• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach for epileptic EEG detection based on gradient boosting

    2015-07-06 15:03:47CHENShuangshuangZHOUWeidongGENGShujuanYUANQiWANGJiwen
    關鍵詞:長程山東大學腦電

    CHEN Shuang-shuang, ZHOU Wei-dong, GENG Shu-juan, YUAN Qi, WANG Ji-wen

    (1. Suzhou Institute of Shandong University, Suzhou 215123, China;2. School of Information Science and Engineering, Shandong University, Jinan 250100, China;3. Qilu Hospital, Shandong University, Jinan 250100, China)

    ?

    Approach for epileptic EEG detection based on gradient boosting

    CHEN Shuang-shuang1,2, ZHOU Wei-dong1,2, GENG Shu-juan1,2, YUAN Qi1,2, WANG Ji-wen3

    (1.SuzhouInstituteofShandongUniversity,Suzhou215123,China;2.SchoolofInformationScienceandEngineering,ShandongUniversity,Jinan250100,China;3.QiluHospital,ShandongUniversity,Jinan250100,China)

    The automatic seizure detection is significant for epilepsy diagnosis and it can alleviate the work intensity of inspecting prolonged electroencephalogram (EEG). This paper presents and investigates a novel machine learning approach utilizing gradient boosting to detect seizures from long-term EEG. We apply relative fluctuation index to extract features of long-term intracranial EEG data. A classifier trained with the gradient boosting algorithm is adopted to discriminate the seizure and non-seizure EEG signals. Smoothing and collar technique are finally used as post-processing in order to improve the detection accuracy further. The seizure detection method is assessed on Freiburg EEG datasets from 21 patients. The experimental results indicate that the proposed method yields an average sensitivity of 94.60% with a false detection rate of 0.18/h.

    electroencephalogram (EEG); seizure detection; wavelet transform; fluctuation index; gradient boosting

    0 Introduction

    Epileptic seizures are suddenly abnormal reactions in the brain represented by loss of awareness or consciousness and disturbances of movement, sensation, mood or mental function[1]. Electroencephalogram (EEG) signal analysis is widely used for assessing disorders of brain function, especially for epilepsy diagnosis. Visual inspection of long-term EEG recordings for seizures is very tedious and time-consuming. Therefore, the development of an automatic seizure detection system has an important role in analyzing EEG recordings.

    The automatic seizure detection method presented by Gotman is the first widely applicable technique[2]. In this method, EEG signals were decomposed into half-waves, and then features as peak amplitude, duration, slope and sharpness were extracted for detection. Expanding on this work, Khan and Gotman employed discrete wavelet transform (DWT) to decompose EEG signals into sub-bands and computed features, such as energy, coefficients of variation and relative amplitude, on the DWT coefficients for seizure detection[3].

    Several classifiers capable of classifying seizure and non-seizure EEG signals have been presented in the literature. Gardner et al. employed one-class support vector machine (SVM) to classify short-time, energy-based statistics computed from one-second windows of data[4]. Temko et al. presented a multi-channel patient-independent neonatal seizure detection system based on the SVM classifier[5]. An algorithm for automatic seizure detection using self-organizing map (SOM) neural network (NN) with unsupervised training was proposed by Gabor et al.[6]. Gradient boosting is a machine learning technique for regression problems, which produces a prediction model in the form of an ensemble of weak prediction models. By minimizing different loss functions, gradient boosting can deal with not only the regression problems but also the classification problems. Gradient boosting has been applied to motor imagery classification with higher performances[7].

    In this paper, we propose a method to detect the seizures from EEG signals using gradient boosting algorithm in conjunction with ordinary least squares (OLS) regression. Gradient boosting with OLS is an interesting alternative to state of the art algorithms for epileptic seizure detection. The algorithm can build linear classification rules so that a small number of operations are needed to apply the classifier to new data. Relative fluctuation index is employed to characterize the EEG signals from each channel. Furthermore, smoothing and collar techniques are used as post-processing in order to improve the accuracy of this method. The experimental results show that this method can detect the seizures with a high sensitivity and low false detection rate.

    1 Data acquisition and preprocessing

    1.1 Data acquisition

    All the EEG data used in our study come from the Epilepsy Center of the University Hospital of Freiburg, Germany[8]. The EEG database contains invasive EEG recordings of 21 patients suffering from medically intractable focal epilepsy. The EEG data were acquired using a Neurofile NT digital video EEG system with 128 channels, 256 Hz sampling rate, and a 16 bit analog-to-digital converter.

    For each of the patients, there are datasets called “ictal” and “interictal”. The former contains files with epileptic seizures and at least 50 min pre-ictal data, and the latter contains approximately 24 h EEG recordings without seizure activity. At least 24 h continuous interictal recordings are available for 13 patients. For the remaining patients interictal invasive EEG data consisting of less than 24 h were joined together, to end up with at least 24 h per patient. For each patient, the recordings of three focal and three extra-focal electrode contacts are available.

    1.2 Data processing

    The traditional signal analysis based on Fourier transform only obtains frequency information, but there are no transient features in Fourier coefficients. Compared with the short time Fourier transform (STFT), the wavelet transform adapts the window size for good resolution and localization performance in both the time and frequency domains. Long time windows are employed to get precise frequency information, and short time windows are used to obtain accurate time information[9]. In this way, the wavelet transform has an optimal time-frequency resolution.

    In this work, the EEG signal is broken down into epochs containing 1 024 points(4 s). The 5-scale wavelet transform, using a Daubechies-4 wavelet, is performed on each 4 s epoch of data in each channel, respectively. The EEG signals with sampling rate of 256 Hz are decomposed into five scales, giving the approximation coefficients representing 0-3 Hz (a5) and detail coefficients representing 64-128 Hz (d1), 32-64 Hz (d2), 16-32 Hz (d3), 8-16 Hz (d4), and 4-8 Hz (d5). Seizure activity is characterized by scales 3, 4 and 5 since it is most often between 3 and 29 Hz (Khan & Gotman, 2003). The 0-3 Hz band is not used because occurrences of activity in this band can be frequent in non-ictal sleep EEG . Then, signals at scales 3, 4 and 5 are decomposed into half-waves using the method developed by Gotman[2]to eliminate superimposed fast activity with small amplitude.

    1.3 Feature extraction

    We propose to employ relative fluctuation indexRFIto measure the intensity of the fluctuation of EEG signals. Fluctuation index can be expressed as

    |ai(j+1)-ai(j)|

    whereaidenotes the amplitude of the filtered signal with lengthLENat scalei. Fig.1 illustrates the fluctuation index from two hundred epochs of seizure data and non-seizure data selected randomly. It can be seen from Fig.1 that fluctuation index features from seizure data are higher than those from non-seizure data.

    Fig.1 Comparison of fluctuation index for seizure and non-seizure EEG epochs

    Fig.2 shows the mean values and standard deviations of the fluctuation index features extracted from these EEG samples. The statistical analysis indicates that the difference in fluctuation index between non-seizure and seizure EEG epochs is significant.

    Fig.2 Means and standard deviations of fluctuation index between seizure and non-seizure EEG epochs

    The fluctuation index relative to the background is the ratio of the fluctuation index of the analyzed EEG epoch to the average fluctuation index of the background. Empirically, the background is defined as 120 s EEG data ending 60 s prior to the analyzed EEG epoch. The gap of 60 s is selected to allow a gradual onset of a seizure. The background of 120 s is needed to get a steady estimation of the background fluctuation index[10].

    2 Classifier design

    2.1 Gradient boosting

    In essence, gradient boosting is a kind of machine learning method that builds one strong classifier from many weak classifiers. The main idea of gradient boosting algorithm is the gradient of the loss function being minimized, with respect to the model values at each training data point[11]. To improve the model is to let the loss function declining at its gradient direction. Gradient boosting with OLS[7]can be described as follows.

    We denote segmented training data of EEG byW, corresponding class labels byY, in which 0 represents non-seizure section and 1 represents seizure section, and the length of every segment byLEN. In a single EEG channeln, the feature for scalejis labeled asRFIj,n. The feature vectorwiis formed by combiningRFIj,nfor scales 3-5 in 6 channels. Now we get two setsW={wi∈Rk,i=1,2,…,N} andY={yi∈{0,1},i=1,2,…,N}, in whichK=C×Sis the number of features, with the number of EEG channelsC, the number of wavelet scalesSand the number of segmentsN. The final model we need to build is

    Before training, we set an initial guessF0(wi)=0,i=1,2,…,Nand then form=1,2,…,M, wheremstands for step andMstands for iterations. In order to improve the model along the gradient descent direction of its loss function, we need to calculate the loss function at first. With training data, the loss function of the model can be expressed as

    L(Fm;W,Y)=

    Then the gradient of loss function can be computed as

    2(yi-pm-1(yi=1|wi)).

    After computation of the gradient of loss function, the weak classifierfmthat best fits the gradient in a least squares sense is selected as

    We use weak classifiers that have aC-dimensional vector of regression coefficientsαand a time indextas parameters. The output of a weak classifier is the projection of the vectorwi(t) of EEG samples at timetonto the regression coefficients,

    f(wi;α,t)=αTwi(t).

    fm(wi)=f(wi;αm,tm).

    Now the size of the stepγmis determined by

    ).

    In order to improve the generalization performance of the boosting algorithm,γmis shrinked to a small value through multiplication with a smallεat each step,

    where the parameter 0<ε≤1 controls the learning rate of the procedure[12]. The algorithm using gradient boosting can be summarized as

    1)p0(yi=1|wi)=0.5,i=1,2,…,N

    2)F0(wi)=0,i=1,2,…,N

    3) Form=1 toMdo:

    d.Fm=Fm-1+εγmfm

    i=1,2,…,N

    end For

    4) End algorithm.

    2.2 Classifier design

    In this work, all six channels of EEG were used for seizure detection. For each patient, one or two hours of EEG signals (depending on the total number of data that contains seizures for this patient) were used as training data and the remaining data as testing data. The training data of each patient contains some epochs (4 s) of seizure, which would separate with epochs of non-seizure for training. Features got from training data formed feature vectors. The same operation was performed for testing data. Then the classifier was trained using gradient boosting to get the best model. In our work, we trained classifiers for each patient in order to fit the classifier to each patient in optimal.

    The output value of the classifier obtained with gradient boosting usually fluctuates between 0 and 1 ( 0 represents non-seizure epoch and 1 represents seizure epoch). For this reason, post-processing is necessary. The post-processing scheme consists of smoothing and collar technique.

    1) Smoothing

    Since the output of the classifier is an estimate of the probability that an epoch contains seizures. A moving average filter is applied to the output of the classifier to remove the short time jump-points. The moving average filter used here can be expressed as

    wherexis the inputs of the filter, y is the outputs of the filter and 2N+1 denotes the span of the moving average filter. The average output is then compared to a threshold obtained with the training data.

    2) Collar technique

    To compensate for possible difficulties in detecting pre-seizure and post-seizure parts due to use of the smoothing process, collar technique[13]is used to make up for the missed seizure decisions. In the collar technique, both sides of each seizure decision are stretchedmepochs severally in the last step of our seizure detection procedure. In this paper,mis given by 3.

    3 Results

    We tested the algorithm with the Freiburg datasets introduced in Section 2.1. All the experiments were practiced in Matlab R2011a environment running in an AMD Athlon processor with 2.71 GHz.

    For each person, an hour seizure data and non-seizure data selected randomly are used for training. Firstly, the EEG signals are divided into 4 s epochs by using the method mentioned in Section 2.2. Then the relative fluctuations index is calculated from the signal filtered by DB-4 wavelet. Afterwards, the feature vector established from three scales in six channels of the current epoch is fed into the classifier with post-processing.

    Sensitivity, specificity and selectivity are employed to evaluate the performance of our method. We define the number of true positives that is identified as seizures by both our method and EEG specialists asTP, and the number of true negatives asTN. Furthermore,FPis the number of false positives that is identified as seizures only by our method but EEG specialists, andFNis the number of false negatives. Then the sensitivity, specificity and selectivity are defined as

    In addition, the false detection rate (number of false detections per hour) is also calculated in order to display the feasibility of the presented method. The results of our method are listed in Table 1.

    In this experiment, there are two to five hours of seizure data for each patient. We have tested our algorithm on all of the EEG data from Freiburg dataset. Only three hours data of patient 10 are excluded here because we could not find any seizure spikes by visual inspection. Therefore, 84 seizure activities are totally used to evaluate the performance of the method.

    Table 1 Results for evaluating the performance of the seizure detection method for each patient

    PatientSensitivity(%)Specificity(%)Selectivity(%)Falsedetections(h)11001001000296.241001000383.3393.4180.360.241001001000589.7499.8494.62161001001000767.0899.9683.330.33888.5699.6896.670.5971.3699.9185.530.41010098.8475.1701110099.4287.340.51210010010001310010010001497.6699.9799.720.51594.4499.8598.510.251697.9599.9397.4601710010010001810010010001910010010002010010010002110099.8091.120Mean94.5999.5594.750.18

    For each patient, there are four statistical measures shown in Table 1 which are the sensitivity, specificity, selectivity, and false detection rate. It can be seen in Table 1 that the best sensitivity of 100%, specificity of 100%, selectivity of 100%, and false detection rate of 0/h are got with eight patients, respectively. The means of sensitivity, specificity and recognition accuracy are greater than 90.00%, and the mean of false detections is 0.18/h. Half of all the patients (patients 1, 4, 6, 10, 11, 12, 13, 17 to 21) had the sensitivities 100%. Thirteen patients (patients 1, 2, 4, 6, 10, 12, 13, 16 to 21) had no false detections.

    To date, many seizure detection methods have been developed and investigated. Khan and Gotman[3]developed a seizure detection method for intracerebral monitoring using features of relative energy, coefficient of variation and relative amplitude. The method was evaluated on long-term EEG data from 11 patients, including 229 h and 66 seizures, and achieved a sensitivity of 87%. Compared to their system, our proposed approach yielded a higher sensitivity.

    Recently, Aarabi et al.[14]developed a fuzzy rule-based system for epileptic seizure detection in intracranial EEG. The system was based on knowledge obtained from experts’ reasoning. Temporal, spectral and complexity extracted from intracranial EEG segments were used as features, and spatio-temporally integrated using the fuzzy rule-based system for seizure detection. The system yielded a sensitivity of 98.7%, a false detection rate of 0.27/h on the same database with us. In comparison to their system, the false detection rate of our algorithm is much better.

    Chua et al.[15]improved a patient-specific seizure detection method for pre-surgical evaluation. Their system presented a method for adapting a subject-independent seizure detection system to subject-specific ones using feedback from the EEG technologist. The subject-specific scheme yielded a sensitivity of 78% and a false alarm rate of 0.18/h by testing on 529 h of intracranial EEG containing 63 seizures from 15 subjects in the same database as our method. Compared to this system, our system obtained a better sensitivity.

    4 Conclusion

    The visual scanning of EEG recordings for the spikes and seizures is very time consuming, especially in the case of long recordings. In this paper, we propose a novel method to detect the seizures from long-term EEG using gradient boosting. Relative fluctuation index is extracted as feature of EEG signals. The gradient boosting is utilized to build a classifier to discriminate the seizure and non-seizure EEGs. Sophisticated optimization algorithms, like those used for SVM or for independent component analysis (ICA) are not necessary for the boosting method presented here, making the algorithm fast to implement. A post-processing scheme composed of a moving average filter and a collar operation is applied to improve the performance of the detector. The seizure detection method is evaluated on Freiburg dataset with 21 patients. Experimental results indicate that the proposed method performs with an average sensitivity of 94.60% and specificity of 99.55% with a false detection rate of 0.18/h. Additionally, the low computational cost of this detect method makes it possible for real-time application.

    [1] Sanei S, Chambers J A. EEG signal processing. Chichester: John Wiley & Sons Ltd, 2007.

    [2] Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalography and Clinical Neurophysiology, 1982, 54(5): 530-540.

    [3] Khan Y U, Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clinical Neurophysiology, 2003, 114(5): 898-908.

    [4] Gardner A, Krieger A, Vachtsevanos G, et al. One-class novelty detection for seizure analysis from intracranial EEG. Journal of Machine Learning Research, 2005, 7: 1025-1044.

    [5] Temko A, Thomas E, Boylan G, et al. An SVM-based system and its performance for detection of seizures in neonates, In: Proceedings of IEEE International Conference on Engineering in Medicine and Biology, 2009: 2643-2646.

    [6] Gabor A G, Leach R R, Dowla F U. Automated seizure detection using a self-organizing neural network. Electroencephalography and Clinical Neurophysiology, 1996, 99: 257-266.

    [7] Hoffmann U, Garcia G, Vesin J M, et al. A boosting approach to P300 detection with application to brain-computer interfaces. In: Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, 2005: 97-100.

    [8] EEG database. Epilepsy Center of the University Hospital of Freiburg.[2014-12-01]. https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database/.

    [9] Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 2009, 36(2): 2027-2036.

    [10] Grewal S, Gotman J. An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clinical Neurophysiology, 2005, 116(10): 2460-2472.

    [11] Friedman J H. Greedy function approximation: a gradient boosting machine. Annuals of Statistics, 2001, 29: 1189-1232.

    [12] Friedman J H. Stochastic gradient boosting. Nonlinear Methods and Data Mining, 2002, 38(4): 367-378.

    [13] Temko A, Thomas E, Marnane W, et al. EEG-based neonatal seizure detection with support vector machines. Clinical Neurophysiology, 2011, 122(3): 464-473.

    [14] Aarabi A, Fazel-Rezai R. A fuzzy rule-based system for epileptic seizure detection in intracranial EEG. Clinical Neurophysiology, 2009, 120(9): 1648-1657.

    [15] Chua E C, Patel K, Fitzsimons M, et al. Improved patient specific seizure detection during pre-surgical evaluation. Clinical Neurophysiology, 2011, 122(4): 672-679.

    基于梯度boosting的癲癇腦電檢測方法

    陳爽爽1,2, 周衛(wèi)東1,2, 耿淑娟1,2, 袁 琦1,2, 王紀文3

    (1. 山東大學 蘇州研究院, 江蘇 蘇州 215123; 2. 山東大學 信息科學與工程學院, 山東 濟南 250100;3. 山東大學 齊魯醫(yī)院, 山東 濟南 250100)

    自動癲癇腦電檢測對癲癇的診斷具有重要意義, 可以減輕監(jiān)測長期腦電的工作強度。 本文提出和探討一種基于梯度boosting的長程腦電癲癇檢測的新機器學習算法。 該算法提取長程腦電的相對波動指數(shù)作為特征, 采用梯度boosting算法訓練分類器來識別發(fā)作和正常腦電。 最后采用平滑和“collar”技術作為后處理進一步提高檢測準確率。 利用弗萊堡21位病人的腦電數(shù)據(jù)對該癲癇檢測算法進行評估, 實驗表明, 該算法的平均靈敏度為94.6%, 誤檢率為0.18/h。

    腦電信號; 癲癇檢測; 小波變換; 波動指數(shù); 梯度boosting

    CHEN Shuang-shuang, ZHOU Wei-dong, GENG Shu-juan, et al. Approach for epileptic EEG detection based on gradient boosting. Journal of Measurement Science and Instrumentation, 2015, 6(1): 96-102.

    10.3969/j.issn.1674-8042.2015.01.017

    s: Key Program of Natural Science Foundation of Shandong Province (No.ZR2013FZ002); The Program of Science and Technology of Suzhou (No.ZXY2013030); Independent Innovation Foundation of Shandong University (No.11170074611102)

    ZHOU Wei-dong (wdzhou@sdu.edu.cn)

    1674-8042(2015)01-0096-07 doi: 10.3969/j.issn.1674-8042.2015.01.017

    Received date: 2014-12-10

    CLD number: TN911.7 Document code: A

    猜你喜歡
    長程山東大學腦電
    長程動態(tài)心電圖對心律失常的檢出率分析
    山東大學青島校區(qū)
    文苑(2018年23期)2018-12-14 01:06:04
    現(xiàn)代實用腦電地形圖學(續(xù))
    現(xiàn)代實用腦電地形圖學(續(xù))
    現(xiàn)代實用腦電地形圖學(續(xù)) 第五章 腦電地形圖的臨床中的應用
    Paresse constructive
    法語學習(2016年3期)2016-04-16 21:45:33
    長程電子關聯(lián)對聚合物中激子極化率的影響
    現(xiàn)代實用腦電地形圖學(續(xù)) 第五章 腦電地形圖在臨床中的應用
    新發(fā)現(xiàn)
    中國詩歌(2015年2期)2015-06-27 00:26:00
    La nouvelle vision du succès de la carrière charitable
    法語學習(2015年5期)2015-04-17 06:06:01
    69av精品久久久久久| 日韩三级伦理在线观看| 久久精品熟女亚洲av麻豆精品 | 51国产日韩欧美| 成人漫画全彩无遮挡| 成年女人永久免费观看视频| 精品久久久久久久久亚洲| 少妇丰满av| 汤姆久久久久久久影院中文字幕 | 国产淫语在线视频| 精品人妻一区二区三区麻豆| 欧美高清性xxxxhd video| 色播亚洲综合网| 久久久成人免费电影| 三级男女做爰猛烈吃奶摸视频| 亚洲精品456在线播放app| av视频在线观看入口| 日韩欧美三级三区| 日本黄大片高清| 看片在线看免费视频| 亚州av有码| 亚洲av中文av极速乱| 亚洲不卡免费看| 激情 狠狠 欧美| 欧美bdsm另类| 免费看光身美女| 国产一区有黄有色的免费视频 | 国产精品av视频在线免费观看| 精品不卡国产一区二区三区| 日本一本二区三区精品| 国产麻豆成人av免费视频| 一个人免费在线观看电影| 国产精品国产三级国产av玫瑰| 日韩精品青青久久久久久| 看十八女毛片水多多多| 国产精品乱码一区二三区的特点| 国产在线一区二区三区精 | 欧美97在线视频| 熟女人妻精品中文字幕| 国产高清有码在线观看视频| 国内揄拍国产精品人妻在线| h日本视频在线播放| 女人久久www免费人成看片 | 亚洲精品成人久久久久久| 夜夜看夜夜爽夜夜摸| 国产伦在线观看视频一区| 干丝袜人妻中文字幕| 欧美另类亚洲清纯唯美| 啦啦啦啦在线视频资源| 久久韩国三级中文字幕| 26uuu在线亚洲综合色| 国产精品.久久久| 久久久久久久久久久丰满| 美女内射精品一级片tv| 只有这里有精品99| 欧美高清性xxxxhd video| 女人十人毛片免费观看3o分钟| 日本与韩国留学比较| 97超碰精品成人国产| 久久人人爽人人片av| 国产亚洲最大av| 少妇丰满av| 大话2 男鬼变身卡| 国产又色又爽无遮挡免| 国产亚洲一区二区精品| 男女视频在线观看网站免费| 成年女人永久免费观看视频| 亚洲乱码一区二区免费版| 少妇高潮的动态图| 午夜精品一区二区三区免费看| 国产免费又黄又爽又色| 高清毛片免费看| 久久久久久久久久久丰满| 如何舔出高潮| 色视频www国产| 国产老妇伦熟女老妇高清| 在线观看美女被高潮喷水网站| 日韩中字成人| 97人妻精品一区二区三区麻豆| 永久免费av网站大全| 看片在线看免费视频| 亚洲人成网站高清观看| 国产片特级美女逼逼视频| 久久久精品欧美日韩精品| 久久国产乱子免费精品| 麻豆成人av视频| 国产成人a∨麻豆精品| 久久久久久久午夜电影| av在线蜜桃| 91精品一卡2卡3卡4卡| 国产在线一区二区三区精 | 九九爱精品视频在线观看| 精品一区二区三区视频在线| 日本一二三区视频观看| 国产免费视频播放在线视频 | 22中文网久久字幕| 国产白丝娇喘喷水9色精品| 97超碰精品成人国产| 成人综合一区亚洲| 18禁动态无遮挡网站| 亚洲人与动物交配视频| 午夜福利视频1000在线观看| 丝袜美腿在线中文| 免费看美女性在线毛片视频| 99热网站在线观看| 黄片wwwwww| 免费av毛片视频| 欧美激情在线99| 国产69精品久久久久777片| 亚洲av中文字字幕乱码综合| 日本黄色视频三级网站网址| 国产一区二区三区av在线| 国产午夜精品久久久久久一区二区三区| 99视频精品全部免费 在线| 91狼人影院| 看片在线看免费视频| 日本黄大片高清| 国产伦一二天堂av在线观看| 啦啦啦观看免费观看视频高清| 国产成人午夜福利电影在线观看| 国产成人精品一,二区| 97超碰精品成人国产| 秋霞在线观看毛片| 搡老妇女老女人老熟妇| 午夜激情福利司机影院| 国产老妇伦熟女老妇高清| 亚洲图色成人| 国产色爽女视频免费观看| 蜜桃久久精品国产亚洲av| 特大巨黑吊av在线直播| 欧美一级a爱片免费观看看| 久久久欧美国产精品| 亚洲成人av在线免费| 少妇高潮的动态图| 日本-黄色视频高清免费观看| 一个人看视频在线观看www免费| 一个人看视频在线观看www免费| 久久人妻av系列| 蜜桃久久精品国产亚洲av| 免费看日本二区| 久久亚洲国产成人精品v| 九九爱精品视频在线观看| 中文字幕亚洲精品专区| 中文乱码字字幕精品一区二区三区 | 国产一区二区在线观看日韩| 九九久久精品国产亚洲av麻豆| 亚洲一级一片aⅴ在线观看| 色噜噜av男人的天堂激情| 久久久久久伊人网av| 国产精品一及| 免费av毛片视频| av又黄又爽大尺度在线免费看 | 校园人妻丝袜中文字幕| 日韩成人av中文字幕在线观看| 狠狠狠狠99中文字幕| 久久韩国三级中文字幕| 免费观看人在逋| 久久久久久大精品| 少妇人妻一区二区三区视频| av国产免费在线观看| 日韩精品青青久久久久久| 日本黄大片高清| 色噜噜av男人的天堂激情| 汤姆久久久久久久影院中文字幕 | 99久久成人亚洲精品观看| 97超碰精品成人国产| 亚洲成色77777| 欧美高清成人免费视频www| 日本一本二区三区精品| 欧美高清性xxxxhd video| 亚洲精华国产精华液的使用体验| 一区二区三区高清视频在线| 亚洲欧美日韩东京热| 亚洲三级黄色毛片| 特大巨黑吊av在线直播| 午夜免费激情av| 青青草视频在线视频观看| 秋霞在线观看毛片| 51国产日韩欧美| 欧美高清成人免费视频www| 久久久久久九九精品二区国产| 一边亲一边摸免费视频| 狂野欧美白嫩少妇大欣赏| 国产成人午夜福利电影在线观看| 夜夜看夜夜爽夜夜摸| 在线观看一区二区三区| 91在线精品国自产拍蜜月| 国产单亲对白刺激| 一个人看视频在线观看www免费| 日本色播在线视频| 国产黄片视频在线免费观看| 亚洲人成网站在线播| 在线观看66精品国产| 久久久久久久久久黄片| 嫩草影院精品99| 久99久视频精品免费| 免费黄网站久久成人精品| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日本亚洲视频在线播放| 中文字幕熟女人妻在线| 国产精品一区www在线观看| 精品久久久久久久末码| 午夜精品在线福利| 成人二区视频| 精品久久久久久久人妻蜜臀av| 天堂中文最新版在线下载 | av在线天堂中文字幕| 日韩亚洲欧美综合| 麻豆av噜噜一区二区三区| 精品99又大又爽又粗少妇毛片| 国产一级毛片在线| 国产精品麻豆人妻色哟哟久久 | 国产精品久久久久久精品电影小说 | 午夜免费激情av| 色播亚洲综合网| 欧美一区二区亚洲| 日韩成人av中文字幕在线观看| 久久综合国产亚洲精品| av.在线天堂| 人人妻人人看人人澡| 亚洲在线自拍视频| 国产亚洲精品久久久com| 岛国在线免费视频观看| 嫩草影院新地址| 亚洲熟妇中文字幕五十中出| 搡女人真爽免费视频火全软件| 日本午夜av视频| 国产成人精品婷婷| 天天躁夜夜躁狠狠久久av| 午夜a级毛片| 国产午夜精品久久久久久一区二区三区| 天天一区二区日本电影三级| 秋霞伦理黄片| 国产大屁股一区二区在线视频| 欧美色视频一区免费| 在现免费观看毛片| 1024手机看黄色片| 日韩亚洲欧美综合| 大香蕉97超碰在线| 能在线免费看毛片的网站| videossex国产| 一级毛片我不卡| 春色校园在线视频观看| 久久久久九九精品影院| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| 最近中文字幕2019免费版| 日韩大片免费观看网站 | 国产探花在线观看一区二区| 人妻夜夜爽99麻豆av| av免费观看日本| 国产精品三级大全| 久久国内精品自在自线图片| 精品人妻熟女av久视频| 一卡2卡三卡四卡精品乱码亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 男人舔女人下体高潮全视频| 成人无遮挡网站| 国产综合懂色| 日本免费一区二区三区高清不卡| 综合色av麻豆| 久久草成人影院| 欧美不卡视频在线免费观看| 日日撸夜夜添| 简卡轻食公司| 99久久精品一区二区三区| 免费观看在线日韩| 久久久精品94久久精品| 国产中年淑女户外野战色| 国产欧美日韩精品一区二区| 国产精品一区二区三区四区免费观看| 亚洲成人精品中文字幕电影| 日本av手机在线免费观看| 99热这里只有精品一区| av天堂中文字幕网| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久久久久精品电影| 男人和女人高潮做爰伦理| 国产精品野战在线观看| 中文在线观看免费www的网站| 国产极品精品免费视频能看的| 国产亚洲午夜精品一区二区久久 | 美女国产视频在线观看| 国产真实乱freesex| 国产伦理片在线播放av一区| 国产av在哪里看| 69av精品久久久久久| 黄色欧美视频在线观看| 99久久中文字幕三级久久日本| 欧美成人免费av一区二区三区| 国产三级中文精品| 亚洲最大成人手机在线| 欧美最新免费一区二区三区| 91精品伊人久久大香线蕉| 麻豆成人av视频| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 最近最新中文字幕免费大全7| 国产91av在线免费观看| 国产精品国产三级专区第一集| 老司机影院成人| 黄色日韩在线| 99久久无色码亚洲精品果冻| 伊人久久精品亚洲午夜| 日本av手机在线免费观看| 免费av观看视频| 久久精品影院6| 人妻系列 视频| 男的添女的下面高潮视频| 日韩欧美精品免费久久| 国产精品一区二区在线观看99 | 男女国产视频网站| 可以在线观看毛片的网站| 久久99热这里只有精品18| 成人鲁丝片一二三区免费| 国产三级中文精品| 国产淫片久久久久久久久| 熟女电影av网| 国产精华一区二区三区| 成年女人看的毛片在线观看| 日本一二三区视频观看| 日本免费在线观看一区| 美女内射精品一级片tv| 久久久久久久久久久免费av| 毛片一级片免费看久久久久| 99久久九九国产精品国产免费| 综合色丁香网| 国产免费男女视频| 日本免费a在线| 看黄色毛片网站| 国产一区二区在线av高清观看| 国产高清三级在线| av又黄又爽大尺度在线免费看 | 日韩欧美精品v在线| 久久久色成人| 久久鲁丝午夜福利片| 菩萨蛮人人尽说江南好唐韦庄 | 最近视频中文字幕2019在线8| 一夜夜www| 日本一本二区三区精品| 亚洲欧美精品自产自拍| 欧美性感艳星| 99久久人妻综合| 日韩精品青青久久久久久| 嫩草影院入口| 亚洲丝袜综合中文字幕| 神马国产精品三级电影在线观看| 亚洲va在线va天堂va国产| 日韩国内少妇激情av| 男的添女的下面高潮视频| 少妇裸体淫交视频免费看高清| 国产亚洲一区二区精品| 你懂的网址亚洲精品在线观看 | 亚洲欧美一区二区三区国产| 精品99又大又爽又粗少妇毛片| 国产激情偷乱视频一区二区| 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 久久综合国产亚洲精品| 亚洲人成网站高清观看| 成人三级黄色视频| 1024手机看黄色片| 国产毛片a区久久久久| 麻豆国产97在线/欧美| 欧美另类亚洲清纯唯美| 亚洲精品乱码久久久久久按摩| 精品久久久久久久末码| 中国美白少妇内射xxxbb| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 69av精品久久久久久| kizo精华| 热99在线观看视频| 99久久精品国产国产毛片| 日韩成人伦理影院| 亚洲国产精品sss在线观看| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 亚洲内射少妇av| 亚洲久久久久久中文字幕| 亚洲精品亚洲一区二区| 一区二区三区免费毛片| 亚洲成av人片在线播放无| av免费在线看不卡| 成人二区视频| 两个人的视频大全免费| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| 久久99热这里只有精品18| 色视频www国产| 国产免费福利视频在线观看| 日日干狠狠操夜夜爽| 啦啦啦韩国在线观看视频| 成人国产麻豆网| 青春草国产在线视频| 1000部很黄的大片| 一区二区三区免费毛片| 尾随美女入室| 日韩中字成人| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 一级毛片电影观看 | 18+在线观看网站| 色噜噜av男人的天堂激情| 99久久无色码亚洲精品果冻| 国产成人午夜福利电影在线观看| 午夜福利高清视频| 国产亚洲精品久久久com| 免费观看精品视频网站| 国产 一区精品| 日韩亚洲欧美综合| 日韩欧美在线乱码| 国产成人免费观看mmmm| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 欧美日韩一区二区视频在线观看视频在线 | 精品国产三级普通话版| av女优亚洲男人天堂| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 在线观看66精品国产| 国产视频首页在线观看| 亚洲综合精品二区| 成人漫画全彩无遮挡| 欧美另类亚洲清纯唯美| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 小蜜桃在线观看免费完整版高清| 99热网站在线观看| 国产乱来视频区| 国产免费一级a男人的天堂| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 伊人久久精品亚洲午夜| 99久久精品热视频| 韩国av在线不卡| 久久精品91蜜桃| 一二三四中文在线观看免费高清| 国产激情偷乱视频一区二区| 汤姆久久久久久久影院中文字幕 | 午夜a级毛片| 好男人视频免费观看在线| 一本久久精品| 亚洲五月天丁香| 国产免费男女视频| 国产高清视频在线观看网站| 在线播放国产精品三级| 97人妻精品一区二区三区麻豆| 久久久久网色| 大话2 男鬼变身卡| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 日本黄色视频三级网站网址| 一本一本综合久久| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线| 在线播放国产精品三级| 久久这里只有精品中国| 国产av一区在线观看免费| 日韩制服骚丝袜av| av黄色大香蕉| 在线天堂最新版资源| 欧美色视频一区免费| 美女脱内裤让男人舔精品视频| 性色avwww在线观看| 国产熟女欧美一区二区| 国模一区二区三区四区视频| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| 中国国产av一级| 久久精品久久久久久久性| 国产精品.久久久| 国产黄a三级三级三级人| 亚洲欧美精品综合久久99| 成年女人看的毛片在线观看| 综合色丁香网| 丝袜喷水一区| 亚洲精品,欧美精品| 少妇猛男粗大的猛烈进出视频 | 岛国毛片在线播放| 日韩大片免费观看网站 | 三级毛片av免费| 在线天堂最新版资源| 国产精品女同一区二区软件| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 丝袜美腿在线中文| 欧美97在线视频| 久久精品夜夜夜夜夜久久蜜豆| 一二三四中文在线观看免费高清| 精品久久久噜噜| 男人舔奶头视频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品亚洲一区二区| 中文字幕熟女人妻在线| 尤物成人国产欧美一区二区三区| 天天躁夜夜躁狠狠久久av| 国产精品精品国产色婷婷| 国产高清三级在线| 亚洲精品自拍成人| av国产久精品久网站免费入址| 国产精品一区二区在线观看99 | 2021天堂中文幕一二区在线观| 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 欧美性猛交╳xxx乱大交人| 天堂网av新在线| 日韩大片免费观看网站 | 亚洲成av人片在线播放无| 丰满人妻一区二区三区视频av| 高清毛片免费看| 亚洲精品日韩在线中文字幕| 国产美女午夜福利| 大话2 男鬼变身卡| 精品一区二区三区视频在线| 精品一区二区三区人妻视频| 91精品伊人久久大香线蕉| 久久久久久久久久成人| 18禁在线播放成人免费| 大香蕉久久网| av卡一久久| 精品国产一区二区三区久久久樱花 | 国产亚洲5aaaaa淫片| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 三级国产精品片| 黄片无遮挡物在线观看| 亚洲av电影不卡..在线观看| 哪个播放器可以免费观看大片| 蜜桃久久精品国产亚洲av| 亚洲av成人精品一二三区| 国产乱人偷精品视频| 国产精品,欧美在线| 精品久久久噜噜| 国产精品人妻久久久影院| 亚洲av成人精品一区久久| 亚洲精品乱久久久久久| 国产精品电影一区二区三区| 国产国拍精品亚洲av在线观看| 波多野结衣巨乳人妻| 观看美女的网站| 亚洲,欧美,日韩| 精品久久久久久久久av| 久久久欧美国产精品| 国产精品女同一区二区软件| 国内精品一区二区在线观看| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99 | 久久久久久久久大av| 亚洲av成人精品一区久久| 又粗又硬又长又爽又黄的视频| 欧美一级a爱片免费观看看| 久久久久久久午夜电影| 中文资源天堂在线| 亚洲国产精品成人综合色| 伦精品一区二区三区| 国产成人午夜福利电影在线观看| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 久久久久久国产a免费观看| 18+在线观看网站| 日韩成人av中文字幕在线观看| 久久久久免费精品人妻一区二区| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 久久精品影院6| 久久久久久久久中文| 超碰av人人做人人爽久久| 欧美激情久久久久久爽电影| 色播亚洲综合网| 国产av码专区亚洲av| 18禁在线无遮挡免费观看视频| .国产精品久久| 午夜精品在线福利| 1000部很黄的大片| 欧美3d第一页| 日韩欧美精品v在线| 直男gayav资源| 日韩制服骚丝袜av| 国产淫语在线视频| 亚洲精品国产成人久久av| 国产又色又爽无遮挡免| av在线播放精品| 天堂av国产一区二区熟女人妻| 我的女老师完整版在线观看| 99热这里只有是精品50| 久久久久久大精品| 高清视频免费观看一区二区 | 高清av免费在线| 中文资源天堂在线| 亚洲av熟女| 午夜福利在线观看免费完整高清在| 男人和女人高潮做爰伦理| 久久久午夜欧美精品| 免费看av在线观看网站| www.色视频.com| 日韩视频在线欧美| 偷拍熟女少妇极品色| 岛国毛片在线播放| 日韩亚洲欧美综合| 日韩一本色道免费dvd| 欧美成人免费av一区二区三区|