视频| 夜夜爽天天搞| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一卡2卡三卡4卡5卡| 搡女人真爽免费视频火全软件 | 日韩在线高清观看一区二区三区| 91av网一区二区| 综合色丁香网| 成年女人毛片免费观看观看9| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆| 欧美zozozo另类| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 黑人高潮一二区| 日本欧美国产在线视频| 午夜日韩欧美国产| 此物有八面人人有两片| 午夜a级毛片| 美女大奶头视频| 伊人久久精品亚洲午夜| 国产高清不卡午夜福利| 免费看a级黄色片| 色综合站精品国产| 最近在线观看免费完整版| 天堂影院成人在线观看| 国产精品1区2区在线观看.| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 国产一区二区亚洲精品在线观看| 在线观看美女被高潮喷水网站| 美女高潮的动态| 可以在线观看毛片的网站| 国产高清不卡午夜福利| 久久国产乱子免费精品| 精品国产三级普通话版| 久久久精品欧美日韩精品| 99久久精品国产国产毛片| 简卡轻食公司| 日本在线视频免费播放| 在线播放无遮挡| 在线天堂最新版资源| 欧美又色又爽又黄视频| 亚洲18禁久久av| 天天躁日日操中文字幕| 99热这里只有是精品在线观看| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 国产精品无大码| 91久久精品国产一区二区三区| 久久久久九九精品影院| 99热这里只有精品一区| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| 日韩欧美一区二区三区在线观看| 超碰av人人做人人爽久久| 能在线免费观看的黄片| 男女那种视频在线观看| 在线a可以看的网站| 少妇丰满av| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 高清午夜精品一区二区三区 | 少妇裸体淫交视频免费看高清| 99久国产av精品| 精品福利观看| 亚洲精品粉嫩美女一区| 日本黄色片子视频| 亚洲av二区三区四区| 亚州av有码| 国产美女午夜福利| 色综合色国产| 十八禁网站免费在线| 非洲黑人性xxxx精品又粗又长| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 久久九九热精品免费| 亚洲中文日韩欧美视频| 日本 av在线| 俺也久久电影网| 国产精品野战在线观看| 男人舔女人下体高潮全视频| 简卡轻食公司| 黄色日韩在线| or卡值多少钱| 观看免费一级毛片| 国产精品无大码| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 日产精品乱码卡一卡2卡三| 女人十人毛片免费观看3o分钟| 日韩欧美国产在线观看| 蜜臀久久99精品久久宅男| 免费人成视频x8x8入口观看| 少妇的逼水好多| 亚洲精品成人久久久久久| 午夜福利在线观看吧| 人妻丰满熟妇av一区二区三区| 久久久午夜欧美精品| 成人午夜高清在线视频| 欧美潮喷喷水| 亚洲成人久久性| 十八禁网站免费在线| 国产精品一区www在线观看| 久久久久精品国产欧美久久久| 日本黄大片高清| 中文字幕熟女人妻在线| 天堂影院成人在线观看| 2021天堂中文幕一二区在线观| 卡戴珊不雅视频在线播放| 精品一区二区三区av网在线观看| 搡老岳熟女国产| 插阴视频在线观看视频| 熟妇人妻久久中文字幕3abv| 精品久久久久久久久av| 成年av动漫网址| 国产一级毛片七仙女欲春2| or卡值多少钱| 午夜精品一区二区三区免费看| 蜜臀久久99精品久久宅男| 国产精品久久久久久av不卡| 久久久久免费精品人妻一区二区| 婷婷六月久久综合丁香| 国产亚洲欧美98| 精品福利观看| 超碰av人人做人人爽久久| 中文在线观看免费www的网站| 日韩一本色道免费dvd| av在线播放精品| 在线看三级毛片| 婷婷亚洲欧美| 亚洲最大成人av| 内地一区二区视频在线| 欧美又色又爽又黄视频| 老司机影院成人| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看 | 精品不卡国产一区二区三区| 97在线视频观看| 内地一区二区视频在线| 国产精品福利在线免费观看| 老司机影院成人| 日韩,欧美,国产一区二区三区 | 亚洲综合色惰| 欧美成人免费av一区二区三区| 国产免费一级a男人的天堂| 欧美日韩乱码在线| 日日摸夜夜添夜夜添小说| 欧美bdsm另类| 免费在线观看成人毛片| 国产精品一区二区性色av| 岛国在线免费视频观看| 97超碰精品成人国产| 99久久精品热视频| 欧美3d第一页| 又粗又爽又猛毛片免费看| 国产成人a∨麻豆精品| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 美女 人体艺术 gogo| .国产精品久久| 成人特级av手机在线观看| 亚洲美女搞黄在线观看 | 国产久久久一区二区三区| 日本免费一区二区三区高清不卡| 美女内射精品一级片tv| 国产精品99久久久久久久久| 床上黄色一级片| 校园春色视频在线观看| 国产三级中文精品| 午夜精品在线福利| 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| 又黄又爽又刺激的免费视频.| 亚洲精品日韩av片在线观看| 好男人在线观看高清免费视频| 天天一区二区日本电影三级| 乱人视频在线观看| 国产在线男女| 天堂√8在线中文| 国产91av在线免费观看| 亚洲成人精品中文字幕电影| 少妇人妻精品综合一区二区 | 久久欧美精品欧美久久欧美| av女优亚洲男人天堂| 老熟妇乱子伦视频在线观看| 国产黄色小视频在线观看| 国产色婷婷99| 我的女老师完整版在线观看| 欧美中文日本在线观看视频| 亚洲精品亚洲一区二区| 麻豆国产av国片精品| 国产精品1区2区在线观看.| av在线天堂中文字幕| 成人美女网站在线观看视频| 免费电影在线观看免费观看| 欧美国产日韩亚洲一区| 精华霜和精华液先用哪个| 国产美女午夜福利| 一区二区三区高清视频在线| 亚洲精品久久国产高清桃花| 亚洲最大成人中文| 日韩成人av中文字幕在线观看 | 嫩草影院新地址| 国产伦精品一区二区三区四那| 久久精品国产清高在天天线| 欧美另类亚洲清纯唯美| av国产免费在线观看| 日韩 亚洲 欧美在线| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区久久| 欧美高清性xxxxhd video| 人人妻,人人澡人人爽秒播| 国产亚洲av嫩草精品影院| 欧美激情久久久久久爽电影| 亚洲av一区综合| 成人精品一区二区免费| 成年女人永久免费观看视频| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 晚上一个人看的免费电影| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久中文| 波多野结衣高清作品| 久久久久精品国产欧美久久久| 欧美日韩精品成人综合77777| aaaaa片日本免费| 欧美一区二区精品小视频在线| 国产成人影院久久av| 色综合色国产| 夜夜爽天天搞| 人人妻人人澡人人爽人人夜夜 | 91狼人影院| 精品久久久久久久久av| 成人欧美大片| 亚州av有码| 久久久久精品国产欧美久久久| 日韩中字成人| 亚洲av不卡在线观看| 亚洲精品一区av在线观看| 在线免费十八禁| 99视频精品全部免费 在线| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 一区二区三区四区激情视频 | 少妇被粗大猛烈的视频| 欧美成人精品欧美一级黄| 2021天堂中文幕一二区在线观| 国产麻豆成人av免费视频| av在线蜜桃| 毛片女人毛片| 国内精品美女久久久久久| 一级毛片我不卡| 久久久久国产精品人妻aⅴ院| 一级毛片久久久久久久久女| 国产免费男女视频| 又粗又爽又猛毛片免费看| 嫩草影院新地址| 97超碰精品成人国产| 国产精品日韩av在线免费观看| 大又大粗又爽又黄少妇毛片口| 高清日韩中文字幕在线| av在线老鸭窝| 3wmmmm亚洲av在线观看| 国产av在哪里看| 毛片一级片免费看久久久久| 美女cb高潮喷水在线观看| 久久精品夜色国产| 日日摸夜夜添夜夜添小说| 久久久久国产网址| 欧美激情久久久久久爽电影| 全区人妻精品视频| 深夜a级毛片| 成人特级av手机在线观看| 六月丁香七月| 男人狂女人下面高潮的视频| 一级毛片aaaaaa免费看小| 国产精品1区2区在线观看.| 午夜福利在线在线| 欧美精品国产亚洲| 春色校园在线视频观看| 国产在视频线在精品| 久久久久国产网址| 亚洲美女黄片视频| 亚洲性夜色夜夜综合| 国产精品美女特级片免费视频播放器| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人久久久久久| 亚洲最大成人av| 91久久精品国产一区二区三区| 久久精品国产自在天天线| 日韩欧美三级三区| 深爱激情五月婷婷| 欧美日韩乱码在线| 午夜激情欧美在线| 99久久成人亚洲精品观看| 免费av观看视频| 22中文网久久字幕| 国产精品日韩av在线免费观看| 成人av在线播放网站| 天堂av国产一区二区熟女人妻| 免费在线观看影片大全网站| 国产一区二区亚洲精品在线观看| 亚洲国产精品成人久久小说 | 夜夜夜夜夜久久久久| 成人精品一区二区免费| 又粗又爽又猛毛片免费看| 综合色av麻豆| 国产69精品久久久久777片| 日韩欧美在线乱码| 我的老师免费观看完整版| 精品国产三级普通话版| 欧美国产日韩亚洲一区| 美女黄网站色视频| 黄色欧美视频在线观看| АⅤ资源中文在线天堂| 波多野结衣巨乳人妻| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 亚洲最大成人av| 免费看av在线观看网站| 亚洲人成网站在线观看播放| 最近最新中文字幕大全电影3| av黄色大香蕉| 免费av观看视频| 国产精品一区二区三区四区免费观看 | 国产成人精品久久久久久| 少妇人妻一区二区三区视频| 国产精品三级大全| 99在线人妻在线中文字幕| 91在线精品国自产拍蜜月| aaaaa片日本免费| 高清毛片免费看| 在线播放无遮挡| 日本色播在线视频| 丝袜美腿在线中文| 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 久久亚洲精品不卡| 一区二区三区免费毛片| 亚洲美女搞黄在线观看 | 一区二区三区四区激情视频 | 可以在线观看的亚洲视频| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 在线天堂最新版资源| 国内精品宾馆在线| 成人av一区二区三区在线看| 麻豆乱淫一区二区| 日韩中字成人| 级片在线观看| 国产国拍精品亚洲av在线观看| 国产激情偷乱视频一区二区| 国产精品精品国产色婷婷| 精品少妇黑人巨大在线播放 | 听说在线观看完整版免费高清| 中文资源天堂在线| 岛国在线免费视频观看| 欧美区成人在线视频| 日本一二三区视频观看| 中文字幕av成人在线电影| 国产视频内射| 国产不卡一卡二| 久久精品国产亚洲av天美| 99热网站在线观看| 免费观看精品视频网站| av在线天堂中文字幕| 看免费成人av毛片| 在线观看午夜福利视频| 你懂的网址亚洲精品在线观看 | 国产成人影院久久av| 国内精品美女久久久久久| 一进一出抽搐动态| 18禁黄网站禁片免费观看直播| 别揉我奶头 嗯啊视频| 99热只有精品国产| 久久久欧美国产精品| 搡老妇女老女人老熟妇| 国产视频一区二区在线看| 免费人成在线观看视频色| 日日撸夜夜添| 国产伦精品一区二区三区四那| 我要看日韩黄色一级片| 欧美激情久久久久久爽电影| 久久韩国三级中文字幕| 国产午夜福利久久久久久| 最近2019中文字幕mv第一页| 欧美日韩在线观看h| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 国产午夜精品久久久久久一区二区三区 | 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 永久网站在线| 丰满人妻一区二区三区视频av| 秋霞在线观看毛片| 熟女电影av网| 嫩草影院新地址| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 成人鲁丝片一二三区免费| 91久久精品电影网| 亚洲精品影视一区二区三区av| 97超碰精品成人国产| 久久精品影院6| av黄色大香蕉| 久久国产乱子免费精品| 国产麻豆成人av免费视频| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 午夜爱爱视频在线播放| 久久久久久久久久成人| 欧美精品国产亚洲| 国产久久久一区二区三区| 亚洲美女黄片视频| 国产精品美女特级片免费视频播放器| 在线观看免费视频日本深夜| 欧美一区二区亚洲| 可以在线观看毛片的网站| 草草在线视频免费看| 精品无人区乱码1区二区| 国产精品一区二区三区四区免费观看 | 久久久久久大精品| 真人做人爱边吃奶动态| 日韩强制内射视频| 亚洲无线观看免费| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| 久久中文看片网| 日韩欧美国产在线观看| 亚洲激情五月婷婷啪啪| 六月丁香七月| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 在线天堂最新版资源| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 天堂√8在线中文| 国产 一区 欧美 日韩| 久久婷婷人人爽人人干人人爱| 免费看av在线观看网站| av中文乱码字幕在线| 在线免费十八禁| 身体一侧抽搐| 久久九九热精品免费| 欧美日韩综合久久久久久| 丝袜美腿在线中文| 免费看光身美女| 男女之事视频高清在线观看| 在线播放无遮挡| 激情 狠狠 欧美| 波多野结衣巨乳人妻| 国产精品免费一区二区三区在线| 日韩在线高清观看一区二区三区| 一边摸一边抽搐一进一小说| 小说图片视频综合网站| 亚洲欧美日韩卡通动漫| 国内精品一区二区在线观看| 观看美女的网站| 观看免费一级毛片| 一a级毛片在线观看| 免费看av在线观看网站| 日本五十路高清| 三级毛片av免费| 日本免费一区二区三区高清不卡| 午夜精品在线福利| 身体一侧抽搐| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 欧美zozozo另类| 日韩大尺度精品在线看网址| 色综合亚洲欧美另类图片| 亚洲久久久久久中文字幕| 看非洲黑人一级黄片| 久久精品国产99精品国产亚洲性色| 日产精品乱码卡一卡2卡三| 99热6这里只有精品| 亚洲精品日韩在线中文字幕 | 在线免费十八禁| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 最近最新中文字幕大全电影3| 一进一出好大好爽视频| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 人人妻人人澡欧美一区二区| 免费在线观看成人毛片| 色哟哟哟哟哟哟| 国产淫片久久久久久久久| 国产亚洲精品久久久久久毛片| 欧美性感艳星| 亚洲人成网站高清观看| 一进一出好大好爽视频| 欧美高清性xxxxhd video| 99久久精品热视频| 免费黄网站久久成人精品| 日韩人妻高清精品专区| 久久午夜福利片| 国语自产精品视频在线第100页| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 91久久精品国产一区二区成人| 黄色一级大片看看| av卡一久久| 一级黄色大片毛片| 在现免费观看毛片| 男女下面进入的视频免费午夜| 午夜免费男女啪啪视频观看 | 两个人的视频大全免费| 日本在线视频免费播放| 18禁在线播放成人免费| 我的老师免费观看完整版| 亚洲美女搞黄在线观看 | 国产老妇女一区| 免费看av在线观看网站| 床上黄色一级片| 亚洲成人av在线免费| 精品无人区乱码1区二区| 亚洲av免费在线观看| 欧美激情久久久久久爽电影| 韩国av在线不卡| 十八禁网站免费在线| 人人妻人人澡人人爽人人夜夜 | 久久久午夜欧美精品| 成人美女网站在线观看视频| 成人午夜高清在线视频| 亚洲电影在线观看av| 一级黄片播放器| 草草在线视频免费看| 国产精品野战在线观看| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 成人性生交大片免费视频hd| 午夜福利18| 级片在线观看| 色综合站精品国产| 久久久久国产精品人妻aⅴ院| 高清毛片免费观看视频网站| 在线观看av片永久免费下载| 欧美3d第一页|