周金偉, 周紅麗, 柏連陽, 易有金*,李高陽, 夏 菠, 隆麗林
(1.湖南農(nóng)業(yè)大學(xué)食品科技學(xué)院/食品科學(xué)與生物技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410128;2.湖南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,長(zhǎng)沙 410128;3.湖南省農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品加工研究所,長(zhǎng)沙 410128)
植物內(nèi)生菌抗菌活性物質(zhì)及其在果蔬采后保鮮中的應(yīng)用進(jìn)展
周金偉1, 周紅麗1, 柏連陽2, 易有金1*,李高陽3, 夏 菠1, 隆麗林1
(1.湖南農(nóng)業(yè)大學(xué)食品科技學(xué)院/食品科學(xué)與生物技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410128;2.湖南農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,長(zhǎng)沙 410128;3.湖南省農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品加工研究所,長(zhǎng)沙 410128)
植物內(nèi)生菌是寄生在植物組織中的一大類群特殊微生物,過去長(zhǎng)期被忽略。然而越來越多的研究表明,植物內(nèi)生菌是新型抗菌藥物的寶貴資源,其代謝產(chǎn)物中存在一系列具有多樣性結(jié)構(gòu)的抗菌活性化合物。本文對(duì)近年來植物內(nèi)生菌產(chǎn)生的抗菌活性物質(zhì)及其抗菌效果進(jìn)行了綜述,簡(jiǎn)要介紹了植物內(nèi)生菌在果蔬采后保鮮中的應(yīng)用,同時(shí)總結(jié)了植物內(nèi)生菌抗菌活性物質(zhì)在當(dāng)前實(shí)際研究中所遇到的問題。
內(nèi)生菌; 抗菌物質(zhì); 抗菌活性; 果蔬; 采后保鮮
當(dāng)前,由各種病原菌引起的疾病正日益危害著人類的健康和生命,而化學(xué)藥物的濫用加劇了許多致病菌產(chǎn)生耐藥性[1]。因此,尋求新型、安全、高效的天然抗菌藥物成為當(dāng)務(wù)之急[2]。從微生物次級(jí)代謝產(chǎn)物中篩選生物活性物質(zhì)是新藥研究與開發(fā)的一個(gè)重要途徑,為尋找能夠產(chǎn)生新型抗菌藥物的微生物資源,植物內(nèi)生菌近年來成為研究的熱點(diǎn)[3]。植物內(nèi)生菌能產(chǎn)生多種抗菌活性物質(zhì),且這些物質(zhì)有許多是尚未開發(fā)的新物質(zhì)[4]。本文以化合物結(jié)構(gòu)類型為線索,對(duì)近年來植物內(nèi)生菌產(chǎn)生的抗菌活性物質(zhì)進(jìn)行綜述,并對(duì)植物內(nèi)生菌在果蔬保鮮中的應(yīng)用進(jìn)行簡(jiǎn)要討論。
1.1 生物堿
生物堿是天然產(chǎn)物中最大的一類化合物,多數(shù)具有抗菌活性。
從丹參內(nèi)生細(xì)菌Pseudomonas brassicacearum subsp.neoaurantiaca中分離到1個(gè)抗菌生物堿(圖1a),該化合物對(duì)腐皮鐮刀菌和尖孢鐮刀菌的MIC值均為50μg/m L[5],能有效保護(hù)丹參免受病原真菌的侵染。Du等[6]從鼠尾藻內(nèi)生真菌Eurotium cristatum中分離出2個(gè)新的吲哚類生物堿cristatumins A和D(圖1b,c)和2個(gè)同系物(圖1d,e),其中化合物d和e對(duì)大腸桿菌和金黃色葡萄球菌有很強(qiáng)的抗菌活性,其MIC分別為64和8μg/m L,活性略低于氯霉素(4μg/m L)。
內(nèi)生曲霉產(chǎn)生的2個(gè)生物堿fumigaclavine C(圖1g)和pseurotin A(圖1h)對(duì)大腸桿菌和綠膿假單胞菌等病原細(xì)菌的抗菌效果顯著[7]。藏紅花內(nèi)生青霉產(chǎn)生的吡咯生物堿(圖1i)對(duì)白念珠菌、新型隱球菌和紅色毛癬菌的MIC80介于16~64μg/mL[8]。從馬錢子內(nèi)生真菌Gliocladium sp.的發(fā)酵物中發(fā)現(xiàn)的二酮哌嗪生物堿(圖1j)在43.4μg/mL時(shí)對(duì)藤黃微球菌有很強(qiáng)的抗菌活性[9]。
圖1 內(nèi)生菌產(chǎn)生的具有抗菌活性的生物堿類化合物(a~j)Fig.1 Antimicrobial alkaloids(a-j)from endophytes
1.2 萜類
內(nèi)生木霉能產(chǎn)生2個(gè)新倍半萜化合物(圖2c, d),對(duì)大腸桿菌、葡萄球菌和皮炎單孢枝霉的最小抑制劑量為25~150μg/disk[10]。
Gao等[11]從內(nèi)生黃青霉中獲得2個(gè)具有廣譜抗菌活性的新四環(huán)二萜conidiogenones H和I(圖2e,f)。褐藻內(nèi)生真菌Aspergillus wentii產(chǎn)生的二萜化合物(圖2g)對(duì)白念珠菌的MIC為16μg/m L[12]。重樓內(nèi)生菌Pichia guilliermondii產(chǎn)生的三萜化合物煙曲霉酸(圖2h)對(duì)9個(gè)供試細(xì)菌的MIC為1.56~50μg/mL,對(duì)稻瘟病菌孢子萌發(fā)的IC50為7.20μg/mL[13]。此外,從內(nèi)生真菌Ulocladium sp.的發(fā)酵物中分離出3個(gè)具有抗菌活性的新的混合萜類tricycloalternarenes F-H(圖2i~k)[14]。
圖2 內(nèi)生菌產(chǎn)生的具有抗菌活性的萜類化合物(a~k)Fig.2 Antimicrobial terpenoids(a-k)from endophytes
1.3 肽類
微生物產(chǎn)生的肽類物質(zhì)由非核糖體合成,大多具有抗菌活性。
從Catunaregam tomentosa中獲得的內(nèi)生真菌Curvularia geniculata能產(chǎn)生1個(gè)新的肽類-聚酮化合物curvularides B(圖3a),對(duì)白色念珠菌有抑菌活性[15]。該化合物與抗真菌藥物氟康唑聯(lián)合使用時(shí)能發(fā)揮協(xié)同效應(yīng),有望開發(fā)成新的抗真菌藥物。
烏拉爾甘草內(nèi)生根瘤菌產(chǎn)生的環(huán)二肽化合物(圖3b),對(duì)大腸桿菌、金黃色葡萄球菌和枯草芽胞桿菌的MIC為250~500μg/mL[16]??喽〔鑳?nèi)生芽胞桿菌產(chǎn)生的bacillomycin D(n-C14,iso-C15)(圖3c,d)對(duì)禾谷鐮刀菌等植物病原真菌有強(qiáng)烈抑制作用[17]。
1.4 甾體類
甾體類化合物廣泛存在于植物體內(nèi),植物內(nèi)生菌寄生在植物組織中,其代謝產(chǎn)物中往往也含有甾體類化合物,以麥角甾烷型骨架居多[18]。
Gao等[19]從內(nèi)生黃青霉中分離到2個(gè)甾體化合物penicisteroids A(圖4a)和anicequol(圖4b)?;衔?圖4a)為四羥基甾體,兩個(gè)化合物在濃度為20μg/disk時(shí)對(duì)黑曲霉和蕓苔鏈格孢菌的抑菌圈直徑介于6~18 mm。
從藥用植物烏頭中獲得一株內(nèi)生擬莖點(diǎn)霉,由其發(fā)酵液中分離到2個(gè)新甾體化合物(14β,22E)-9,14-dihydroxyergosta-4,7,22-triene-3,6-dione(圖4c)、(5α, 6β,15β,22E)-6-ethoxy-5,15-dihydroxyergosta-7,22-dien-3-one(圖4d)和3個(gè)已知化合物calvasterols A(圖 4e)、calvasterols B(圖4f)及ganodermaside D(圖4g)。5個(gè)化合物對(duì)白色念珠菌、黑曲霉、稻瘟病菌、燕麥鐮刀菌、緊密著色芽生菌和毛癬菌具有抗菌活性[20]。
圖3 內(nèi)生菌產(chǎn)生的具有抗菌活性的肽類化合物(a~g)Fig.3 Antimicrobial peptides(a-g)from endophytes
圖4 內(nèi)生菌產(chǎn)生的具有抗菌活性的甾體類化合物(a~g)Fig.4 Antimicrobial sterides(a-g)from endophytes
1.5 醌類
天然醌類是具有對(duì)醌型或鄰醌型結(jié)構(gòu)的一類化合物,以萘醌和蒽醌化合物居多[25]。
從Salsola oppostifolia中獲得的內(nèi)生真菌Coniothyrium sp.能產(chǎn)生4個(gè)羥基蒽醌化合物(圖5g~j),均具有廣譜抗菌活性[21]。此外,從紅樹內(nèi)生擬莖點(diǎn)霉中分離出1個(gè)新的四氫蒽醌衍生物(圖5k),對(duì)金黃色葡萄球菌和甲氧西林抗藥性葡萄球菌的MIC分別為128和64μg/mL[22]。
圖5 內(nèi)生菌產(chǎn)生的具有抗菌活性的醌類化合物(a~k)Fig.5 Antimicrobial quinones(a-k)from endophytes
1.6 酚及酚酸類
內(nèi)生菌代謝所產(chǎn)生的酚及酚酸類化合物通常具有抗菌活性。
芒果內(nèi)生真菌Pestalotiopsis mangiferae產(chǎn)生的新化合物(圖6a)對(duì)枯草芽胞桿菌、肺炎克雷伯菌和大腸桿菌的MIC為0.039~5μg/mL[23]。垂絲海棠內(nèi)生甘藍(lán)鏈格孢菌能產(chǎn)生3個(gè)廣譜抗菌化合物alternariol(圖6b)、alternariol 9-methyl ether(圖6c)和altechromone A (圖6d)[24]。Botryorhodines A和B(圖6e,f)來自內(nèi)生真菌Botryosphaeria rhodina的代謝產(chǎn)物,這兩個(gè)化合物對(duì)多種植物病原真菌有抑制作用[25]。
Siddiqui等[26]從內(nèi)生真菌Microdiplodia sp.中獲得3個(gè)新的酚類化合物(圖6g~i),3個(gè)化合物對(duì)嗜肺軍團(tuán)菌和葡萄黑粉菌有抑菌活性。從植物Cistus monspeliensis中分離到一株內(nèi)生真菌Phomopsis sp.,其產(chǎn)生的2個(gè)新的酚類化合物phomochromone A和B(圖6j,k)在濃度為1 mg/mL時(shí),對(duì)大腸桿菌、巨大芽胞桿菌、灰霉菌和葡萄黑粉菌的抑菌圈半徑為5~8 mm[27]。
1.7 異香豆素衍生物
由元寶槭(Acer truncatum Bunge)葉子中獲得一株內(nèi)生真菌Exserohilum sp.,該菌能產(chǎn)生2個(gè)新的異香豆素衍生物exserolides C和F(圖7a,b)和1個(gè)已知物(圖7c),其中化合物(圖7a)和(圖7c)抗真菌活性較好,化合物(圖7b)抗細(xì)菌效果顯著[28]。
Oliveira等[29]從內(nèi)生真菌Xylaria sp.和Penicillium sp.的發(fā)酵液中獲得3個(gè)雙氫異香豆素(圖7d~f),其中一個(gè)(圖7d)為新化合物,對(duì)植物病原真菌C.cladosporioides、C.sphaerospermum的最小抑制量分別為10和25μg,另兩個(gè)化合物(圖7e,f)的最小抑制量為5~10μg。
從草本植物Fagonia cretica中獲得的內(nèi)生真菌Microdochium bolley能產(chǎn)生3個(gè)新的異香豆素衍生物(圖7g~i)。在50μg/disk時(shí),圖7g所示化合物對(duì)病原真菌Microbotryum violaceum的抑菌圈半徑為7 mm,圖7h和圖7i所示化合物對(duì)大腸桿菌、巨大芽胞桿菌和葡萄黑粉菌的抑菌圈半徑為6~9 mm[30]。
1.8 酯類
植物內(nèi)生菌產(chǎn)生的天然酯類以內(nèi)酯居多。
從野生地黃內(nèi)生真菌Massrison sp.中分離到3個(gè)新的抗真菌酯類化合物:massarigenin D(圖8a)、spiromassaritone(圖8b)和paecilospirone(圖8c),化合物b的活性最強(qiáng),對(duì)白色念珠菌、新型隱球菌、紅色毛癬菌和煙曲霉菌的MIC80為0.25~4μg/mL[31]。
圖6 內(nèi)生菌產(chǎn)生的具有抗菌活性的酚類化合物(a~k)Fig.6 Antimicrobial phenols(a-k)from endophytes
圖7 內(nèi)生菌產(chǎn)生的具有抗菌活性的醌類化合物(a~i)Fig.7 Antimicrobial quinones(a-i)from endophytes
印度楝內(nèi)生真菌Phomopsis sp.能產(chǎn)生5個(gè)具有廣譜抗真菌活性的十環(huán)內(nèi)酯化合物(圖8d~h)[32]。褐藻內(nèi)生真菌產(chǎn)生的化合物(圖8i)對(duì)金黃色葡萄球菌、沙門氏菌等多種致病細(xì)菌的MIC介于6.25~100μg/m L[33]。
Pyrenocines J-M(圖8j~m)是從內(nèi)生真菌Phomopsis sp.中獲得的新化合物,4個(gè)化合物均有很強(qiáng)的抗細(xì)菌活性[34]。此外,藤黃果內(nèi)生蕈青霉能產(chǎn)生3個(gè)內(nèi)酯化合物penicillone(圖8n)、pyrenocines A和B(圖8o,p),對(duì)M.gypseum的MIC分別為64、128和32μg/mL[35]。
圖8 內(nèi)生菌產(chǎn)生的具有抗菌活性的酯類化合物(a~p)Fig.8 Antimicrobial esters(a-p)from endophytes
1.9 幾丁質(zhì)酶
從玉米植物組織中分離到6株內(nèi)生芽胞桿菌,其產(chǎn)生的幾丁質(zhì)酶,對(duì)串珠鐮刀菌的防治率介于54.2%~79.6%[36]。花生內(nèi)生放線菌能分泌3種幾丁質(zhì)酶,分子量分別為80.8、78和76 k Da。3種酶對(duì)Rhizoctonia solani、Fusarium oxysporum、Alternaria alternate等7種植物病原真菌均有抗菌活性[37]。此外,Lee等[38]從熱帶植物N.ampullaria和N.mirabilis中分離出26株內(nèi)生菌,多數(shù)能產(chǎn)生具有抗菌活性的幾丁質(zhì)酶。
1.10 葡聚糖酶
從盾葉薯蕷(Dioscorea zingiberensis)的根莖中分離到一株內(nèi)生枯草芽胞桿菌SWB8,其產(chǎn)生的β-1,3和β-1,4-葡聚糖酶對(duì)金黃色葡萄球菌、糞腸桿菌等9種病原菌有抗菌活性[39]。從蘆葦中分離出3株內(nèi)生真菌Choiromyces aboriginum、Stachybotrys elegans和Cylindrocarpon sp.,其產(chǎn)生的外切-β-1,4-葡聚糖酶、內(nèi)切-β-1,4-葡聚糖酶和β-1,3-葡聚糖酶對(duì)病原真菌Fusarium graminearum、Pythium aphanidermatum、Rhizoctonia cerealis、R.solani、Sclerotium rolfsii菌絲的生長(zhǎng)有抑制作用[40]。
1.11 揮發(fā)性物質(zhì)
Muscodor sutura是從Prestonia trifidi中分離到的一個(gè)新的內(nèi)生菌屬,其產(chǎn)生的羅漢柏烯(圖9a)、chamigrene(圖9b)、異石竹烯(圖9c)等揮發(fā)性化合物對(duì)煙曲霉菌、灰霉菌、褐斑病菌等多種植物病原真菌有廣譜抗菌作用[41]。從裂欖木(Bursera simaruba)葉中分離到一株內(nèi)生真菌Muscodor yucatanensis,其產(chǎn)生的辛烷、2-甲基丁基乙酸酯、2-戊基呋喃、石竹烯(圖9d)和香橙烯(圖9e)等揮發(fā)性化合物對(duì)Guignardia mangifera、Colletotrichum sp.、Phomopsis sp.有致死作用[42]。內(nèi)生真菌Oxyporus latemarginatus分離自辣椒(Capsicum annum L.),其產(chǎn)生的揮發(fā)性化合物5-戊基-2-糠醛(圖9f)對(duì)鏈格孢菌、葡萄孢菌、炭疽病菌的抑制率介于13%~85%[43]。此外,齒舌蘭內(nèi)生擬莖點(diǎn)霉能產(chǎn)生檜萜(圖9g)、苯乙醇、正丁醇和丙酮等揮發(fā)性抗菌成分[44]。
圖9 內(nèi)生菌產(chǎn)生的具有抗菌活性的揮發(fā)性化合物(a~g)Fig.9 Antimicrobial volatile compounds(a-g) from endophytes
1.12 其他類
內(nèi)生真菌Phomopsis sp.能產(chǎn)生4個(gè)新的具有抗菌活性的α-吡喃酮化合物phomopsinones A-D(圖10a~d)[45]。從白衫內(nèi)生真菌Botryosphaeria dothidea KJ-1中獲得3個(gè)新化合物(圖10e~g),對(duì)大腸桿菌、枯草芽胞桿菌、金黃色葡萄球菌和蠟樣芽胞桿菌有抗菌活性[46]。
Cryptosporioptide(圖10h)是從內(nèi)生真菌Cryptosporiopsis sp.中獲得的一個(gè)聚酮類化合物,在50μg/disk時(shí)對(duì)B.megaterium的抑菌圈半徑為9 mm[47]。從葡萄葉中獲得的內(nèi)生菌Acremonium byssoides能產(chǎn)生4個(gè)新化合物acremines H,I,L, N(圖10i~l),在濃度為1 mmol/L時(shí),對(duì)Plasmopara viticola孢子萌發(fā)的抑制率為30.4%~69.4%[48]。
Senadeera等[49]從內(nèi)生真菌Dothideomycete sp.中分離到1個(gè)新的聚酮化合物(圖10m),該化合物對(duì)甲氧西林抗藥性金黃色葡萄球菌有明顯抑菌活性。此外,印度楝內(nèi)生真菌Nigrospora sp.能夠產(chǎn)生2個(gè)solanapyrone同系物solanapyrones N和O(圖10n,o),對(duì)黑曲霉、葡萄孢菌和島青霉的MIC介于31.25~250μg/mL[50]。
圖10 內(nèi)生菌產(chǎn)生的具有抗菌活性的其他類化合物(a~o)Fig.10 Other antimicrobial compounds(a-o)from endophytes
水果蔬菜營(yíng)養(yǎng)豐富,但其在采后儲(chǔ)藏過程中易受到病原菌感染而腐爛。據(jù)統(tǒng)計(jì),在發(fā)達(dá)國(guó)家因采后病害導(dǎo)致的果蔬腐爛達(dá)20%~25%,而我國(guó)的果蔬損失率高達(dá)25%~30%[5152]。目前,果蔬在儲(chǔ)藏過程中多采用化學(xué)殺菌劑進(jìn)行采后病害的防治[53],然而化學(xué)殺菌劑的長(zhǎng)期使用導(dǎo)致病原菌產(chǎn)生抗藥性,且農(nóng)藥殘留嚴(yán)重威脅著人類健康。植物內(nèi)生菌作為重要的生防微生物,可通過接種內(nèi)生菌菌體或其產(chǎn)生的抗菌物質(zhì)等方式發(fā)揮防病功效[54],減輕或消除化學(xué)殺菌劑帶來的不良影響。
2.1 植物內(nèi)生菌菌體防治保鮮
Lai等[55]從山豆根(Sophora tonkinensis)中分離到一株內(nèi)生多黏類芽胞桿菌,該菌對(duì)Penicillium digitatum引起的柑橘類水果采后綠霉病有較好的防治效果。當(dāng)該菌的接種量達(dá)到1×109cfu/mL時(shí),綠霉病的發(fā)病率降低到18.3%,且接種后水果的緊實(shí)度、可溶性固形物、維生素C含量以及可滴定酸度等生理指標(biāo)未發(fā)生改變。Shi等[56]研究了內(nèi)生細(xì)菌惡臭假單胞菌的變種MGP1對(duì)木瓜炭疽病的防治效果,發(fā)現(xiàn)MGP1對(duì)木瓜炭疽病的最大防治率達(dá)63%。此外, Shi等[57]進(jìn)一步研究了木瓜炭疽病與木瓜內(nèi)生細(xì)菌惡臭假單胞菌MGY2的互作效應(yīng),發(fā)現(xiàn)MGY2處理后木瓜的發(fā)病率和病變直徑顯著降低,且MGY2能通過提高木瓜苯丙氨酸氨裂解酶、過氧化氫酶、過氧化物酶等抗病相關(guān)酶的活性和基因表達(dá)量以及總酚含量等方式增強(qiáng)宿主的抗病性。Wang等[58]研究了內(nèi)生枯草芽胞桿菌EB-28對(duì)西紅柿腐爛致病菌灰霉病菌的防治效果,發(fā)現(xiàn)EB-28對(duì)灰霉病的防治效果顯著,其體外和體內(nèi)防治率分別為71.1%和52.4%。
2.2 植物內(nèi)生菌產(chǎn)生的抗菌物質(zhì)防治保鮮
Nodulisporium spp.是從Lagerstroemia loudoni分離到的一株內(nèi)生真菌,該菌能產(chǎn)生31種揮發(fā)性化合物。其發(fā)酵液對(duì)檸檬綠霉病、來蒙青霉病和柑橘青霉病的防治效果顯著,最低防治濃度分別為50、60和60 g[59]。從辣椒(Capsicum annum L.)中獲得一株內(nèi)生真菌Oxyporus latemarginatus,其固體發(fā)酵產(chǎn)物能有效防治葡萄孢菌引起的蘋果采后腐爛,采用50 g固體發(fā)酵產(chǎn)物處理后,蘋果的防治率達(dá)98.4%,其產(chǎn)生的主要抗菌活性物質(zhì)為5-戊基-2-糠醛(134)[43]。從越南肉桂(Cinnamomum loureirii)中獲得的內(nèi)生真菌Nodulisporium sp.能產(chǎn)生欖香烯、1-甲基-1,4-環(huán)己二烯、芹子烯和α-芹子烯等揮發(fā)性成分,對(duì)B. cinerea引起的蘋果灰霉病和P.expansum引起的蘋果青霉病均有很好的防治效果[60]。此外,黃海東等[61]從云霧龍膽中分離到一株內(nèi)生短小芽胞桿菌LD-b1,其發(fā)酵液對(duì)蘋果腐爛病菌病斑直徑僅為對(duì)照的13.7%。
自從Stierle等[62]首次從內(nèi)生菌Pestalotiopsis microspore代謝產(chǎn)物中分離出抗癌物質(zhì)紫杉酚以來,從內(nèi)生菌次級(jí)代謝產(chǎn)物中尋找新型天然藥物引起了人們的廣泛關(guān)注。越來越多的研究表明,植物內(nèi)生菌能夠產(chǎn)生種類豐富的天然活性物質(zhì),這些物質(zhì)大多具有抗菌活性[46]。因此植物內(nèi)生菌產(chǎn)生的次級(jí)代謝產(chǎn)物為解決日益突出的病原菌耐藥性,開發(fā)高效、低毒、環(huán)保的抗菌藥物開辟了一條新途徑。植物內(nèi)生菌作為一個(gè)天然抗菌活性物質(zhì)庫(kù),其研究潛力巨大。目前對(duì)于內(nèi)生菌的研究尚處于初級(jí)階段,許多問題有待解決[63]。除繼續(xù)從傳統(tǒng)植物內(nèi)生菌中尋找新的抗菌活性物質(zhì)外,從特殊生境條件下的內(nèi)生菌中篩選抗菌物質(zhì)越來越受到青睞[18]。目前對(duì)于內(nèi)生菌的研究還僅局限于可培養(yǎng)內(nèi)生菌,然而有些內(nèi)生菌在人工培養(yǎng)基中無法生長(zhǎng),因此限制了活性物質(zhì)的篩選[1]。如何利用現(xiàn)代技術(shù)手段最大程度的模擬宿主環(huán)境,從而篩選更多的內(nèi)生菌及其活性產(chǎn)物成為當(dāng)前面臨的一大難題[64]。植物內(nèi)生菌與宿主植物在長(zhǎng)期進(jìn)化過程中形成了共生關(guān)系,植物內(nèi)生菌能產(chǎn)生與宿主植物相同的代謝產(chǎn)物[65],然而其代謝產(chǎn)物是如何進(jìn)行調(diào)控,內(nèi)生菌與宿主之間如何進(jìn)行信號(hào)傳遞和基因交流目前尚不清楚。
植物內(nèi)生菌活性產(chǎn)物種類繁多,然而許多活性產(chǎn)物尤其是新型未知的功能成分由于其含量太低,當(dāng)前的技術(shù)手段無法檢測(cè),從而制約了新型藥物的發(fā)現(xiàn)。內(nèi)生菌代謝產(chǎn)物受培養(yǎng)條件的影響較大,如何優(yōu)化內(nèi)生菌培養(yǎng)條件,獲得高產(chǎn)菌株以實(shí)現(xiàn)工業(yè)化生產(chǎn)仍需繼續(xù)探索。當(dāng)前,有關(guān)內(nèi)生菌活性產(chǎn)物構(gòu)效關(guān)系的研究相對(duì)較少,有些產(chǎn)物的抗菌活性較低或毒性較高,因此有必要對(duì)其進(jìn)行結(jié)構(gòu)修飾,以增強(qiáng)或降低其生物活性,使其更好地服務(wù)于人類和生態(tài)環(huán)境。
植物內(nèi)生菌易受外界環(huán)境影響,將其用于果蔬采后病害防治時(shí),其防治效果是否穩(wěn)定,是否會(huì)引起果蔬生理發(fā)生變化,是否會(huì)產(chǎn)生有害成分仍需進(jìn)一步研究。此外,采用內(nèi)生菌活性物質(zhì)進(jìn)行果蔬采后防治時(shí),由于其發(fā)酵周期長(zhǎng)、活性成分含量低以及現(xiàn)代分離純化技術(shù)尚不成熟等因素的制約,其生物防治劑多處于研發(fā)階段,成果轉(zhuǎn)化和應(yīng)用率較低[66]。
我國(guó)幅員遼闊,植物資源豐富,因此有眾多植物內(nèi)生菌資源有待開發(fā),尤其是對(duì)海洋植物以及處于特殊生境條件下的植物內(nèi)生菌的研究較少。但生命科學(xué)以及現(xiàn)代分析檢測(cè)技術(shù)的不斷發(fā)展,必將加速推進(jìn)植物內(nèi)生菌抗菌活性物質(zhì)的篩選步伐。
[1] Guo B,Wang Y,Sun X,et al.Bioactive natural products from endophytes:a review[J].Applied Biochemistry and Microbiology,2008,44(2):136-142.
[2] Liu Changhong,Zou Wongxin,Lu Hong,et al.Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi[J].Journal of Biotechnology,2001,88(3):277-282.
[3] 楊春平,韓小美,韓江濤,等.冬青衛(wèi)矛內(nèi)生放線菌YDGl7菌株發(fā)酵液抑菌活性研究[J].農(nóng)藥學(xué)學(xué)報(bào),2008,10(1):53-63.
[4] Li Haiyan,Chen Qing,Zhang Yanli,et al.Screening for endophytic fungi with antitumour and antifungal activities from Chinese medicinal plants[J].World Journal of Microbiology and Biotechnology,2005,21:1515-1519.
[5] Li Xiaojun,Tang Haoyu,Duan Jiali,et al.Bioactive alkaloids produced by Pseudomonas brassicacearum subsp.neoaurantiaca,an endophytic bacterium from Salvia miltiorrhiza[J].Natural Product Research,2013,27:496-499.
[6] Du Fengyu,Li Xiaoming,Li Chunshun,et al.Cristatumins AD,new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220[J].Bioorganic&Medicinal Chemistry Letters,2012,22(14):4650-4653.
[7] Pinheiro E A A,Carvalho J M,dos Santos D CP,et al.Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp.EJC08 isolated from medical plant Bauhinia guianensis[J]. Natural product Research,2013,27(18):1633-1638.
[8] Zheng Chengjian,Li Lin,Zou Jingping,et al.Identification of a quinazoline alkaloid produced by Penicillium vinaceum,an endophytic fungus from Crocussativus[J].Pharmaceutical Biology,2012,50(2):129-133.
[9] Koolen H H F,Soares E R,da Silva F M A,et al.An antimicrobial diketopiperazine alkaloid and co-metabolites from an endophytic strain of Gliocladium isolated from Strychnos cf.toxifera[J]. Natural product Research,2012,26(21):2013-2019.
[10]Wu Shaohua,Zhao Lixing,Chen Youwei,et al.Sesquiterpenoids from the endophytic fungus Trichoderma sp.PR-35 of Paeonia delavayi[J].Chemistry&Biodiversity,2011,8(9):1717-1723.
[11]Gao Shushan,Li Xiaoming,Zhang Yi,et al.Conidiogenones H and I,two new diterpenes of Cyclopiane class from a Marine-Derived endophytic fungus Penicillium chrysogenum QEN-24S[J].Chemistry&Biodiversity,2011,8:1748-1753.
[12]Sun Haofen,Li Xiaoming,Meng Li,et al.Asperolides A-C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48[J].Journal of Natural Product,2012,75(2):148-152.
[13]Zhao Jianglin,Mou Yan,Shan Tijiang,et al.Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var.yunnanensis[J].Molecules,2010,15(11):7961-7970.
[14]Wang Quanxin,Li Chunshun,Yang Xiaoli,et al.Tricycloalternarenes F-H:three new mixed terpenoids produced by an endolichenic fungus Ulocladium sp.using OSMAC method[J].Fitoterapia, 2013,85:8-13.
[15]Chomcheon P,Wiyakrutta S,Aree T,et al.Curvularides A-E:antifungal hybrid peptide-polyketides from the endophytic fungus Curvularia geniculata[J].Chemistry-A European Journal,2010,16:11178-11185.
[16]Wang Lei,Zheng Chengdong,Li Xiaojun,et al.Cyclo(pro-tyr) from an endophytic rhizobium isolated from Glycyrrhiza uralensis [J].Chemistry of Natural Compound,2012,47:1040-1042.
[17]Zhao Zhenzhen,Wang Qiushuo,Wang Kaimei,et al.Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components[J].Bioresource Technology,2010,101:292-297.
[18]戈惠明,譚仁祥.共生菌—新活性天然產(chǎn)物的重要來源[J].化學(xué)進(jìn)展,2009,21(1):30-46.
[19]Gao Shushan,Li Xiaoming,Li Chunshun,et al.Penicisteroids A and B,antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S[J].Bioorganic&Medicinal Chemistry Letters,2011, 21:2894-2897.
[20]Wu Shaohua,Huang Rong,Miao Cuiping,et al.Two new steroids from an endophytic fungus Phomopsis sp.[J].Chemistry&Biodiversity,2013,10(7):1276-1283.
[21]Sun Peng,Huo Juan,Kurtán T,et al.Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp.[J].Chirality,2013,25(2):141-148.
[22]Klaiklay S,Rukachaisirikul V,Phongpaichit S,et al.Anthraquinone derivatives from the mangrove-derived fungus Phomopsis sp.PSU-MA214[J].Phytochemistry Letters,2012,5 (4):738-742.
[23]Subban K,Subramani R,Johnpaul M.A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae[J].Natural Product Research, 2013,27(16):1445-1449.
[24]Gu Wen.Bioactive metabolites from Alternaria brassicicola ML-P08,an endophytic fungus residing in Malus halliana[J]. World Journal of Microbial&Biotechnology,2009,25(9):1677-1683.
[25]Abdou R,Scherlach K,Dahse H M,et al.Botryorhodines A-D,antifungal and cytotoxic depsidones from Botryosphaeria rhodina,an endophyte of the medicinal plant Bidens pilosa[J].Phytochemistry,2010,71(1):110-116.
[26]Siddiqui I N,Zahoor A,Hussain H,et al.Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.:absolute configuration of diversonol[J].Journal of Natural Product,2011,74(3):365-373.
[27]Ahmed I,Hussain H,Schulz B,et al.Three new antimicrobial metabolites from the endophytic fungus Phomopsis sp.[J]. European Journal of Organic Chemistry,2011,2011(15):2867-2873.
[28]Li Ruxin,Chen Shenxi,Niu Shubin,et al.Exserolides A-F, new isocoumarin derivatives from the plant endophytic fungus Exserohilum sp.[J].Fitoterapia,2014,96:88-94.
[29]Oliveira C M,Regasini L O,Silva G H,et al.Dihydroisocoumarins produced by Xylaria sp.and Penicillium sp.,endophytic fungi associated with Piper aduncum and Alibertia macrophylla[J].Phytochemistry Letters,2011,4(2):93-96.
[30]Zhang Wen,Krohn K,Draeger S,et al.Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi [J].Journal of Natural Product,2008,71(6):1078-1081.
[31]Sun Zhenliang,Zhang Ming,Zhang Jifa,et al.Antifungal and cytotoxic activities of the secondary metabolites from endophytic fungus Massrison sp.[J].Phytomedicine,2011,18(10):859-862.
[32]Wu S H,Chen Y W,Shao S C,et al.Ten-membered lactones from Phomopsis sp.,an endophytic fungus of Azadirachta indica[J].Journal of Natural Product,2008,71(4):731-734.
[33]Yang Ruiyun,Li Chunyuan,Lin Yongchen,et al.Lactones from a brown alga endophytic fungus(No.ZZF36)from the South China Sea and their antimicrobial activities[J].Bioorganic&Medicinal Chemistry Letters,2006,16(16):4205-4208.
[34]Hussain H,Ahmed I,Schulz B,et al.Pyrenocines J-M:Four new pyrenocines from the endophytic fungus,Phomopsis sp. [J].Fitoterapia,2012,83(3):523-526.
[35]Rukachaisirikul V,Kaeobamrung J,Panwiriyarat W,et al.A new pyrone derivative from the endophytic fungus Penicillium paxilli PSU-A71[J].Chemical&Pharmaceutical Bulletin, 2007,55(9):1383-1384.
[36]Bressan W,Figueiredo J E F J.Chitinolytic Bacillus spp.isolates antagonistic to Fusarium moniliforme in maize[J].Journal of Plant Pathology,2010:343-347.
[37]Haggag W M,Abdallh E G J.Purification and characterization of chitinase produced by endophytic Streptomyces hygroscopicus against some phytopathogens[J].Microbiological Research,2012,2(5):145-151.
[38]Lee J M,Tan W S,Ting A S Y.Revealing the antimicrobial and enzymatic potentials of culturable fungal endophytes from tropical pitcher plants(Nepenthes spp.)[J].Mycosphere, 2014,5(2):364-377.
[39]Jin Zhixiong,Zhou Wei,Wang Ya,et al.Antibacterial effect and cytotoxicity ofβ-1,3-1,4-glucanase from endophytic Bacillus subtilis SWB8[J].Acta Microbiologica Sinica,2011,51(11):1527-1537.
[40]Cao Ronghua,Liu Xiaoguang,Gao Kexiang,et al.Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro[J]. Current Microbiology,2009,59(6):584-592.
[41]Kudalkar P,Strobel G,Riyaz-Ul-Hassan S,et al.Muscodor sutura,a novel endophytic fungus with volatile antibiotic activities[J].Mycoscience,2012,53(4):319-325.
[42]Macías-Rubalcava M L,Hernández-Bautista B E,Oropeza F, et al.Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis,a tropical endophytic fungus from Bursera simaruba[J].Journal of Chemical Ecology,2010,36(10):1122-1131.
[43]Lee S O,Kim H Y,Choi G J,et al.Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid[J].Journal of Applied Microbiology,2009,106(4):1213-1219.
[44]Singh S K,Strobel G A,Knighton B,et al.An endophytic Phomopsis sp.possessing bioactivity and fuel potential with its volatile organic compounds[J].Microbial Ecology,2011,61 (4):729-739.
[45]Hussain H,Krohn K,Ahmed I,et al.Phomopsinones A-D:Four new pyrenocines from endophytic fungus Phomopsis sp. [J].European Journal of Organic Chemistry,2012,2012(9):1783-1789.
[46]Xiao J,Zhang Q,Gao Y Q,et al.Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal,antibacterial,antioxidant,and cytotoxic activities[J].Journal of Agricultural and Food Chemistry, 2014,62(16):3584-3590.
[47]Saleem M,Tousif M I,Riaz N,et al.Cryptosporioptide:A bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp.[J].Phytochemistry,2013,93:199-202.
[48]Arnone A,Assante G,Bava A,et al.Acremines H-N,novel prenylated polyketide metabolites produced by a strain of Acremonium byssoides[J].Tetrahedron,2009,65(4):786-791.
[49]Senadeera S P D,Wiyakrutta S,Mahidol C,et al.A novel tricyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp.[J].Organic &Biomolecular Chemistry,2012,10(35):7220-7226.
[50]Wu Shaohua,Chen Youwei,Shao Shicheng,et al.Two new solanapyrone analogues from the endophytic fungus Nigrospora sp.YB-141 of Azadirachta indica[J].Chemistry&Biodiversity,2009,6(1):79-85.
[51]Droby S.Improving quality and safety of fresh fruit and vegetables after harvest by the use of biocontrol agents and natural materials[C].International Symposium on Natural Preservatives in Food Systems,2005,709:45-52.
[52]黃應(yīng)維,徐匆,馬錁,等.果蔬微生物保鮮技術(shù)的研究進(jìn)展[J].現(xiàn)代食品科技,2013,29(6):1455-1458.
[53]Chen Hua,Xiao Xiang,Wang Jun,et al.Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen,Botrytis cinerea[J]. Biotechnology Letters,2008,30(5):919-923.
[54]Mousa W K,Raizada M N.The diversity of anti-microbial secondary metabolites produced by fungal endophytes:an interdisciplinary perspective[J].Frontiers in Microbiology,2013,4:65.
[55]Lai Kaiping,Chen Shaohua,Hu Meiying,et al.Control of postharvest green mold of citrus fruit by application of endophytic Paenibacillus polymyxa strain SG-6[J].Postharvest Biology and Technology,2012,69(2):40-48.
[56]Shi Jingying,Liu Aiyuan,Li Xueping,et al.Identification of endophytic bacterial strain MGP1 selected from papaya and its biocontrol effects on pathogens infecting harvested papaya fruit [J].Journal of the Science of Food and Agriculture,2010,90 (2):227-232.
[57]Shi Jingying,Liu Aiyuan,Li Xueping,et al.Inhibitory mechanisms induced by the endophytic bacterium MGY2 in controlling anthracnose of papaya[J].Biological Control,2011,56(1):2-8.
[58]Wang Shutong,Hu Tongle,Jiao Yanling,et al.Isolation and characterization of Bacillus subtilis EB-28,an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers [J].Frontiers of Agriculture in China,2009,3(3):247-252.
[59]Suwannarach N,Kumla J,Bussaban B,et al.Biofumigation with the endophytic fungus Nodulisporium spp.CMU-UPE34 to control postharvest decay of citrus fruit[J].Crop Protection, 2013,45(3):63-70.
[60]Park M S,Ahn J,Choi G J,et al.Potential of the volatile-producing fungus Nodulisporium sp.CF016 for the control of postharvest diseases of apple[J].Plant Pathology Journal,2010,26 (3):253-259.
[61]黃海東,李曉雁,楊紅澎,等.龍膽內(nèi)生菌的分離鑒定及其對(duì)蘋果腐爛病菌的詁抗作用[J].食品工業(yè)科技,2012,33(6):215-218.
[62]Stierle A,Strobel G,Stierle D.Taxol and taxane production by Taxomyces andreanae,an endophytic fungus of Pacific yew [J].Science,1993,260(5105):214-216.
[63]馬養(yǎng)民,趙潔.植物內(nèi)生真菌抗菌活性物質(zhì)的研究進(jìn)展[J].有機(jī)化學(xué),2010,30(2):220-232.
[64]Clardy J,Fischbach M A,Walsh C T.New antibiotics from bacterial natural products[J].Nature Biotechnology,2006,24 (12):1541-1550.
[65]Strobel G,Daisy B,Castillo U,et al.Natural products from endophytic microorganisms[J].Journal of Natural Product, 2004,67(2):257-268.
[66]吳忠紅,杜鵑,王剛霞,等.植物內(nèi)生菌在果蔬保鮮中的研究進(jìn)展[J].生物技術(shù)進(jìn)展,2013,3(6):399-402.
(責(zé)任編輯:田 喆)
Progress in antimicrobial products from endophytes and their application in the preservation of postharvest fruits and vegetables
Zhou Jinwei1, Zhou Hongli1, Bai Lianyang2, Yi Youjin1, Li Gaoyang3, Xia Bo1, Long Lilin1
(1.Hunan Provincial Key Laboratory of Food Science and Biotechnology/College of Food Science and Technology, Hunan Agricultural University,Changsha 410128,China;2.College of Plant Protection,Hunan Agricultural University,Changsha 410128,China;3.Institute of Agro-product Processing Science and Technology, Hunan Provincial Academy of Agricultural Sciences,Changsha 410128,China)
Endophytes are microorganisms residing in the tissues of living plants which are relatively unstudied for a long time.However,more and more researches have proven that endophyte are precious sources of novel antimicrobial products.Presently a number of antimicrobial natural products belong to diverse structural classes have been isolated from endophytes.This review summarizes the antimicrobial products produced by endophytes and their antimicrobial effects.Besides,the application of endophytes in post-harvest fruits and vegetables is briefly discussed.The prospects and existing problems of isolating natural products from endophytes are also discussed.
endophytes; antimicrobial products; antimicrobial activity; fruits and vegetables;postharvest preservation
S 476.8
A
10.3969/j.issn.0529-1542.2015.06.004
2014-12-05
2014-12-29
國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD16B00,2015BAD16B01);國(guó)家自然科學(xué)基金項(xiàng)目(31071738,31000827);長(zhǎng)沙市科技局項(xiàng)目(K1308044-21);湖南省研究生科研創(chuàng)新項(xiàng)目(CX2013B310);湖南省自然科學(xué)基金項(xiàng)目(09JJ3032)
*通信作者 E-mail:yiyoujin@126.com