• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage

    2021-10-21 03:31:14YongchaoTangYueWeiAnthonyHollenkampMustafaMusamehAaronSeeberTaoJinXinPanHanZhangYananHouZongbinZhaoXiaojuanHaoJieshanQiuChunyiZhi
    Nano-Micro Letters 2021年11期

    Yongchao Tang ,Yue Wei ,Anthony F.Hollenkamp ,Mustafa Musameh ,Aaron Seeber ,Tao Jin,4,Xin Pan,Han Zhang,Yanan Hou,Zongbin Zhao,Xiaojuan Hao,Jieshan Qiu,Chunyi Zhi

    ABSTRACT As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases,cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges.The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect,enabling the circumvention of intrinsic drawbacks of different metal sulfides.By utilizing ether-based electrolyte,the reversibility of metal sulfides is greatly improved,sustaining a long-life effectivity of cocktail-like mediation.As such,CSC effectively overcomes low-rate flaw of SnS2 and highplateau demerit of CoS2,simultaneously realizes a high rate and a low plateau.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anode at 20 A g-1,far outperforming those of monometallic sulfides (SnS2,CoS2) and their mixtures.Compared with CoS2 phase and SnS2/CoS2 mixture,CSC shows remarkably lowered average charge voltage up to ca. 0.62 V.As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability(0.05~ 1.0 A g-1,120.3 mAh g-1electrode at 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC,compared with single phase and mixed phases.Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC.This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    KEYWORDS Metal sulfide anode;Rate capability;Voltage plateau;Cocktail mediation effect;Sodium-ion batteries

    1 Introduction

    With the merits of high capacity and low cost,metal sulfides have been recognized as promising anode materials for sodium-ion batteries (SIBs) [1,2].However,most metal sulfide anodes examined to date exhibit poor high-rate performance and/or voltage behavior that trends rapidly to relatively high values.The result is full-cells that only operate well at a low rate (≤0.5 A g-1electrode) and maintain average output voltages typically ≤2 V _ENREF_6 [3-8].At this level of performance,such cells are only slightly better than a number of advantages in energy density over aqueous batteries (e.g.,zinc batteries) but noncomparable safety to the latter [9-12].Thus far,many studies on metal sulfide anodes still focus on the enhancement in reversible capacity,rate capability,and cyclability in half-cells.Even few studies concerning the properties of metal sulfide anodes in fullcells,most of them only roughly evaluate the performance of full-cells based on anodes instead of total electrodes.This could result in certain intrinsic flaws of metal sulfide anodes underrated [10].Therefore,from the perspective of full-cell,to solve the low-rate and high-plateau issues of metal sulfide anodes is crucial for the development of high-performance full-cells (Scheme 1a).

    Different metal sulfides usually show electrolyte/structure-dependent electrochemical properties,offering valuable inspiration to rationally design new architectures and investigate their properties in proper electrolyte [3,13,14].Compared with ester-based electrolytes,ether-based electrolytes can effectively inhibit3 the shuttle effect of polysulfides in situ formed during discharge/charge processes,thus more beneficial to obtain reversible properties of metal sulfides [1,13,15].Ferromagnetic metal (Fe,Co,Ni,etc.)sulfides (FMSs) are very promising conversion-reaction anode materials widely studied for SIBs [16-19].Compared with conventional hard carbon or red phosphorous anodes,FMS anodes can display ultrahigh-rate capability (≥20 A g-1) in ether-based electrolyte,holding a great promise in SIBs (Scheme 1b) [20-22].However,FMS anode usually suffers from severe voltage hysteresis and high plateau(~1.9 V vs Na/Na+),largely lowering the discharge plateau of full-cells (Scheme 1c).From this point,mono-component FMSs seem to be difficult to meet the requirements for high-performance full-cells.So far,despite many relevant studies,most of them are inclined to ignoring the severe intrinsic flaws of FMSs,emphasizing to enhance capacity and cyclability.By contrast,another series of metal (Sn,Sb,Bi,etc.) sulfides (AMSs) with conversion/alloying-reaction mechanisms can show acceptable voltage hysteresis and relatively lower voltage plateau [23-30].However,these AMSs always suffer from severe volume change during discharge/charge processes,resulting in poor rate capability and cyclability in ester-based electrolytes (Scheme 1b).Owing to latent catalysis over the decomposition of certain ether,such AMSs remain scarcely investigated in ether-based electrolyte [31,32].Encouragingly,by utilizing fluorine-containing sodium salt in ether solvents as electrolyte,the undesirable catalysis of AMSs can be effectively suppressed to allow a stable battery operation [33,34].The good compatibility enables the investigation of electrochemical properties of FMS/AMS composites in ether-based electrolytes.In the multi-component metal sulfide anodes,each component functions as active material and mutually compete.Thus,the electrochemical behaviors of multi-component metal sulfides are comprehensive results from individual component.Given that exotic properties beyond rule-of-mixtures(cocktail-like mediation effect) in multi-component highentropy nano-systems [35,36],to construct new superstructures assembled by nano-dispersed FMSs and AMSs and to study their properties in ether-based elctrolytes,could be an effective strategy toward high-performance full-cells.Additionally,the poor conductivity of most metal sulfides makes them essential to further combine with highly conductive carbon materials.Such combination can endow rational architectures with fast ion/electron transfer,which is conducive to obtaining satisfactory electrochemical properties [13,37-39].So far,despite some studies pertaining to FMS/AMS composites,the certain agglomeration or phase separation between FMS and AMS remains unsatisfactory to investigate their comprehensive impact.Additionally,such studies mostly involved the electrochemical properties of FMS/AMS composites in carbonate-based electrolytes[40-42].Thus,to study the voltage behavior of metal sulfide composites in ether-based electrolytes will provide a new perspective to pursue desired sodium storage properties.

    Herein,CNTs-stringed metal sulfides superstructure anode assembled by nano-dispersed SnS2and CoS2phases(CSC,C:CNT;S: SnS2;C: CoS2) is engineered to combine the merits of FMS-and AMS-type anode materials,aiming at simultaneously solving the dual-problems of poor rate capability/output-voltage characteristics (Scheme 1b-c).The highly nano-dispersed metal sulfides in CSC show remarkable cocktail-like mediation effect,effectively circumventing intrinsic drawbacks of different metal sulfides.The etherbased electrolyte greatly enhances the reversibility of metal sulfides,which can inhibit the aggregation of homogenous metal sulfides,enabling a long-life effectivity of cocktaillike mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1at 20 A g-1,showing remarkably lowered average charge plateau up to 0.62 V vs Na/Na+,compared with CoS2phase and SnS2/CoS2mixture.The asassembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05~ 1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies reveal that the cocktail mediation effect largely boosts the charge transfer and ionic diffusion in CSC;along the diffusion direction of Na+carriers,alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2,CoS2) and Na+carriers are responsible for the lowered average charge plateau of CSC.This exhibited cocktail-like mediation effect evidently improves the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    Scheme 1 a Prototype of full-cells.b Rate capability comparison of typical metal sulfide anodes in half-cells.c Discharge plateau comparison in full-cells with different metal sulfide anodes showing the merits of FMS/AMS ultrastructure

    2 Results and Discussion

    2.1 Materials Preparation and Characterization

    The CSC was initially obtained by ion-exchange reaction between thiostannate (SnxSyn-) and cobalt-based zeolitic imidazolate framework (ZIF-67) followed by annealing treatment (Fig.1a).For an enhanced conductivity of the resulting CSC,the ZIF-67 particles (C-ZIF-67) are connected together (‘stringed’) by a network of CNTs (Fig.S1). Sn119NMR spectroscopy reveals that several tetravalent thiostannate species (SnS32-,SnS44-,and Sn2S64-)exist in solution and these are referred to collectively as‘SnxSyn-’ (Fig.S2) [43].Within the ion-exchange process,Co2+in ZIF-67 reacts rapidly with SnxSyn-species,forming a unique superstructure comprised of nano-dispersed CoS2and SnS2phases.The overall reaction follows Eq.(1):

    Fig.1 a Schematic illustration of fabrication process of CSC,inset (right) showing the reaction between ZIF-67 and SnxSyn-.b XRD patterns of CNTs and CSC.c Mass content of CoS2,SnS2,and CNTs in the CSC.d N2 adsorption isotherm of CSC and corresponding pore width distribution.e FE-SEM images of CSC (inset displaying the core/shell structure of CSC).f TEM image of CSC and g TEM-EDS element mapping of CSC including C,Co,Sn,and S.HR-TEM images of h shell and i core in CSC showing co-assembly of nano-CoS2 and -SnS2

    As shown in Fig.1b,X-ray diffraction (XRD) patterns exhibit the diffraction peaks of CoS2(PDF No.00-41-1471),SnS2(PDF No.00-23-0677),and carbon,verifying their presence in the CSC.Compared with standard phase,the reflection for the (0 0 1) plane of SnS2registers a slight shift toward lower angles,implying an expanded interlayer spacing [14,44].The expanded interlayer spacing could be associated with the use of thiostannate precursor and low-temperature ion-exchange process.The ion-exchange reaction of thiostannate with ZIF-67 typically occurs at-5 °C in 1 h,where fast reassembly of SnS2results in the expanded interlayer spacing.Also,the relatively low annealing temperature (450 °C) is beneficial to retain the expanded interlayer spacing of SnS2.The content of carbon nanotubes in CSC is obtained by thermogravimetric analysis (TGA),which is ca.3.75 wt% (Fig.S3).By inductively coupled plasma-mass spectrometry (ICP-MS),the elemental content of CSC is analyzed,revealing that the mole ratio of Co/Sn/S isca.1.00/1.73/5.46 (Table S1).The corresponding mass content of CoS2and SnS2in the CSC is 26.95 and 69.30wt%,respectively (Fig.1c).The type-IV N2adsorption isotherms of CSC present an evident hysteresis loop,indicating the presence of mesopores (Fig.1d).The corresponding pore width (inset) mainly centers in the range of 20-45 nm.The theoretical capacity of CSC anode (CT-CSC) can be evaluated roughly according to the equation: CT-CSC=xCT-CoS2+yCT-SnS2,wherexandyis the percentage content of CoS2and SnS2in the CSC.The CT-CoS2and CT-SnS2are the theoretical capacity of CoS2and SnS2,which is 872 and 1136 mAh g-1,respectively.Thus,CT-CSC=0.2695 × 872+0.695 × 1136=1024.5 mAh g-1.

    Figure 1e exhibits field emission scanning electron microscopy (FE-SEM) images of CSC,which consists of carbon nanotubes-stringed core/shell architecture (inset).Such core/shell structures are greatly influenced by precursors,solvents,reaction temperatures,and concentrations (Figs.S4-S6).The content of SnS2in the CSC can be tuned to some extent by varying the concentration of thiostannate solution (Fig.S6).Transmission electron microscope (TEM) image shows the typical radial morphology of the CSC (Fig.1f).Energy-dispersive spectrometer (EDS) elemental mapping yields a distribution of the elements C,Sn,Co,and S in the CSC,which correspond well with the TEM image (Fig.1g).The details of shell and core were further characterized by TEM.The shell is actually composed of nanosheets (Fig.S7a).As displayed in Fig.1h,high-resolution transmission electron microscope (HR-TEM) image clearly exhibits interplanar spacings of 0.248 and 0.615 nm for CoS2(2 1 0) and SnS2(0 0 1) lattice planes,verifying such nanosheets assembled by nano-dispersed SnS2(red) and CoS2(blue-green).The TEM-EDS line-scan profiles show matched peaks with Co,Sn,S elements,further suggesting the superstructure of shell co-assembled by SnS2and CoS2phases (Fig.S7b).Corresponding to SEM image of CSC (inset),the core of CSC shows an abundant microstructure,in which the pore(green) can be observed (Fig.S8a).As shown in Fig.1i,HR-TEM image of the core also exposes the lattice planes of SnS2(0 0 1) and CoS2(2 1 0),which accord with the corresponding selected area electron diffraction (SAED)pattern (Fig.S8b).Such results verify that the core of CSC is also assembled by nano-dispersed SnS2and CoS2phases.The CSC was further analyzed by X-ray photoelectron spectroscopy (XPS).As shown in Fig.S9,compared with commercial CoS2sample,the high-resolution of XPS of Co 2p of CSC shows aca.0.45 eV shift toward higher binding energy.Moreover,the high-resolution of XPS of Sn 3d of CSC also appears a 0.61 eV shift toward higher binding energy.Such results imply the presence of chemical effect between CoS2and SnS2in CSC anodes [45,46].

    2.2 Half-Cell Properties

    The electrochemical properties of anode materials are firstly evaluated by testing half-cells with Na foil as counter electrode and ether-based electrolytes with fluorine-containing sodium salt.For comparison,commercial SnS2and CoS2powders with well-matched XRD patterns to standard phases are also tested (Fig.S10).Compared with the CSC,the N2isotherms of commercial SnS2and CoS2samples typically exhibit no evident hysteresis loop,whereby the corresponding pore diameter distributions display nonporous properties (Fig.S11).After initial three scans at 0.1 mV s-1,mono-component metal sulfides (CoS2and SnS2) and anodes composed of both compounds show gradually stabilized CV curves (Fig.S12).The initial CV curve of the CSC anode shows three oxidation peaks,which are associated with SnS2phase at 0.70-1.55 V and CoS2phase at 1.70-2.10 V,respectively.The reduction peak at 1.60-1.80 V is correlated with the CoS2phase,while the peaks at 0.50-1.10 V are linked to SnS2and formation of solid electrolyte interphase (Fig.S13a).In subsequent scans,the reduction peak related to CoS2gradually disappears,which could result from electrochemical activation of nano-dispersed SnS2and CoS2phases[16,22].As shown in Fig.2a,the activated CSC delivers a main oxidized peak potential range (0.75-1.65 V),which is close to that of SnS2(0.80-1.45 V) but remarkably lower than that of CoS2(1.30-2.18 V) and SnS2/CoS2mixture(1.25-2.15 V).Correspondingly,CSC anode displays an average charge voltage ofca.1.30 V,which is close to that of SnS2but lower than that of CoS2(ca.1.92 V) (Fig.2b).Compared with commercial SnS2/CoS2mixture with average charge voltage ofca.1.81 V,CSC anode also shows evident low-plateau merit (Fig.2c).This verifies that the construction of a superstructure assembled from nano-dispersed SnS2and CoS2phases is crucial for lowering the intrinsically high plateau of the CoS2phase.Specifically,as shown in Fig.2d,the introduction of nano-dispersed SnS2phase into CSC effectively lowers the intrinsic average charge voltage of CoS2up toca.0.62 V.This in turn will translate to a higher plateau voltage for full-cells,thereby improving their energy density.

    Fig.2 a CV curves and b,c corresponding discharge-charge curves of CSC,commercial SnS2 and CoS2,and SnS2/CoS2 mixture.d Histogram showing the average charge plateau voltages of various anodes in half-cells.e Capacity/charge plateau comparison of different anodes.f Rate capability of CSC,commercial SnS2 and CoS2 in half-cells.g Rate capability comparison of different anodes.h Long-life cyclability of CSC anode at 1 and 10 A g-1 (CE Coulombic efficiency)

    Compared with other metal chalcogenide anodes,CSC exhibits obvious high-capacity and low-plateau advantages(Fig.2e).Moreover,compared with commercial SnS2and CoS2,and mixtures of the two,CSC shows a remarkably improved rate capability,ranging from 0.5 to 20 A g-1with a high capacity of 327.6 mAh g-1anodeat 20 A g-1(Fig.2f).The corresponding discharge/charge curves are exhibited in Fig.S14.When tested with ester-based electrolyte,CSC shows similar CV curves to that in ether-based electrolyte,but the reversible capacity,to the same cutoffvoltage,shrinks markedly (Fig.S15).In addition,compared with in ether-based electrolyte,the rate capability of CSC is greatly deteriorated (Fig.S16),along with an increased resistance of charge transfer (Fig.S17).Such phenomena suggest the key role of ether-based electrolyte in stabilizing metal sulfide anodes and realizing fast charge transfer,which could be associated with good compatibility between metal sulfide and ether solvent [1,15].Evidently,the CSC anode effectively circumvents the intrinsic high voltage of CoS2and low-rate drawback of SnS2in etherbased electrolyte.Compared with other anode materials in half-cells,CSC also shows a remarkable high-rate capability(Fig.2g,Table S2)_ENREF_12_ENREF_13_ENREF_14_ENREF_15_ENREF_16_ENREF_17_ENREF_18 [47-54].The CSC can be cycled at high current densities (1 and 10 A g-1) with excellent long-life cyclability,specifically,410.8 mAh g-1anodeat 10 A g-1over 500 cycles without decay(Fig.2h).

    2.3 Electrochemical Kinetics

    The electrochemical kinetics of the CSC anode in half-cells is studied in detail by reference to the results of electrochemical impedance spectroscopy (EIS).Compared with electrodes made from commercial samples of SnS2and CoS2,the Nyquist curve for a typical CSC anode shows a semi-circle with smaller diameter,implying a faster charge transfer (Fig.3a).Based on the derived equivalent circuit,the resistances of charge transfer for CSC,commercial SnS2and CoS2anodes are 9.5,32.7,and 13.4 Ω,respectively(Fig.3b).To compare Na+diffusion coefficient (DNa+) in CSC and SnS2/CoS2mixture,galvanostatic intermittent titration technique (GITT) was conducted at 0.05 A g-1for 0.5 h,followed by relaxation for 2 h.The typical GITT discharge profiles of CSC and SnS2/CoS2mixture are shown in Fig.3c.As illustrated in Fig.3d,can be calculated following equationDNa+=,where L is Na+diffusion length(cm),τis the current impulse time (s),tis relaxation time(s),ΔESis steady-state potential change (V),ΔEtis the instantaneous potential change (V) used to deduce IR drop[55,56].Corresponding to the GITT profiles,the calculated averageDNa+isca.0.5 × 10-9cm2s-1,which is around twice that in half-cell with SnS2/CoS2mixture (Fig.3e).Evidently,compared with simply mixed SnS2/CoS2anode,the CSC assembly of nano-dispersed SnS2and CoS2particles shows remarkable superiority in terms of charge transfer kinetics and ionic diffusion.

    Next,the pseudocapacitive contribution to charge storage in the Na//CSC half-cell was evaluated,on the basis that this component gives rise to faster charge transfer kinetics.CV curves at different rates are shown in Fig.3f,and the correlation of peak currents (i) and scan rates (v) was assessed against the relationshipi=avb,whereaandbare adjustable constants [57].As shown in Fig.3g,the resultantb-values are 0.98,0.81,and 0.93,respectively,which implies the presence of a substantial pseudocapacitive contribution.The latter can be quantified through the equationi=k1v+k2v1/2,wherek1vandk2v1/2represent pseudocapacitive and iondiffusion controlled contribution,respectively [57-59].As shown in Fig.3h,CSC anodes exhibit dominant pseudocapacitive contributions at scan rates of 0.1,0.2,0.4,0.8,and 1.5 mV s-1,specifically,64.0%,67.0%,71.6%,78.3%,and 86.3%,respectively.Figure 3i displays the CV curves of Na//CSC at 1.5 mV s-1,in which the shaded region represents the pseudocapacitive contribution.This,together with the small charge transfer resistance and highDNa+,explains the excellent rate capability of the CSC anode.

    Fig.3 a Nyquist plots of different anodes in half-cells and b corresponding equivalent circuit and charge transfer resistance (Rct).c GITT profiles of Na//CSC half-cell discharged and d typical profile in a single GITT test.e Na+ diffusion coefficient distribution corresponding to a typical discharge curve of Na//CSC half-cell (inset).f CV curves of Na//CSC half-cell at different scan rates.g b-values obtained by fitting peak current-scan rate correlation based on CV curves of Na//CSC half-cell.h Pseudocapacitive contribution (pseudocapa.contri.) of Na//CSC at different scan rates.i CV profiles of Na//CSC at 1.5 mV s-1 and corresponding pseudocapacitive contribution (shaded region)

    2.4 Electrochemical Mechanism

    To investigate the mechanism that underpins the superior electrochemical behavior of CSC anodes,samples were at various states-of-(dis)charge characterized by ex situ XRD.The copper current collector in a Na//Cu half-cell discharged to 0.4 V shows only the intrinsic diffraction peaks for metallic copper,verifying no evident electrochemical reaction between Na and Cu collector in etherbased electrolyte (Fig.S18).Compared with original samples (CSC,commercial SnS2and CoS2),the samples after electrochemical activation exhibit dramatically different XRD patterns,indicating the occurrence of phase transition (Fig.S19).For CoS2,the relevant electrochemical reactions are as follows: CoS2+xNa++xe-→ NaxCoS2,NaxCoS2+(4 -x)Na++(4 -x)e-? 2Na2S+Co [60].For SnS2,the corresponding electrochemical reactions are as follows:xNa++SnS2+xe-→ NaxSnS2,NaxSnS2+(4-x)Na++(4-x)e-? 2Na2S+Sn,Sn+yNa++ye-? NaySn[40,61].Compared with single phases,the CSC anode shows similar featured diffraction peaks to pure SnS2,while the peaks from the CoS2diffraction pattern are difficult to discern.This could be associated with differences in crystallinity between products derived from SnS2and CoS2.For investigating the mechanism of activated CSC,original CSC anodes were activated for at least 3 cycles to obtain phase-transformed materials.Corresponding to the discharge-charge-time curves in Fig.4a,the activated CSC anodes at various states-of-charge show repeatable XRD patterns,implying good reversibility during the discharge/charge processes (Fig.4b).The peak intensity of XRD pattern of anode (such as C-0.97 V,blue) is lower than that of initially charged anode (such as C-0.97 V,pink),which could be associated with the decreased diameter and gradually aggravated amorphization of metal sulfide phases.Similar phenomena have been reported in other metal chalcogenide anodes such as CoSe2and CoS2[13,60].At different (dis)charge states,the corresponding XRD of anodes shows different patterns,which should be correlated to the successive formation of different products.

    As shown in Fig.4c,HR-TEM image of CSC discharged to 0.4 V displays interplanar spacings of 0.569 and 0.316 nm,corresponding to lattice plane (0 0 4) of Na29.58Sn8and (1 0 1) of Co.Selected area electron diffraction (SAED) patterns reveal the lattice plane (2 1 1)of Co,(5 1 3) and (1 3 1) of Na29.58Sn8in the discharged product (Fig.4d).When charged back to 2.9 V,the crystalline domains in the resulting product are remarkably smaller than those in the discharged state.As shown in Fig.4e,HR-TEM image of CSC charged to 2.9 V displays interplanar spacings of 0.184 and 0.295 nm,which are assigned to lattice plane of (2 2 1)’ of NaxCoS2and (0 0 2)’ of NaxSnS2(with CoS2and SnS2standard phases as reference),respectively.The SAED pattern exhibits typical polycrystalline features,in which lattice plane (2 2 0) of NaxCoS2,(1 0 3) and (1 0 0) of NaxSnS2can be identified (Fig.4f).Based on the characterization above,the progress of electrochemical reduction,followed by oxidation,for the CSC electrode is illustrated in Fig.4g.Typically,SnS2and CoS2phases in CSC experience an initial phase transition to Na+-intercalated intermediates(NaxMS2,M=Sn,Co),which act as active materials for subsequent discharge/charge cycles.Based on the analysis above,the exotic property mediation beyond rule-of-mixtures [35,36] (cocktail mediation effect) among nanodispersed SnS2and CoS2phases in CSC is schematically illustrated in Fig.4h-i.Specifically,along the different ionic diffusion directions,the nano-dispersed SnS2and CoS2phases in CSC will alternatively react with Na+carriers,as schematically illustrated in Fig.4i.The nanodispersion of SnS2and CoS2phases effectively shortens the ion diffusion path,which can kinetically boost electrochemical processes of both metal sulfide anodes.Due to intrinsic thermodynamics difference,the electrochemical competition is present between SnS2and CoS2phases.Also,it does not exclude one of the two phases could show local kinetic merit owing to the diameter difference between them.Thus,in the CSC anode,the alternative electrochemical reaction processes could coexist between the two phases.It enables complementary charge voltage plateau of different metal sulfide phases,resulting in lowered charge plateau of CSC anode.

    Fig.4 a Discharge-charge-time curve and b ex situ XRD patterns of CSC anode at different potentials.c HR-TEM image and d SAED pattern of CSC discharged to 0.4 V.e HR-TEM image and f SAED pattern of CSC charged to 2.9 V.g Schematic illustration of discharge/charge mechanisms of CSC anode.h Schematic illustration of reaction route and charge voltage change trend of CoS2 anode.i Schematic illustration of reaction route and charge voltage change trend of CSC anode,showing cocktail mediation effect among nano-dispersed metal sulfide phases in CSC

    2.5 Full-Cell Properties

    To verify the practicability of the CSC anode,a highvoltage cathode material Na1.5VPO4.8F0.7was employed to assemble CSC//Na1.5VPO4.8F0.7full-cells.Synthesis of Na1.5VPO4.8F0.7followed a modified literature method(Supporting Information),and yielded a micro-particle morphology with a well-matched XRD pattern with the standard phase (Fig.S20) [33].Corresponding to CV curves,Na1.5VPO4.8F0.7cathode showsca.3.9 V discharge plateau with low electrochemical polarization,which is suitable for demonstrating the practicability of different anodes (Fig.S21a,b).The Na1.5VPO4.8F0.7cathode delivers a good rate capability from 0.05 to 0.5 A g-1,showing a high reversible capacity of 124.1 mAh g-1electrodeat 0.05 A/g (Fig.S21c,d).Over 350 cycles at 0.1 A g-1,the Na1.5VPO4.8F0.7cathode shows a capacity of 106.4 mAh g-1electrode,corresponding to a low capacity decay of 0.02%per cycle (Fig.S22).Figure 5a shows the typical CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7full-cells at 0.5 mV s-1.Evidently,the main redox peaks of CoS2//Na1.5VPO4.8F0.7appear at 1.0-2.5 V,implying that its average discharge voltage is in the range.In contrast,the ranges of main redox peaks of SnS2//Na1.5VPO4.8F0.7and CSC//Na1.5VPO4.8F0.7full-cells are in 2.0-4.0 V,which imply a higher average discharge voltage than that of the former.Figure 5b shows that the discharge capacity available from the CSC//Na1.5VPO4.8F0.7cell,while the voltage is above 2 V,isca.61.7 mAh g-1electrode,which is 1.62 times that of CoS2//Na1.5VPO4.8F0.7.As displayed in Fig.5c,CSC//Na1.5VPO4.8F0.7full-cells present an average discharge voltage of 2.57 V,which is close to that of SnS2//Na1.5VPO4.8F0.7andca.0.62 V higher than that with CoS2anode.The CSC anode confers a significantly higher average voltage during discharge of full-cells when compared with CoS2cells.Compared with other full-cells reported previously,CSC//Na1.5VPO4.8F0.7full-cells also show obvious merits in terms of discharge voltage and capacity (Fig.5d).Moreover,CSC//Na1.5VPO4.8F0.7full-cells show a high-rate capability from 0.05 to 1 A g-1,delivering a high capacity of 120.3 mAh g-1electrodeat 0.05 A g-1(Fig.5e).The corresponding discharge/charge curves are shown in Fig.S23,where the voltage plateaus are well-retained.As exhibited in Fig.5f,compared with other full-cells with different electrode materials,CSC//Na1.5VPO4.8F0.7full-cell delivers comparable merits in terms of energy/power density.[62-67]Specifically,~106.1 Wh kg-1electrode/1278.3 W kg-1electrodeare achieved at 1 A g-1.When operated over 120 cycles at 0.25 A g-1,CSC//Na1.5VPO4.8F0.7full-cell shows a high capacity of 63.0 mAh g-1electrodewith a low decay of 0.20%per cycle (Fig.5g).Such results suggest a good practicability of CSC in full-cells.

    Fig.5 a CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells at 0.5 mV s-1.b Corresponding discharge/charge curves and c discharge plateaus of full-cells at 0.05 A g-1.d Discharge plateau/capacity comparison of different full-cells.e Rate capability of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells.f Ragone plots comparison of different fullcells.g Long-life cyclability of CSC//Na1.5VPO4.8F0.7 full-cells at 0.25 A g-1

    3 Conclusions

    Despite with high-capacity and low-cost merits,the ubiquitous low-rate and high-plateau issues greatly lower the practicability of metal sulfide anodes in full-cells.Herein,enlightened by electrolyte/structure-dependent properties of metal sulfides,CSC anode assembled by nano-dispersed SnS2and CoS2phases is engineered as a case study in ether-based electrolyte,simultaneously realizing high-rate and low-plateau properties.The high nano-dispersity of metal sulfides endows CSC anode with evident cocktail mediation effect similar to high-entropy materials,effectively circumventing intrinsic drawbacks of different metal sulfides.The utilized ether-based electrolyte greatly enhances the reversibility of metal sulfides,sustaining a long-life effectivity of cocktail-like mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anodeat 20 A g-1and remarkably lowered average charge voltage up toca.0.62 V,far outperforming CoS2phase and SnS2/CoS2mixture.The as-assembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05-1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies further verify that the cocktail-like mediation effect largely boosts charge transfer and ionic diffusion in CSC,while alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2and CoS2) and Na+carriers account for the lowered charge plateau of CSC.This work shows a unique electrolyte/structure-dependent cocktaillike mediation effect of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    AcknowledgementsThis work was supported by Guangdong Basic and Applied Basic Research Foundation,China (No.2019A1515110980),research project from the National Natural Science Foundation of China (No.21361162004),China Scholarship Council,and CSIRO.We acknowledge Dr Yesim Gozukara,Dr Malisja de Vries,and Dr Yunxia Yang from CSIRO (Clayton)for their help with material characterization training.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00686-4.

    精品一区二区三区视频在线| 美女国产视频在线观看| 亚洲无线观看免费| 久久狼人影院| 中文字幕亚洲精品专区| 热re99久久精品国产66热6| 日本黄色片子视频| 国产一级毛片在线| 亚洲av综合色区一区| 国产爽快片一区二区三区| 极品少妇高潮喷水抽搐| 久久久精品免费免费高清| 久久久欧美国产精品| 亚洲国产精品999| 免费大片黄手机在线观看| 久久女婷五月综合色啪小说| 免费观看av网站的网址| 日韩一本色道免费dvd| 国产 一区精品| 国产精品秋霞免费鲁丝片| 视频区图区小说| 亚洲一级一片aⅴ在线观看| 极品人妻少妇av视频| www.色视频.com| 欧美精品国产亚洲| 久久ye,这里只有精品| 国产av国产精品国产| 国产亚洲精品久久久com| 狂野欧美激情性bbbbbb| 欧美亚洲日本最大视频资源| 亚洲不卡免费看| 日本欧美视频一区| 国产精品人妻久久久久久| 日韩,欧美,国产一区二区三区| 久久久久久久久久久免费av| 日本免费在线观看一区| 天天躁夜夜躁狠狠久久av| 亚洲美女黄色视频免费看| 亚洲综合色惰| 男女国产视频网站| 中文字幕av电影在线播放| videossex国产| 国产精品一区www在线观看| 另类精品久久| 亚洲av成人精品一区久久| 18+在线观看网站| 欧美日本中文国产一区发布| 肉色欧美久久久久久久蜜桃| 午夜日本视频在线| 亚洲欧洲国产日韩| 亚洲综合色网址| 人人澡人人妻人| 精品国产国语对白av| 在现免费观看毛片| a 毛片基地| 国产在视频线精品| 国产精品一区www在线观看| 欧美日韩综合久久久久久| 成年人免费黄色播放视频| 日本黄色日本黄色录像| av有码第一页| 亚洲国产精品一区二区三区在线| 免费高清在线观看视频在线观看| 美女主播在线视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久成人av| 一级毛片aaaaaa免费看小| 久久精品熟女亚洲av麻豆精品| 一个人看视频在线观看www免费| 欧美日韩一区二区视频在线观看视频在线| 18在线观看网站| 伦理电影免费视频| 久久99热6这里只有精品| 亚洲精品一二三| 日产精品乱码卡一卡2卡三| 制服人妻中文乱码| 久久久久久久国产电影| 高清午夜精品一区二区三区| 一级a做视频免费观看| 国产精品99久久99久久久不卡 | xxx大片免费视频| 免费日韩欧美在线观看| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 免费大片18禁| 久久久久久久大尺度免费视频| www.av在线官网国产| 又大又黄又爽视频免费| 国产精品熟女久久久久浪| 美女中出高潮动态图| 涩涩av久久男人的天堂| 人人妻人人澡人人爽人人夜夜| 国产成人91sexporn| av国产久精品久网站免费入址| 97在线人人人人妻| 男女啪啪激烈高潮av片| 久久99热这里只频精品6学生| 飞空精品影院首页| 精品国产露脸久久av麻豆| 国产精品国产三级国产av玫瑰| av不卡在线播放| 日韩电影二区| 2022亚洲国产成人精品| 国产黄片视频在线免费观看| 午夜精品国产一区二区电影| 成年美女黄网站色视频大全免费 | 国产成人一区二区在线| 少妇丰满av| 亚洲国产最新在线播放| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 嫩草影院入口| 亚洲欧美色中文字幕在线| 满18在线观看网站| 校园人妻丝袜中文字幕| 欧美精品高潮呻吟av久久| 国产免费一级a男人的天堂| 国产精品三级大全| 999精品在线视频| 国产免费现黄频在线看| 精品久久久久久久久av| 久热久热在线精品观看| 亚洲第一区二区三区不卡| 国产男女内射视频| 久久99热6这里只有精品| www.av在线官网国产| 美女国产视频在线观看| 简卡轻食公司| 日韩熟女老妇一区二区性免费视频| 十分钟在线观看高清视频www| 国产精品熟女久久久久浪| 国产av一区二区精品久久| 欧美精品一区二区免费开放| 一区二区三区免费毛片| 人妻 亚洲 视频| 只有这里有精品99| 一级二级三级毛片免费看| 在线观看免费高清a一片| 天堂8中文在线网| 久久国产亚洲av麻豆专区| 日韩一区二区三区影片| 午夜影院在线不卡| 免费高清在线观看日韩| 最黄视频免费看| 国产在视频线精品| 久久久久久久久久成人| 美女国产视频在线观看| 久久久精品区二区三区| 国产av精品麻豆| 国产男女内射视频| 91精品国产九色| 国产伦理片在线播放av一区| 伦理电影大哥的女人| 欧美xxⅹ黑人| 色婷婷av一区二区三区视频| 国产精品女同一区二区软件| 精品人妻熟女av久视频| 91成人精品电影| 色94色欧美一区二区| 国产精品无大码| 男女国产视频网站| 男人爽女人下面视频在线观看| 久久久久久人妻| 麻豆成人av视频| 超色免费av| 男女国产视频网站| 欧美日韩av久久| 久久国产精品男人的天堂亚洲 | 成人毛片60女人毛片免费| 女人精品久久久久毛片| 久久 成人 亚洲| 亚洲精品456在线播放app| 日韩在线高清观看一区二区三区| 亚洲av欧美aⅴ国产| 在线观看三级黄色| 一级毛片我不卡| 高清毛片免费看| 黄色一级大片看看| 街头女战士在线观看网站| 日韩av免费高清视频| 一本大道久久a久久精品| 新久久久久国产一级毛片| 精品熟女少妇av免费看| 久久免费观看电影| 两个人免费观看高清视频| 国产成人freesex在线| 人人妻人人澡人人爽人人夜夜| av线在线观看网站| 亚洲中文av在线| 国产精品国产三级专区第一集| 婷婷色综合大香蕉| 国产探花极品一区二区| 亚洲av中文av极速乱| 国产男人的电影天堂91| 能在线免费看毛片的网站| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到 | 久久韩国三级中文字幕| 欧美亚洲日本最大视频资源| 麻豆成人av视频| 午夜av观看不卡| 久久久久久久精品精品| 亚洲国产欧美日韩在线播放| 精品少妇黑人巨大在线播放| 超色免费av| 一级二级三级毛片免费看| 欧美精品亚洲一区二区| 秋霞伦理黄片| 成人毛片60女人毛片免费| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 国产色婷婷99| 人成视频在线观看免费观看| 免费不卡的大黄色大毛片视频在线观看| 日韩欧美精品免费久久| 黑人巨大精品欧美一区二区蜜桃 | 我的老师免费观看完整版| 天堂中文最新版在线下载| 亚洲欧美成人综合另类久久久| 视频中文字幕在线观看| 免费看av在线观看网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 免费观看在线日韩| 亚洲精品乱久久久久久| 五月天丁香电影| 日韩视频在线欧美| 永久免费av网站大全| 2018国产大陆天天弄谢| 九色亚洲精品在线播放| av专区在线播放| 久久久午夜欧美精品| 黄色怎么调成土黄色| 如何舔出高潮| 伦理电影大哥的女人| 日韩大片免费观看网站| 春色校园在线视频观看| 青春草视频在线免费观看| 欧美精品人与动牲交sv欧美| 中文字幕最新亚洲高清| 亚洲精品456在线播放app| 国产精品.久久久| 我的女老师完整版在线观看| 大香蕉97超碰在线| 久热这里只有精品99| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| 成年av动漫网址| 免费高清在线观看日韩| 精品久久蜜臀av无| 丝袜脚勾引网站| 日韩在线高清观看一区二区三区| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 亚洲av在线观看美女高潮| 在线天堂最新版资源| 精品久久久久久久久av| 久久99热6这里只有精品| 国产欧美亚洲国产| 亚洲国产av影院在线观看| 99久久精品国产国产毛片| 国产淫语在线视频| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 国产色婷婷99| .国产精品久久| 日韩精品免费视频一区二区三区 | 妹子高潮喷水视频| 成年人免费黄色播放视频| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| 人妻 亚洲 视频| 国产一区二区三区av在线| 国产免费视频播放在线视频| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 国产片内射在线| 嘟嘟电影网在线观看| .国产精品久久| 又粗又硬又长又爽又黄的视频| 一边摸一边做爽爽视频免费| 国产一区二区三区综合在线观看 | 亚洲欧洲精品一区二区精品久久久 | 亚洲综合精品二区| 男女无遮挡免费网站观看| 亚洲激情五月婷婷啪啪| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美 | 美女cb高潮喷水在线观看| 久久久精品免费免费高清| 一区在线观看完整版| 插阴视频在线观看视频| h视频一区二区三区| 日本与韩国留学比较| 亚洲成人手机| 国产色婷婷99| 男人操女人黄网站| 亚洲综合精品二区| 热99久久久久精品小说推荐| 精品国产乱码久久久久久小说| 中文字幕精品免费在线观看视频 | 久久久久久久久久久免费av| 精品午夜福利在线看| 99热这里只有是精品在线观看| videosex国产| 中文精品一卡2卡3卡4更新| 久久久精品区二区三区| 大陆偷拍与自拍| 多毛熟女@视频| 午夜精品国产一区二区电影| 日本黄大片高清| 在线观看国产h片| 国产在线一区二区三区精| 伊人亚洲综合成人网| 精品少妇久久久久久888优播| 老女人水多毛片| 日本与韩国留学比较| 成人无遮挡网站| 日韩一区二区视频免费看| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 亚洲综合色惰| 少妇熟女欧美另类| 亚洲av二区三区四区| 一级a做视频免费观看| 在线亚洲精品国产二区图片欧美 | 丝袜脚勾引网站| 黄色配什么色好看| 精品午夜福利在线看| 国产精品久久久久久精品古装| 99视频精品全部免费 在线| 男女国产视频网站| 国产在线一区二区三区精| 亚洲激情五月婷婷啪啪| 精品少妇内射三级| 少妇的逼水好多| 免费播放大片免费观看视频在线观看| 精品一区二区三区视频在线| 久久久久国产网址| 亚洲av福利一区| 亚洲国产欧美日韩在线播放| 全区人妻精品视频| 精品一区在线观看国产| 亚洲不卡免费看| 日韩av在线免费看完整版不卡| 黄色毛片三级朝国网站| 国产淫语在线视频| 国产欧美日韩综合在线一区二区| 制服人妻中文乱码| 自线自在国产av| 高清午夜精品一区二区三区| 国产精品一区二区在线不卡| 精品人妻一区二区三区麻豆| av在线观看视频网站免费| 精品国产国语对白av| a级片在线免费高清观看视频| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| .国产精品久久| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 欧美精品高潮呻吟av久久| 日本午夜av视频| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 在线观看国产h片| 一级爰片在线观看| 日本色播在线视频| 国产精品一区www在线观看| 国产成人精品在线电影| 久久午夜综合久久蜜桃| 久久久a久久爽久久v久久| 亚洲熟女精品中文字幕| 欧美日韩av久久| 精品国产一区二区三区久久久樱花| 一级二级三级毛片免费看| 久久国产精品男人的天堂亚洲 | 亚洲av福利一区| 狠狠精品人妻久久久久久综合| 成人毛片a级毛片在线播放| 91在线精品国自产拍蜜月| 午夜免费观看性视频| 99热网站在线观看| 建设人人有责人人尽责人人享有的| 在线天堂最新版资源| av在线播放精品| kizo精华| 久久久久视频综合| 纯流量卡能插随身wifi吗| 日韩人妻高清精品专区| 一本久久精品| 亚洲中文av在线| 99九九线精品视频在线观看视频| 少妇精品久久久久久久| 久久久久精品久久久久真实原创| 麻豆乱淫一区二区| 两个人的视频大全免费| 精品卡一卡二卡四卡免费| 亚洲国产精品999| 日韩av免费高清视频| 国产日韩欧美亚洲二区| 国产 一区精品| 午夜激情福利司机影院| 欧美xxⅹ黑人| 国产免费一区二区三区四区乱码| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| av在线app专区| 精品国产乱码久久久久久小说| 麻豆精品久久久久久蜜桃| 91久久精品电影网| 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 国产成人av激情在线播放 | 国产精品国产三级专区第一集| 色婷婷久久久亚洲欧美| 亚洲成人av在线免费| 校园人妻丝袜中文字幕| 少妇的逼水好多| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 欧美bdsm另类| 超碰97精品在线观看| 亚洲av中文av极速乱| 国产片特级美女逼逼视频| 黑丝袜美女国产一区| 久久 成人 亚洲| 亚洲久久久国产精品| av一本久久久久| 久久狼人影院| 黑人高潮一二区| 97在线人人人人妻| 日韩精品有码人妻一区| 另类精品久久| 久久99精品国语久久久| 国产黄色视频一区二区在线观看| 制服丝袜香蕉在线| av电影中文网址| 欧美最新免费一区二区三区| 久久99热这里只频精品6学生| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 亚洲av综合色区一区| 日产精品乱码卡一卡2卡三| 国产 精品1| 两个人的视频大全免费| 国产亚洲精品久久久com| 人人妻人人澡人人爽人人夜夜| 精品人妻偷拍中文字幕| 午夜福利影视在线免费观看| 波野结衣二区三区在线| 久久青草综合色| 色5月婷婷丁香| 精品一区在线观看国产| 日韩一区二区视频免费看| 啦啦啦在线观看免费高清www| 免费黄频网站在线观看国产| 精品一区二区免费观看| 久久久久久人妻| 99热国产这里只有精品6| 丝袜在线中文字幕| 日本av免费视频播放| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 国产精品嫩草影院av在线观看| 99视频精品全部免费 在线| 好男人视频免费观看在线| videosex国产| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 最近中文字幕高清免费大全6| 高清视频免费观看一区二区| 在线观看国产h片| 亚洲精华国产精华液的使用体验| 有码 亚洲区| 日韩一区二区视频免费看| 精品久久久久久久久av| 日韩精品免费视频一区二区三区 | 草草在线视频免费看| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 特大巨黑吊av在线直播| 最黄视频免费看| 午夜精品国产一区二区电影| 26uuu在线亚洲综合色| 亚洲精品国产av蜜桃| 最新中文字幕久久久久| 免费黄网站久久成人精品| 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 极品人妻少妇av视频| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 亚洲国产精品国产精品| 亚洲怡红院男人天堂| 97在线人人人人妻| 成人国语在线视频| 午夜影院在线不卡| 久久久国产一区二区| 精品一品国产午夜福利视频| 国产国拍精品亚洲av在线观看| 免费人成在线观看视频色| 日韩av免费高清视频| 人妻 亚洲 视频| 黄色配什么色好看| 久久97久久精品| 成人免费观看视频高清| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 亚洲,一卡二卡三卡| 黄色一级大片看看| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 最后的刺客免费高清国语| 免费观看av网站的网址| 日韩亚洲欧美综合| 我的老师免费观看完整版| 国产 精品1| 亚洲精品久久久久久婷婷小说| 国产日韩欧美视频二区| 蜜臀久久99精品久久宅男| 亚洲成人一二三区av| av免费观看日本| 亚洲精品乱码久久久v下载方式| 国产精品秋霞免费鲁丝片| 日本91视频免费播放| 国产一区亚洲一区在线观看| 国产一区二区在线观看日韩| 丝瓜视频免费看黄片| 十分钟在线观看高清视频www| 在线观看一区二区三区激情| 免费久久久久久久精品成人欧美视频 | 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 国产在视频线精品| 两个人的视频大全免费| 亚洲精品第二区| 国产 一区精品| 自线自在国产av| 成人国语在线视频| 免费人成在线观看视频色| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 91精品伊人久久大香线蕉| 国产有黄有色有爽视频| 99久国产av精品国产电影| 伊人亚洲综合成人网| 国产精品一二三区在线看| 欧美精品一区二区免费开放| 亚洲人成网站在线播| 国产成人免费观看mmmm| 涩涩av久久男人的天堂| 26uuu在线亚洲综合色| 在线观看www视频免费| 日本色播在线视频| 丝袜在线中文字幕| 久久99精品国语久久久| 亚洲精品成人av观看孕妇| 国产一区二区三区av在线| 内地一区二区视频在线| 久久久久视频综合| 午夜免费男女啪啪视频观看| 免费观看性生交大片5| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 在线亚洲精品国产二区图片欧美 | 欧美精品高潮呻吟av久久| 97在线视频观看| 欧美+日韩+精品| 美女福利国产在线| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 日本午夜av视频| 十八禁高潮呻吟视频| 免费久久久久久久精品成人欧美视频 | 国产免费一区二区三区四区乱码| 男女免费视频国产| 秋霞在线观看毛片| 国产欧美日韩综合在线一区二区| 丝袜喷水一区| 男女高潮啪啪啪动态图| 欧美+日韩+精品| 久久韩国三级中文字幕| 欧美三级亚洲精品| 亚洲欧美一区二区三区国产| 日本色播在线视频| 在线观看人妻少妇| 黑人猛操日本美女一级片| 久久久久久久久久成人| 国产在视频线精品| 大香蕉久久成人网| 亚洲精品乱码久久久v下载方式| 大码成人一级视频| 久久久久国产网址| 久久人人爽人人片av| 精品午夜福利在线看| 亚洲经典国产精华液单| 另类精品久久| 777米奇影视久久| 久久精品人人爽人人爽视色| 日本黄色片子视频| 亚洲欧洲日产国产|