• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Low-Temperature Traction Behavior of a Space Lubricating Oil No. 4116

    2015-06-22 14:38:42WangYanshuangChengJunweiCaiYujun
    中國煉油與石油化工 2015年3期

    Wang Yanshuang; Cheng Junwei; Cai Yujun

    (1. Tianjin University of Technology and Education, Tianjin 300222; 2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003)

    Study on Low-Temperature Traction Behavior of a Space Lubricating Oil No. 4116

    Wang Yanshuang1,2; Cheng Junwei2; Cai Yujun1

    (1. Tianjin University of Technology and Education, Tianjin 300222; 2. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003)

    The traction behavior of space lubricating oil No. 4116 was measured and analyzed at various oil inlet temperatures below 0 ℃ and various rolling speeds under normal loads by a test rig simulating the operating conditions of space bearings. A traction coefficient calculation model was presented. The rheological property and rheological parameters of the lubricant at a low oil inlet temperature were analyzed based on the Tevaarwerk-Johnson model. The results showed that the lubricating oil No. 4116 was sensitive to the rolling speed and had lower sensitivity to the normal load. This lubricating oil is more suitable for applications under high speed when it is used below 0 ℃. It behaves as an elastic-plastic fluid operating below 0 ℃. Both the average limiting shear stress and the average elastic shear modulus have a negative correlation with the rolling speed and oil inlet temperature and have a positive correlation with the normal load.

    space bearing; space lubricating oil; traction behavior; low temperature; rheological property

    1 Introduction

    In the space technology, rolling bearings are widely used in many important rotating systems of spacecrafts. The statistical data from abroad show that poor lubrication can lead to galling of bearings that can cause the failure of spacecrafts. The traction behavior (also called the friction behavior) of lubricating oil film is a key parameter determining the lubrication property. It is also one of the basic parameters in rolling bearing design.

    When a lubricated rolling bearing is operating, an elastohydrodynamic (EHD) film is developed. Because of the complex physical, chemical and rheological properties of the EHD film, the theoretic computation error has been significant for the traction force up to now. Therefore, the simulation experiments for traction behavior have been adopted widely all over the world. Over the years, the traction behavior of EHD lubrication film has been studied by many scholars at home and abroad[1-4]. Yang Boyuan measured the traction force of lubricating greases No. 7007 and No. 7008 at high speed[5]. Wang Yanshuang analyzed the traction characteristics of an aviation lubricating oil HKD at high temperature[6-7]. Quinchia L. A., et al. investigated the low-temperature flow behaviors of vegetable oils[8], which did not involve the traction properties of lubricants. The differences in traction behavior between the lubricating oil and grease were studied by Yamanak[9]. However, the above experimental researches were performed at room or high temperature and low speed. Till now the research on the traction behavior of space lubricating oil at low temperature has not been reported in any literature.

    In this paper, the traction behavior of a domestic space lubricating oil was measured by a ball-disc test rig at low temperature and under various normal loads and rolling speeds. A model for calculating the low-temperature traction coefficient was presented. The rheological parameters and the rheological property of the lubricating oil were also analyzed. The research results have great significance to the design of rolling bearings, while laying the foundations for the further development on the rheology of lubricants.

    2 Traction Test

    2.1 The lubricating oil 4116 studied

    The base oil for formulating the lubricating oil No. 4116is a chlorophenyl silicone oil. It is a kind of high and low temperature instrument oil, which has a good viscositytemperature property with low evaporation rate and high flash point. It has a good flow property even at -50 ℃. It is a popular lubricant used in high speed micro-motor bearings, low speed swing bearings and speed reducing gears. Its characteristic parameters are shown below:

    Table 1 Parameters of lubricating oil No. 4116

    2.2 Test rig and its working principle

    The traction experiment was carried out on an improved ball-disc test rig, as shown in Figure 1. A new lowtemperature assembly was used to measure the traction characteristics of the lubricating oil at temperatures below 0 ℃. The working principle of the test rig is as follows: Firstly, the low temperature assembly is started to make the refrigerant Freon flow into the evaporator which is immersed in an alcohol bath. The temperature of the alcohol bath can be decreased via heat exchange between the alcohol and the refrigerant Freon. The lubricating oil to be tested is pumped into the oil pipe which is spiraled into the alcohol bath. The heat of the lubricating oil can be absorbed by the cold alcohol, resulting in a reduction in the temperature of the lubricating oil. The electric whisk is used to churn the alcohol to obtain the uniform temperature distribution in the alcohol bath. The low-temperature lubricating oil forms an oil jet at the end of the oil pipe. A temperature sensor is set up on the oil jet to transmit the oil temperature signal to a PID controller. The oil temperature signal is compared to the set value of the temperature by the PID temperature controller, which decides the on-off time of the heating rod immersed in the alcohol bath. The lubricating oil, the temperature of which has attained the set value T, is fed continually into the contact zone by the oil jet. The ball and the disc specimens are driven by the horizontal motor spindle I and the vertical motor spindle II, respectively, which are controlled by two frequency transformers. A hydrostatic shaft, which supports the motor spindle I, moves upward until the ball comes into contact with the disc, and then a normal load W is applied between them. The load is measured by a load sensor fixed under the hydrostatic shaft. The rolling speed of the ball and disc U = (U1+ U2)/2 droves the lubricant into the contact zone to develop a film with a certain thickness, where U1and U2are the linear velocities for the surfaces of ball and disc specimens, respectively. The sliding velocity ΔU=U2-U1, which is derived by adjusting the rotating speeds of motor spindle I and motor spindle II, sheers this oil film, resulting in a traction force. The traction force causes the ball together with motor spindle I to deflect around the axis of the hydrostatic shaft to oppress a traction sensor mounted on the machine frame so that the traction force can be picked up. Thus the traction force F can be measured at various slide-to-roll ratiosS=ΔU/U, and consequently, the curves describing the traction behavior of the lubricating oil can be obtained in the form of the traction coefficient μ=F/W against the slide-to-roll ratio S under various operating conditions.

    Figure 1 Test rig

    The ball and disc specimens were made of GCr15 steel, and they were ground and polished to give a surface roughness σ of less than 0.02 μm. The minimum film thickness hminworked out by the Hamrock-Dowson formula is more than 0.1 μm under all operating conditions. Then the roughness parameter λ=hmin/σ>5, while the surface roughness has no contribution to the traction force between the ball and the disc.

    2.3 Operating conditions

    The operating conditions simulated by the test rig are shown below:

    Rolling speed U: 3 m/s, 5 m/s, 7 m/s, 9 m/s, 15 m/s, and 20 m/s;

    Normal load W: 40N, 69N, 98N, and 135N;

    Maximum Hertz contact pressure P0: 1.0 GPa, 1.2 GPa, 1.35 GPa, and 1.5 GPa;

    Oil inlet temperature T: 0 ℃, -10 ℃, and -20 ℃;

    Slide-to-roll ratio S: 0—0.2.

    2.4 Test results and analysis

    A total of 72 curves of the space lubricating oil No. 4116 describing the traction coefficient μ versus the slide-toroll ratio S were obtained. Several representative traction curves are plotted in Figs. 2—4, where the points represent the experimental data.

    Figure 2 Variation in traction coefficient versus slide-toroll ratio at different oil inlet temperatures

    Figure 3 Variation in traction coefficient versus slide-toroll ratio at different rolling speeds

    Figure 4 Variation in traction coefficient versus slide-toroll ratio at different maximum Hertz contact pressures

    The apparently similar characteristics of the traction curves can be observed from Figs. 2 to 4. Namely, at low slide-to-roll ratio, the traction coefficient increases approximately linearly. However, a continuous increase in the slide-to-roll ratio can give rise to a nonlinear increase in traction coefficient. After reaching a maximum value of traction coefficient, it remains constant with a further increase in slide-to-roll ratio.

    It can be seen from Figure 2 that a traction coefficient gradually increases with the decrease in the oil inlet temperature under a constant normal load and rolling speed. The increase in the amplitude of the traction coefficient when the oil inlet temperature decreases from 0 ℃ to -10 ℃ is smaller than the case with oil temperature decreasing from -10 ℃ to -20 ℃. This can be explained by the reason that the lower the temperature is, the worse the viscosity-temperature property would be.

    Figure 3 suggests that when the oil inlet temperature andnormal load remain constant, the higher the rolling speed is, the smaller the traction coefficient would be. The rolling speed that exceeds 15 m/s has a significant impact on the traction coefficient. Therefore the lubricating oil No. 4116 is sensitive to the rolling speed, since it is more suitable for operating at high speed when it is used below 0 ℃. The variation in the traction coefficient versus the maximum Hertz contact pressure is shown in Figure 4. The increase in the Hertz contact pressure or the normal load gives rise to an increasing traction coefficient. The lubricating oil No. 4116 shows a lower sensitivity to the normal load when the load increases.

    3 Model for Calculation of Traction Coefficient

    On the basis of the low temperature traction curves, the relationship of the traction coefficient μ and the slide-toroll ratio S can be described by

    where A, B, and C are parameters varying according to the normal load, rolling speed and inlet oil temperature. For the purpose of convenience in application, the normal load, the rolling speed and the inlet oil temperature can be non-dimensionalized as follows:

    Then the coefficients A, B and C can be expressed by the following equations:

    Formulae (5)—(7) may be transformed into linear equations by taking logarithm on both sides. The values of coefficients A0~A3, B0~B3and C0~C3can be obtained by multiple linear regression analysis as shown in Table 2. Then the formula for calculating the traction coefficient of lubricating oil No. 4116 at low temperature is obtained:

    The correlation coefficients are all greater than 0.9 as shown in Table 2. It suggests that it is feasible to adopt the equations (5)—(7). It can be seen from Figs. 2 to 4 that a good agreement exists between the experimental traction coefficient and the traction coefficient computed by the above model. It is illustrated that the low temperature traction coefficient model which is established in this article is accurate and available.

    Table 2 Regression values of the parameters A, B and C

    4 Rheological Property

    4.1 Rheological model

    Although the formula (8) for calculating the traction coefficient of lubricating oil No. 4116 can be conveniently used to compute the traction coefficient under each operating condition of space bearings at low temperature, there is no parameter in formula (8) which can illustrate the microscopic essence of the traction behavior. The traction behavior is governed by the rheological property of the lubricant in the contact zone, which may be illustrated by a rheological model or a constitutive model. The rheological model may relate the shear stress τ developed in the lubricant film to the shear strain rate γwhich is imposed on the elements of the fluid by the action of slidingbetween the ball and the disc specimens.

    The lubricating oil No. 4116 behaves as a linear elastic fluid or a linear viscous fluid at small slide-to-roll ratios depending on the Deborah number D=ηU/Ga, where η is the dynamic viscosity at the contact pressure, G is the elastic shear modulus of the lubricant and a is the radius of the contact circle. Each computed Deborah number for the lubricating oil No. 4116 under all operating conditions in this paper is larger than 20. It suggests that the lubricating oil No. 4116 behaves as a linear elastic fluid at small slide-to-roll ratios. The Tevaarwerk-Johnson elasticplastic rheological model may describe the rheological property that the lubricant behaves as linear elastic fluid until the shear stress arrives at the limiting shear strength and then undergoes plastic change. The lubricating oil No. 4116 has the similar rheological property as shown in Figs. 2—4, which can be illustrated by the Tevaarwerk-Johnson elastic-plastic rheological model.

    In general the shear stress components in the coordinate directions, denoted as τxand τy, satisfy the following pair of coupled differential equations:

    where ΔU is the sliding speed in the rolling direction x, ΔV is the lateral sliding speed in the y direction which is transverse to the rolling direction, h is the film thickness of lubricant, ω is the ball spin velocity, and X=x/a is the dimensionless coordinate in the rolling direction. The elastic shear modulus G is assumed to be constant at its average value

    In equation (9), the local equivalent shear stress is:

    when τe<τc, F(τe)=0; and when

    where τcis the limiting shear strength.

    Tevaarwerk and Johnson assumed that τcis proportional to the local Hertz pressure written as the following equation:

    where τcis the average limiting shear stress.

    The isothermal film thickness hisocan be computed by the central film thickness at the point contact proposed by Hamrock and Downson.

    In our test rig, the rigid traction measurement system was made to eliminate the lateral sliding and spin as shown in literature[10]. So only the shear component in the rolling direction x is considered. The shear stress can be obtained by integrating the formula (9), and the traction force by integrating the shear stress in the contact circle is then expressed in the following form as:

    4.2 R heological parameters

    In terms of a traction curve in which the traction coefficient μ=F/W is proportional to the slide-to-roll ratio S=ΔU/U for small values of S, this equation becomes

    where m is the slope of the traction curve. For small values of S, F(τe)=0, and upon integrating the formula (9a) to get the shear stress, followed by integrating the shear stress all over the contact circle, the traction force reduces to

    Based on the equations (16) and (17), the mean shear modulus takes the form of

    One may solve the mean shear modulus G using equation (18) by measuring the slope m at low slide-to-roll ratios on a test traction curve.

    For large values of S, the shear stress approaches the lim-iting shear stress and F approaches the maximum value

    The maximum traction coefficient is then

    The maximum traction coefficient may be obtained by experimental measurement, so one may solveby means of the following equation:

    It is found out that both Gandincrease with an increasing normal load, and decrease with an increasing rolling speed and inlet oil temperature. The average elastic shear modulus and the average limiting shear stress may be expressed as the following forms by three dimensionless parameters referred to in Eqs. (2)—(4).

    5 Conclusions

    Based on the improved ball-disc test rig with a new low temperature assembly, the traction characteristics of the lubricating oil No. 4116 have been measured successfully at temperatures below 0 ℃.

    The traction coefficient of lubricating oil No. 4116 increases with a decreasing oil inlet temperature and rolling speed, and it increases with an increasing normal load. The lower the temperature decrease is, the bigger the increasing amplitude of the traction coefficient would be. The lubricating oil No. 4116 is sensitive to the rolling speed and shows lower sensitivity to the normal load. It is more suitable for high speed operation when it is used below 0 ℃.

    A new low-temperature traction coefficient model for lubricating oil No. 4116 has been established, and the correlation coefficient is not less than 0.9.

    The lubricating oil No. 4116 behaves as a linear elastic fluid until the shear stress reaches a limiting shear strength and then undergoes a plastic change at low temperature. Increasing rolling speed, increasing inlet oil temperature and decreasing normal load may result in lower average elastic shear modulus G and average limiting shear stressthe computed formulae of which have been presented in this paper.

    Acknowledgements: This research is supported by the National Science Foundation of China (Nos. 51105131 and 51475143), the Henan Provincial Key Scientific and Technological Project (No. 142102210110) and the Tianjin Science and Technology Support Program.

    [1] Masjedi M, Khonsari M M. Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces[J]. Tribology International, 2014, 70: 179-189

    [2] Brand?o J A, Meheux M, Seabra J H O, et al. Traction curves and rheological parameters of fully formulated gear oils[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225(7): 577-593

    [3] Chen Guoding, Wang Buying, Zhou Hong, et al. On the traction characteristics analysis of synthetic lubricants in rolling/sliding contacts[J]. Journal of Northwestern Polytechnical University, 1992, 10(3): 330-335

    [4] Wang Yanshuang, Yang Boyuan, Wang Liqin, et al. Traction behavior of No. 4106 aviation lubricating oil[J]. Tribology, 2004, 24(2): 156-159

    [5] Yang Boyuan, Zheng Peibin, Su Bing, et al. Behaviors of EHD traction characteristics for high-speed lubricating grease[J]. Engineering Science, 2002, 4(4): 75-82

    [6] Wang Yanshuang, Cao Jiawen, Li Hang , et al. Friction characteristics of space lubricating oil No. 4129 in rolling and sliding contacts[J]. Petroleum & Petrochemicals, 2014, 16(2): 79-83

    [7] Wang Yanshuang, Cao Jiawei, Li Hang, et al. Friction characteristics of space lubricating oil No. 4129 in rolling and sliding contact[J]. China Petroleum Processing and Petrochemical Technology, 2014, 16(2): 79-83

    [8] Quinchia L A, Delgado M A, Franco J M, et al. Low-temperature flow behaviour of vegetable oil-based lubricants[J]. Industrial Crops and Products, 2012, 37(1): 383-388

    [9] Yamanaka, Masashi. Evaluation of property difference between traction oil and traction grease[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2009, 3(4): 366-377

    [10] Wang Yanshuang, Zhang Luoping, Yang Boyuan. The development of a lubricant traction measurement system[J]. Journal of Hydrodynamics, 2011, 23(4): 516-520

    date: 2015-01-06; Accepted date: 2015-04-09.

    Wang Yanshuang, E-mail: hkd_wang_ yan_shuang@126.com.

    亚洲综合精品二区| 99re6热这里在线精品视频| 九九在线视频观看精品| 国产熟女午夜一区二区三区 | 国内揄拍国产精品人妻在线| 18禁在线播放成人免费| 国产69精品久久久久777片| 夜夜爽夜夜爽视频| 欧美日本中文国产一区发布| 美女视频免费永久观看网站| 少妇丰满av| av.在线天堂| 亚洲精品一二三| 麻豆成人av视频| 色5月婷婷丁香| 亚洲图色成人| 内地一区二区视频在线| 91成人精品电影| 国产一区有黄有色的免费视频| 涩涩av久久男人的天堂| 国产av一区二区精品久久| 在线观看免费视频网站a站| 国产免费又黄又爽又色| a级一级毛片免费在线观看| 另类亚洲欧美激情| 国产av一区二区精品久久| 色5月婷婷丁香| 永久网站在线| 91午夜精品亚洲一区二区三区| 日产精品乱码卡一卡2卡三| 91久久精品电影网| 亚洲av.av天堂| 亚洲自偷自拍三级| 日本午夜av视频| 啦啦啦在线观看免费高清www| 99久久中文字幕三级久久日本| av免费在线看不卡| 国产视频首页在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲自偷自拍三级| 大码成人一级视频| 中国国产av一级| 黄色怎么调成土黄色| 亚洲欧美日韩卡通动漫| 免费观看无遮挡的男女| 亚洲综合精品二区| 99热网站在线观看| 99热这里只有精品一区| 亚洲精品乱码久久久v下载方式| 在线观看免费视频网站a站| 内射极品少妇av片p| 在线天堂最新版资源| 亚洲av日韩在线播放| 亚洲精品亚洲一区二区| 黑丝袜美女国产一区| 伊人久久精品亚洲午夜| 久久久久久久久久成人| 免费观看av网站的网址| www.色视频.com| 久久6这里有精品| 老司机影院成人| 在线亚洲精品国产二区图片欧美 | 一区二区三区乱码不卡18| 一本大道久久a久久精品| 国产美女午夜福利| 如何舔出高潮| 丁香六月天网| 老女人水多毛片| 精品视频人人做人人爽| 色5月婷婷丁香| 欧美区成人在线视频| 99热这里只有是精品50| 又黄又爽又刺激的免费视频.| 另类亚洲欧美激情| 狠狠精品人妻久久久久久综合| 成年人免费黄色播放视频 | 午夜免费鲁丝| 高清欧美精品videossex| 免费黄色在线免费观看| 美女视频免费永久观看网站| 九九爱精品视频在线观看| 妹子高潮喷水视频| 妹子高潮喷水视频| 99热这里只有精品一区| 日韩一区二区视频免费看| 国产男女超爽视频在线观看| 少妇人妻一区二区三区视频| 青春草亚洲视频在线观看| 热99国产精品久久久久久7| 丰满迷人的少妇在线观看| 亚洲av福利一区| 中文字幕av电影在线播放| 99久国产av精品国产电影| 免费黄色在线免费观看| 欧美成人午夜免费资源| 精品一区二区三卡| av专区在线播放| 国产精品蜜桃在线观看| 18禁动态无遮挡网站| 中文字幕制服av| 精品亚洲成a人片在线观看| kizo精华| 国产午夜精品久久久久久一区二区三区| 欧美国产精品一级二级三级 | 日本-黄色视频高清免费观看| 成人国产av品久久久| 三级国产精品片| 人妻一区二区av| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 午夜影院在线不卡| 久久99精品国语久久久| 啦啦啦啦在线视频资源| 人妻系列 视频| 麻豆成人av视频| 99热国产这里只有精品6| 国产成人a∨麻豆精品| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 亚洲精品国产成人久久av| 麻豆精品久久久久久蜜桃| 在线精品无人区一区二区三| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 99热这里只有精品一区| 天天躁夜夜躁狠狠久久av| 美女xxoo啪啪120秒动态图| 欧美3d第一页| 久久久久久久久久人人人人人人| 大片电影免费在线观看免费| 97精品久久久久久久久久精品| 高清视频免费观看一区二区| 美女国产视频在线观看| 久久久久网色| www.色视频.com| 一级毛片电影观看| 国产精品伦人一区二区| 亚洲成人av在线免费| 久久久久视频综合| 丰满饥渴人妻一区二区三| 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 水蜜桃什么品种好| 国产成人freesex在线| 99热网站在线观看| 一级黄片播放器| 高清视频免费观看一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产乱来视频区| 一个人看视频在线观看www免费| 少妇丰满av| 国产在视频线精品| 亚洲国产精品999| 五月伊人婷婷丁香| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 久久久久视频综合| 日韩一区二区三区影片| h日本视频在线播放| 亚洲av男天堂| 国产亚洲一区二区精品| 欧美激情极品国产一区二区三区 | 欧美日韩综合久久久久久| 亚洲精品乱久久久久久| 在线观看www视频免费| 黄色日韩在线| 久久久精品94久久精品| 亚洲美女搞黄在线观看| 久久人妻熟女aⅴ| av在线app专区| 黄色一级大片看看| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 免费av不卡在线播放| 我的女老师完整版在线观看| 国产精品国产三级国产专区5o| 亚洲在久久综合| 国产熟女午夜一区二区三区 | 久久久国产欧美日韩av| 日本av免费视频播放| 久久 成人 亚洲| 高清在线视频一区二区三区| 亚洲成色77777| av又黄又爽大尺度在线免费看| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 九色成人免费人妻av| 久久精品夜色国产| 日韩熟女老妇一区二区性免费视频| 99久久中文字幕三级久久日本| 亚洲精品成人av观看孕妇| 亚洲在久久综合| 女人精品久久久久毛片| 国产乱来视频区| av有码第一页| 高清av免费在线| 99热这里只有是精品在线观看| 性高湖久久久久久久久免费观看| 国产男女内射视频| 九九爱精品视频在线观看| 永久网站在线| 国产av国产精品国产| 97在线人人人人妻| 中文字幕人妻丝袜制服| 久久综合国产亚洲精品| 一个人免费看片子| 看非洲黑人一级黄片| 插阴视频在线观看视频| 日韩成人伦理影院| 女人精品久久久久毛片| 水蜜桃什么品种好| 亚洲中文av在线| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩一区二区三区在线 | 大码成人一级视频| 蜜桃久久精品国产亚洲av| 高清黄色对白视频在线免费看 | 亚洲精品,欧美精品| 国产一区二区三区av在线| 少妇被粗大猛烈的视频| 国产亚洲午夜精品一区二区久久| 女的被弄到高潮叫床怎么办| 日韩一本色道免费dvd| 嫩草影院新地址| 99久久人妻综合| 永久免费av网站大全| 国产综合精华液| 极品少妇高潮喷水抽搐| av免费观看日本| 高清欧美精品videossex| a级片在线免费高清观看视频| 少妇丰满av| 国产老妇伦熟女老妇高清| 日日摸夜夜添夜夜添av毛片| 一本色道久久久久久精品综合| 午夜激情福利司机影院| 成人亚洲精品一区在线观看| 18禁在线播放成人免费| 成人综合一区亚洲| 国产欧美日韩综合在线一区二区 | 久久鲁丝午夜福利片| 国产一区二区在线观看av| 水蜜桃什么品种好| 三级经典国产精品| 99九九线精品视频在线观看视频| av在线老鸭窝| av免费观看日本| av不卡在线播放| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 国产黄色视频一区二区在线观看| 国产熟女欧美一区二区| 99久久综合免费| 成人午夜精彩视频在线观看| 最黄视频免费看| 老司机影院成人| 伊人久久精品亚洲午夜| 搡老乐熟女国产| 久久久久久久国产电影| 亚洲一区二区三区欧美精品| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 一级二级三级毛片免费看| 高清在线视频一区二区三区| 欧美日韩视频精品一区| 精品人妻熟女av久视频| 在线看a的网站| 免费观看无遮挡的男女| 人人妻人人看人人澡| 日韩制服骚丝袜av| 在线观看www视频免费| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美日韩另类电影网站| 国产成人精品久久久久久| 午夜免费鲁丝| av在线老鸭窝| 中国三级夫妇交换| 久久精品国产a三级三级三级| 亚洲av国产av综合av卡| 一本大道久久a久久精品| 亚洲无线观看免费| 国产男人的电影天堂91| 国产爽快片一区二区三区| 在线观看免费日韩欧美大片 | 老女人水多毛片| 国产精品无大码| 在线 av 中文字幕| 女性生殖器流出的白浆| 亚洲国产精品一区三区| 一个人免费看片子| 久久久久久久久大av| 91精品国产九色| 国产免费福利视频在线观看| 婷婷色综合www| 亚洲国产精品999| 亚洲精品乱久久久久久| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 97精品久久久久久久久久精品| 亚洲电影在线观看av| 久久99热这里只频精品6学生| 大又大粗又爽又黄少妇毛片口| 欧美日韩精品成人综合77777| 黄色视频在线播放观看不卡| 免费观看av网站的网址| av国产久精品久网站免费入址| 国产精品久久久久久久电影| 婷婷色麻豆天堂久久| av一本久久久久| 国产老妇伦熟女老妇高清| 久久精品国产亚洲网站| 极品少妇高潮喷水抽搐| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 精品久久久精品久久久| 91成人精品电影| 精品少妇黑人巨大在线播放| 国产 一区精品| 久久99热这里只频精品6学生| 少妇 在线观看| 观看免费一级毛片| 午夜福利网站1000一区二区三区| 2018国产大陆天天弄谢| 色婷婷久久久亚洲欧美| 久久人妻熟女aⅴ| 一区二区三区免费毛片| 五月开心婷婷网| 国产精品一区二区在线不卡| 80岁老熟妇乱子伦牲交| 一级a做视频免费观看| 久久精品国产鲁丝片午夜精品| 日本午夜av视频| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 日韩亚洲欧美综合| 三级国产精品欧美在线观看| 性色avwww在线观看| 亚洲欧美日韩东京热| 欧美少妇被猛烈插入视频| 夜夜爽夜夜爽视频| 九色成人免费人妻av| 久久久国产欧美日韩av| 国产精品国产三级国产av玫瑰| 国产69精品久久久久777片| 中文天堂在线官网| 丰满少妇做爰视频| 高清午夜精品一区二区三区| av不卡在线播放| 欧美区成人在线视频| 青青草视频在线视频观看| 日本欧美视频一区| av免费在线看不卡| 观看免费一级毛片| 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂| 日韩中字成人| 成人二区视频| 只有这里有精品99| 欧美3d第一页| 久久精品国产自在天天线| 99热这里只有是精品在线观看| 亚洲av欧美aⅴ国产| 欧美 亚洲 国产 日韩一| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| 国国产精品蜜臀av免费| 99久久精品一区二区三区| 十分钟在线观看高清视频www | 亚洲国产精品一区二区三区在线| 亚洲精品国产av成人精品| 亚洲av二区三区四区| 午夜福利视频精品| 色94色欧美一区二区| 亚洲色图综合在线观看| 久久久久久久久久成人| 欧美国产精品一级二级三级 | 免费久久久久久久精品成人欧美视频 | 男女免费视频国产| 亚洲综合精品二区| 天堂中文最新版在线下载| 我要看黄色一级片免费的| 高清午夜精品一区二区三区| 欧美日韩国产mv在线观看视频| 久久久久国产网址| av在线播放精品| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 国产精品欧美亚洲77777| 精品亚洲成国产av| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品一区蜜桃| 国产一区二区在线观看av| 三级国产精品片| 欧美亚洲 丝袜 人妻 在线| 日韩一区二区三区影片| 国产极品天堂在线| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 中文欧美无线码| 在线观看美女被高潮喷水网站| 嘟嘟电影网在线观看| 精品酒店卫生间| 亚洲精品色激情综合| 国产精品熟女久久久久浪| tube8黄色片| 寂寞人妻少妇视频99o| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 免费看光身美女| 日韩大片免费观看网站| 亚洲精品日本国产第一区| 日日摸夜夜添夜夜添av毛片| 99久久精品热视频| 春色校园在线视频观看| 久久婷婷青草| 3wmmmm亚洲av在线观看| 免费看日本二区| 国产真实伦视频高清在线观看| 性色av一级| 成人黄色视频免费在线看| 中文字幕免费在线视频6| 日本猛色少妇xxxxx猛交久久| 国模一区二区三区四区视频| 免费黄频网站在线观看国产| 国产熟女欧美一区二区| 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久| 少妇人妻久久综合中文| av在线app专区| 日日撸夜夜添| 免费人成在线观看视频色| 精品午夜福利在线看| 老女人水多毛片| 中文精品一卡2卡3卡4更新| 亚洲丝袜综合中文字幕| 国产精品欧美亚洲77777| 亚洲精品一二三| 亚洲情色 制服丝袜| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 少妇高潮的动态图| 午夜91福利影院| 男女免费视频国产| 狂野欧美白嫩少妇大欣赏| 久久久午夜欧美精品| 99热全是精品| 久久99蜜桃精品久久| 免费看av在线观看网站| 亚洲怡红院男人天堂| 国产成人精品一,二区| xxx大片免费视频| 一个人免费看片子| 精品久久久久久久久av| 亚洲性久久影院| av卡一久久| 亚洲成色77777| 一本久久精品| 你懂的网址亚洲精品在线观看| 久久久久网色| 国产黄频视频在线观看| 久久久久久人妻| 色婷婷av一区二区三区视频| 99热这里只有是精品50| 狂野欧美激情性xxxx在线观看| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区| 卡戴珊不雅视频在线播放| 肉色欧美久久久久久久蜜桃| 精品人妻熟女av久视频| 3wmmmm亚洲av在线观看| av在线老鸭窝| 日韩强制内射视频| 免费大片黄手机在线观看| 国语对白做爰xxxⅹ性视频网站| 久久人妻熟女aⅴ| 多毛熟女@视频| 一个人看视频在线观看www免费| 亚洲成人手机| 久久久久久久久久久久大奶| 美女视频免费永久观看网站| 七月丁香在线播放| 人妻 亚洲 视频| 99九九线精品视频在线观看视频| 国产高清不卡午夜福利| 欧美日韩av久久| 亚洲欧美精品专区久久| 久久精品国产鲁丝片午夜精品| 国产亚洲欧美精品永久| 在线播放无遮挡| 卡戴珊不雅视频在线播放| 日本黄大片高清| 51国产日韩欧美| 午夜av观看不卡| 亚洲国产精品国产精品| 久久人人爽人人爽人人片va| 欧美人与善性xxx| 国语对白做爰xxxⅹ性视频网站| 久久热精品热| 免费看日本二区| 18禁裸乳无遮挡动漫免费视频| 亚洲丝袜综合中文字幕| 高清不卡的av网站| 亚洲国产精品一区二区三区在线| 三级国产精品片| 国内揄拍国产精品人妻在线| av专区在线播放| 噜噜噜噜噜久久久久久91| 国产精品一区二区在线观看99| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 丰满迷人的少妇在线观看| 国产高清国产精品国产三级| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 国产一区有黄有色的免费视频| 亚洲自偷自拍三级| 亚洲第一av免费看| 少妇的逼好多水| 国产伦理片在线播放av一区| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 麻豆成人av视频| 国产成人a∨麻豆精品| 老司机影院毛片| 在线观看免费高清a一片| 亚洲中文av在线| 午夜福利视频精品| 大陆偷拍与自拍| 一本一本综合久久| 久久国产精品大桥未久av | 成年av动漫网址| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 人人妻人人澡人人看| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看av| 久久精品国产鲁丝片午夜精品| 美女国产视频在线观看| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 亚洲美女搞黄在线观看| 国产成人免费观看mmmm| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 国产男女内射视频| av视频免费观看在线观看| 成人影院久久| 国产毛片在线视频| 国精品久久久久久国模美| 99视频精品全部免费 在线| 国产精品久久久久久精品电影小说| 黄片无遮挡物在线观看| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩综合久久久久久| 国产中年淑女户外野战色| 精品国产乱码久久久久久小说| 成人综合一区亚洲| 在线观看免费高清a一片| a级毛片在线看网站| 亚洲不卡免费看| 成人特级av手机在线观看| 欧美最新免费一区二区三区| 国产精品一二三区在线看| 国产极品粉嫩免费观看在线 | 免费看光身美女| 在线 av 中文字幕| 婷婷色综合大香蕉| 日韩视频在线欧美| 日日爽夜夜爽网站| 日日啪夜夜撸| 欧美日韩亚洲高清精品| 国产男女内射视频| 久久女婷五月综合色啪小说| 韩国av在线不卡| 国产成人91sexporn| 欧美激情国产日韩精品一区| 国产精品嫩草影院av在线观看| 久久精品久久久久久噜噜老黄| 人妻 亚洲 视频| 国语对白做爰xxxⅹ性视频网站| 午夜av观看不卡| 日韩一区二区视频免费看| 欧美日韩国产mv在线观看视频| 如日韩欧美国产精品一区二区三区 | 亚洲精品456在线播放app| 欧美精品国产亚洲| 人人妻人人看人人澡| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久小说| 国产精品国产av在线观看| 国产精品久久久久成人av| 欧美日韩在线观看h| 国产色婷婷99| 少妇裸体淫交视频免费看高清| 成年美女黄网站色视频大全免费 | h视频一区二区三区| 成人18禁高潮啪啪吃奶动态图 | av在线观看视频网站免费| 乱码一卡2卡4卡精品| 人人妻人人添人人爽欧美一区卜| 高清午夜精品一区二区三区| 一级av片app| av一本久久久久| 国产精品久久久久久久电影| 亚洲精品国产av蜜桃|