• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Removal of H2S and Organosulfur Compounds from Lique fied Petroleum Gas Using Formulated Solvents: Solubility Parameter Investigation and Industrial Test

    2015-06-21 11:56:32ZhangFengShenBenxianSunHuiLiuJichangShangJianfeng
    中國煉油與石油化工 2015年1期

    Zhang Feng; Shen Benxian; Sun Hui; Liu Jichang; Shang Jianfeng

    (1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237; 2. SINOPEC Zhongyuan Oilfield Puguang Company, Dazhou 635002)

    Simultaneous Removal of H2S and Organosulfur Compounds from Lique fied Petroleum Gas Using Formulated Solvents: Solubility Parameter Investigation and Industrial Test

    Zhang Feng1; Shen Benxian1; Sun Hui1; Liu Jichang1; Shang Jianfeng2

    (1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237; 2. SINOPEC Zhongyuan Oilfield Puguang Company, Dazhou 635002)

    The performance of four formulated solvents (labeled as UDS-I, UDS-II, UDS-III, and UDS-IV) for removing methyl mercaptan from liquefied petroleum gas was predicted based on a two-dimensional solubility parameter theory. The calculation results show that UDS-IV has the closest solubility parameter to that of methyl mercaptan as compared with other tested solvents, indicating the strongest affinity and the highest solubility for methyl mercaptan. The industrial tests at a plant for desulfurization of LPG produced from the delayed coker have shown that the UDS solvents have the excellent performance for removal of organosulfur compounds (mainly methyl mercaptan). Although the sulfur loading dramatically increases, the total sulfur content of LPG treated with UDS-IV can be reduced by about 50% in comparison with N-methyl diethanolamine. In addition, UDS-IV has superior regeneration performance and selectivity for sulfur compounds over hydrocarbons. The industrial test and the solubility parameter calculation results are in good agreement with each other.

    liquefied petroleum gas; desulfurization solvent; solubility parameter; methyl mercaptan; organosulfur

    1 Introduction

    Besides H2S, the liquefied petroleum gas (LPG) produced from FCC and delayed coking units contains various organosulfur compounds, e.g., COS, mercaptans, thioethers and disulfides[1]. Among these organosulfur compounds, methyl mercaptan usually accounts for a dominant part. Prior to commercial application of LPG, the sulfur compounds should be carefully removed. The LPG desulfurization process commonly involves alkanolamine treating and subsequent caustic treating. Due to very limited solubility of organosulfur compounds in alkanolamine solvents which have been widely commercially applied, LPG scrubbed with alkanolamines needs further treatment that uses caustic solution in order to remove residual organosulfur compounds to an acceptable level. However, the caustic treating process consumes a large amount of sodium hydroxide and discharges caustic sludge that causes severe environmental problems[2]. The development of an efficient and environmentally friendly desulfurization process for LPG, therefore, is becoming an urgent issue and attracting increasing attention.

    The solubility of organosulfur compounds in solvent plays a crucial role in affecting the desulfurization efficiency of alkanolamine treating unit. Formulated solvents composed of alkanolamines and physical solvents (such as N-formyl morpholine, N-methyl pyrrolidone, sulfolane and dimethylsulfoxide) allow simultaneous removal of H2S and mercaptans[3-5], whereas some of them have the disadvantage of higher solubility of hydrocarbons. New formulated solvents based on alkanolamine, the UDS solvents, have been developed in this laboratory and used to treat natural gas with a pretty high efficiency for removal of H2S and organosulfur compounds coupled with a very limited solubility of hydrocarbons[6-7].

    The aim of this work is to provide the LPG desulfurization process with a formulated solvent which has an excellent performance for removal of H2S and organosulfur compounds in an attempt to minimize the total sulfur content of LPG. The performance of four UDS solventsin removing methyl mercaptan was studied using the twodimensional solubility parameter theory. In addition, the desulfurization performance of UDS solvents was investigated in an industrial unit for desulfurization of LPG produced from a delayed coker and was compared with that of N-methyl diethanolamine (MDEA).

    2 Experimental

    2.1 Materials

    The UDS solvents were provided by Jiangsu Jinlu Environmental Technology Co., Ltd. The distribution of sulfur compounds in the delayed coker LPG is listed in Table 1. In the LPG feed, methyl mercaptan accounts for 74%—80% of total organosulfur compounds.

    Table 1 Distribution of sulfur compounds in delayed coker LPG

    2.2 Experimental methods

    2.2.1 LPG desulfurization process

    Desulfurization test was performed in an industrial plant for treating the delayed coker LPG. The lean solution counter-currently contacts with LPG in the desulfurization tower, and the rich solution leaving the bottom of desulfurization tower is introduced to a flash tank. Then the rich solution after flashing is regenerated in the stripper tower, and the regenerated lean solution is pumped to the top of desulfurization tower to be reused.

    Prior to this industrial test, the desulfurization system only contained the aqueous solution of MDEA. The industrial test was carried out through replacing MDEA solvent with the UDS solvents. The mass ratios of additives (the mixture of all components except MDEA in UDS solvents) to MDEA in the desulfurization solution system were increased step by step to reach 1:9, 2:8, 3:7 and 4:6, respectively. Meanwhile, the corresponding amount of water was added in order to keep the solution concentration at 35%—40%. The operating conditions of desulfurization unit were also maintained at almost the same levels.

    2.2.2 Analysis

    The sulfur contents in LPG were determined using a gas chromatograph equipped with a flame photometric detector[6]. The H2S content in the desulfurization solution was determined by iodometry, and the content of heat stable salts (HSS) in the lean solution was determined using an ion-exchange titration method. The mass ratios of additives to MDEA in the solution were measured using a gas chromatograph equipped with a flame ionization detector.

    Figure 1 Desulfurization process for delayed coker LPGT1—Desulfurization tower; T2—Stripper tower; V1—Knockout drum; V2—Flash tank; V3—Solution tank; E1, E2—Heat exchanger; L1—Air cooler; L2, L3—Water cooler; P1, P2, P3, P4—Solution pump.

    3 Results and Discussion

    The UDS solvents are formulated with alkanolamines (including MDEA), sulfur-containing heterocyclic com-pounds, and a cyclic amine compound for selectively removing various sulfur compounds from hydrocarbon streams. Such particular components can effectively improve the performance of UDS solvents for removing organosulfur compounds, thanks to the increase in the physical solubility of organosulfur compounds, the increased catalytic effect on the hydrolysis of COS, and the enhanced reaction rate of COS with alkanolamines[6-7].

    3.1 Solubility parameters

    In view of the large proportion of methyl mercaptan in total organosulfur compounds, the enhancement of methyl mercaptan solubility is crucial to the reduction of total sulfur content in the treated LPG. The removal of methyl mercaptan can be attributed to both chemical and physical solubility, in particular the physical solubility[8]. According to the principle of “Likes Dissolve Likes”, the desulfurization solvent which has a closer solubility parameter to that of methyl mercaptan will possess a greater solubility of methyl mercaptan[9]. Therefore, the potential desulfurization performance of UDS solvents was evaluated via applying the solubility parameter theory firstly.

    By taking into account the polarity and the association of species involved in mercaptan-solvent system, a twodimensional solubility parameter theory can be used to predict the solubility of methyl mercaptan in different solvents[10]. This theory is derived from the Hildebrand solubility parameter[11], the Hansen three-dimensional solubility parameter[12], the Bagley two-dimensional solubility parameter[13], and the newly defined solubility parameter[14].

    The liquid cohesive energy can be divided into physical and chemical interactions[10]. Accordingly, the solubility parameter (δ′) contains two parts, the physical and the chemical components[14]. As a result, the two-dimensional solubility parameter can be expressed by Eq. (1)[10]:

    where δ is the Hildebrand solubility parameter, and λ is the square root of liquid internal pressure, δp′and δc′are physical and chemical components of the solubility parameter, respectively.

    The solubility parameter of a multicomponent system is calculated using Eq. (2):

    where x is the molar fraction, and the subscript i refers to a component in a multicomponent system. δi′is calculated using Equations (3—5)[10]:

    where Ei, Vmiand piare cohesive energy, molar volume and internal pressure, respectively. Eiand Vmiare calculated using the group contribution method[15], and piis calculated using a previously reported method[16].

    Furthermore, the physical and the chemical components of the solubility parameter are calculated as follows[10].

    For common polar and non-polar liquids, the physical component is defined by Eq. (6):

    For associating liquids, the chemical component is defined by Eq. (7):

    where δdiand δhiare the dispersion and hydrogen-bonding components of the Hansen solubility parameter, respectively. They can also be calculated using the group-contribution method[17].

    The difference (Rc) in solubility parameter between methyl mercaptan and the desulfurization solvent is defined by Eq. (8):

    where subscripts m and s refer to methyl mercaptan and the desulfurization solvent, respectively.

    Two-dimensional solubility parameters of methyl mercaptan and 17 pure solvents are shown in Figure 2, and the distance from one solvent point to the point representing methyl mercaptan indicates the difference in solubility parameter, Rc. And Table 2 lists the values of group contributions involved in the calculation. As compared with alkanolamines (MEA, DEA, MDEA, DIPA), physical solvents and cyclic amines investigated hereby are similar to methyl mercaptan in terms of two-dimensional solubility parameter. And Rc of the functional components whichincreases the methyl mercaptan solubility in the UDS solvents as compared to that of methyl mercaptan is less than 0.66 (MPa)1/4.

    Based on the solubility parameters of pure solvents, the solubility parameters of UDS solvents formulated with different proportions are obtained and compared with those of methyl mercaptan, LPG, and MDEA (see Table 3). As shown in Table 3, the difference in solubility parameter between methyl mercaptan and the desulfurization solvent decreases in the following order: MDEA > UDS-I > UDS-II > UDS-III > UDS-IV. Such an order reflects the varying affinity between solvents and methyl mercaptan. The UDS-IV solvent has the closest solubility parameter to that of methyl mercaptan, denoting a strongest affinity and a highest solubility for methyl mercaptan. Additionally, the significant differences in solubility parameters between the UDS solvents and LPG imply that LPG has a low solubility in the UDS solvents. It also means that the UDS solvents show the excellent desulfurization selectivity.

    3.2 Industrial test of LPG desulfurization

    3.2.1 Sulfur loading

    Figure 2 Two-dimensional parameters of methyl mercaptanand pure solvents1—methyl mercaptan; 2—pyridine; 3—3-pyridylcarbinol; 4—pyridinepropanol ; 5—N-methyl pyrrolidone; 6—morpholine; 7—N-formyl morpholine; 8—piperazine; 9—N-hydroxyethyl morpholine; 10—2-piperideneethanol ; 11—triethylene diamine; 12—propylene carbonate; 13—dimethyl sulfoxide; 14—sulfolane; 15—MEA; 16—DEA; 17—MDEA; 18—DIPA.

    Table 2 Values of group contributions involved in calculating solubility parameters

    Table 3 Solubility parameters of methyl mercaptan, LPG, MDEA and UDS solvents

    The sulfur loading in the desulfurization solution, which is defined as the molar ratio of sulfur compounds to effective solvent components, is determined by the sulfurcontent in LPG and mass flow rate ratio of LPG to the solution (Rf). Higher sulfur content in LPG and Rfmean higher sulfur loading in the solution. To accurately evaluate the desulfurization performance of different solvents, it is expected that the desulfurization unit should operate under the same conditions. However, due to the increase in the sulfur content of delayed coker feedstock from 1.5% in MDEA test period to 1.9%—2.2% in the UDS solvents test period, the sulfur content of delayed coker LPG increased significantly (see Table 1). The flow rate of LPG and Rfare shown in Figure 3. The flow rate of LPG and Rfwere approximately 1.3 t/h and 0.31, respectively, during MDEA test period. However, in the UDS solvents test periods, LPG flow rate increased to 1.8—2.9 t/h owing to the increase in upstream LPG yield, and Rfwas maintained at around 0.3 by varying the flow rate of solution in connection to LPG flow rate. As a result, the sulfur loading of solution in the UDS solvents test period was higher than that in MDEA test period.

    Figure 3 LPG flow rate and mass flow rate ratio of LPG to solution (Rf)■—Flow rate of LPG;●—RfNote: the measured values for mass ratios of additives to MDEA in UDS-I, UDS-II, UDS-III and UDS-IV were 1.1:8.9, 1.8:8.2, 3.0:7.0 and 4.0:6.0, respectively.

    3.2.2 Desulfurization performance

    With H2S contents in LPG increasing dramatically from 0.9 v%—1.5 v% for MDEA tests to 1.5 v%—12.0 v% for UDS solvents tests, H2S contents of purified LPG were below 10 mg/m3. Figure 4 shows the performance of MDEA and UDS solvents on removal of total sulfur compounds from the delayed coker LPG feedstock. For MDEA solvent, the total sulfur content in treated LPG was in the range of 2 000—2 300 mg/m3. In the case of UDS-I and UDS-II solvents, there was no remarkable decrease in total sulfur content in the treated LPG. This outcome could be attributed to the excessive sulfur loading resulted from high sulfur content and Rf. When Rfwas reduced to about 0.3, the total sulfur content of LPG treated with UDS-II immediately decreased to 1 300—1 600 mg/m3. In the case of UDS-III, the total sulfur content of treated LPG mainly ranged from 1 100 to 1 300 mg/m3. As for UDS-IV, although the total organosulfur content and the flow rate of LPG increased by 30.4% and 92.3%, respectively, as compared with the case of MDEA, the total sulfur content of treated LPG was reduced to 900—1 200 mg/m3, wherein the decrease in total sulfur content was almost 50% as compared to the case of MDEA.

    Owing to their excellent performance for removal of methyl mercaptan, the UDS solvents could significantly reduce the total sulfur content in treated LPG despite the remarkably increased sulfur loading of LPG feedstock. For example, the content of methyl mercaptan was reduced from 2 710.4 mg/m3in the feed LPG to 1 154.6 mg/m3in the purified LPG by using UDS-III. It is observed that the efficiency for removal of organosulfur compounds increased with an increase in the proportion of additives in the formulated solvents. The industrial test results are in good agreement with the calculation results for solubility parameters.

    Figure 4 Performance for removal of total sulfur from delayed coker LPG during different test periods

    3.3 Regeneration of UDS solvents

    During the test, the stripper tower ran steadily, and no foaming behavior of the desulfurization solution was observed. Additionally, the steam consumption per tonof rich solution required by UDS solvents was less than 7.1%—23.5% as compared with the case using MDEA. Table 4 shows the regeneration performance of MDEA and UDS solvents. H2S contents of all lean solutions were less than 1.2 g/L, the corresponding HSS contents were in the range of 2%—3%. All of the results indicate that UDS solvents possess excellent regeneration performance, and especially they show lower regeneration energy consumption than MDEA.

    Table 4 Regeneration performance of MDEA and UDS solvents

    The compositions of stripped sour gases from rich solutions are shown in Table 5. In each period, the content of total hydrocarbons in stripped sour gas was below 0.65 v%, and such low content of hydrocarbons did not pose a negative influence on the sulfur recovery unit, which was attributed to the good selectivity of the desulfurization solvents for sulfur compounds over hydrocarbons. This also indicates that the solubility of hydrocarbons in UDS solvents was low, and the stripped sour gases from the UDS rich solutions could absolutely satisfy the demand of sulfur recovery unit.

    Table 5 Compositions of stripped sour gases from rich solutions

    4 Conclusions

    The calculation results for solubility parameters show that the UDS-IV solvent has the closest solubility parameter to that of methyl mercaptan, suggesting that the UDS-IV solvent possesses the highest affinity to methyl mercpatan. The results of industrial tests in a delayed coker LPG desulfurization plant showed that H2S contents in LPG treated with MDEA and UDS solvents were all below 10 mg/m3. As the mass ratio of additives to MDEA in UDS solvents increased from 1:9 to 4:6, the total sulfur content in the treated LPG gradually decreased. Although the sulfur loading dramatically increased, the total sulfur content in LPG treated with UDS-IV was reduced by 50% as compared with MDEA. Moreover, the UDS-IV solvent exhibited an excellent regeneration performance along with a decrease of 23.5% in steam consumption per ton of rich solution as compared with MDEA. The contents of H2S and hydrocarbons in stripped sour gas discharged from UDS-IV rich solution were above 80% and below 0.65%, respectively, which could be attributed to its good selectivity for sulfur compounds over CO2and hydrocarbons. These industrial test results agreed well with the calculation results for solubility parameters.

    Acknowledgment:The authors are grateful for the financial support from the National Key Science and Technology Project of China (2011ZX05017-005) and the Key Science and Technology Project of Sinopec (“Development and Industrial Application of Sweetening Process for Yuanba Natural Gas” ).

    [1] Nielsen R B, Rogers J, Bullin J A, et al. Treat LPGs with amines[J]. Hydrocarbon Processing, 1997, 79(9): 49-59

    [2] Tukov G V, Ivanova N N, Sadykov A N, et al. Establishing standards for consumption of caustic soda in treating liquefied gases (LPG) to remove mercaptans[J]. Chemistry and Technology of Fuels and Oils, 1975, 11(11): 869-872

    [3] Zong L, Chen C C. Thermodynamic modeling of CO2and H2S solubility in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution with electrolyte NRTL model[J]. Fluid Phase Equilibria, 2011, 306(2): 190-203

    [4] Henni A, Tontiwachwuthikul P, Chakma A. Solubility study of methane and ethane in promising physical solvents for natural gas sweetening operations[J]. J Chem Eng Data, 2006, 51(1): 64-67

    [5] Mohammad S, Hadi F, Masih H J. Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylfor-mamide and dimethylsulfoxide[J]. Fluid Phase Equilibria, 2014, 367: 29-37

    [6] Zhang J H, Shen B X, Sun H, et al. A study on the desulfurization performance of solvent UDS for purifying high sour natural gas[J]. Petroleum Science and Technology, 2011, 29(1): 48-58

    [7] Zhang J H, Shen B X, Liu J C, et al. Absorption selectivity of solvents for organosulfurs in high sour natural gas[J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36(8): 822-829

    [8] Bedell S A, Miller M. Aqueous amines as reactive solvents for mercaptan removal[J]. Ind Eng Chem Res, 2007, 46(11): 3729-3733

    [9] Lin L G, Kong Y, Wang G, et al. Selection and crosslinking modification of membrane material for FCC gasoline desulfurization[J]. Journal of Membrane Science, 2006, 285(1/2): 144-151

    [10] Yu C F, Hei E C, Liu G J. Selection of polymer solvents and new two-dimensional solubility parameter[J]. Journal of Chemical Industry and Engineering, 2001, 52(4): 288-294 (in Chinese)

    [11] Hildebrand J H, Scott R L. The Solubility of Nonelectrolytes[M]. 3rd ed. New York: Reinhold, 1950: 10-110

    [12] Hansen C M. Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient[M]. Copenhagen: Danish Technical Press, 1967: 56-70

    [13] Bagley E B, Nelson T P, Scigliano J M. Three-dimensional solubility parameters and their relationship to internal pressure measurements in polar and hydrogen bonding solvents[J]. Journal of Paint Technology, 1971, 43(555): 35-42

    [14] Liu G J, Hei E C, Shi J B. A new solubility parameter[J]. Journal of Chemical Industry and Engineering, 1994, 45(6): 666-672 (in Chinese)

    [15] Fedors R F. A method for estimating both the solubility parameters and molar volume of liquids[J]. Polymer Engineering & Science, 1974, 14(2): 147-154

    [16] Xu Y L, Yu C F, Hei E C, et al. Prediction of internal pressure and values of new solubility parameter for liquids[J]. Journal of Chemical Industry and Engineering, 2000, 51(3): 407-413 (in Chinese)

    [17] van Krevelen D W, Te Nijenhuis K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions [M]. 4th completely revised edition. New York: Elsevier, 2009: 189-228

    [18] Xu Z L, Qusay F A. Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/ NMP solution[J]. Journal of Membrane Science, 2004, 233(1/2): 101-111

    [19] Burke J. Solubility parameters: theory and application[J]. The Book and Paper Group Annual, 1984, 3: 13-58

    [20] Matsuura T, Blais P, Sourirajan S. Polar and nonpolar parameters for polymeric reverse osmosis membrane materials from liquid chromatographic data[J]. Journal of Applied Polymer Science, 1976, 20(6): 1515-1531

    Successful Commercial Production of 1,4-Cyclohexane Dimethanol at Liaoyang Petrochemical Company

    The PetroChina Liaoyang Petrochemical Company (LPC) has completed all commercial tests at its self-constructed 200 t/a 1,4-cyclohexane dimethanol (CHDM) unit, while delivering qualified CHDM product with a purity of 99.8% to provide reliable test data for formulating the PDP of an 10-kt/a class CHDM unit.

    CHDM is one of two modified monomers for manufacture of polyethyleneglycol terephthalate -co-1,4-cyclohexylenedimethlene phthalate (PETG). In October 2012, LPC had constructed the first in China 100 kt/a PETG copolymer unit to deliver the on-spec product. The staff engaging in the development of a 200 t/a CHDM unit, which serves as the key associated unit of the 100 kt/a PETG copolymer unit, has developed the related CHDM process and the catalyst with the collaboration of the CAS Dalian Institute of Chemical Physics and the China Kunlun Engineering Company. The construction of the 200 t/a CHDM unit was mechanically completed and handed over to the owner by the end of 2013. Beginning from the mid-March 2015, LPC has performed the precommissioning of three major units to manufacture high-purity CHDM product and has accumulated necessary experience for the forthcoming mass production of copolymer products.

    date: 2014-07-08; Accepted date: 2014-10-28.

    Prof. Shen Benxian, Telephone: +86-21-64252851; E-mail: sbx@ecust.edu.cn.

    亚洲av成人不卡在线观看播放网 | 亚洲精品久久久久久婷婷小说| 9热在线视频观看99| 黑丝袜美女国产一区| 蜜桃国产av成人99| 热re99久久国产66热| 精品免费久久久久久久清纯 | 韩国精品一区二区三区| 日本av手机在线免费观看| 日本vs欧美在线观看视频| 日韩人妻精品一区2区三区| 亚洲,欧美精品.| 亚洲国产欧美日韩在线播放| 大型av网站在线播放| 一区二区三区激情视频| 最近手机中文字幕大全| 久久午夜综合久久蜜桃| 99久久精品国产亚洲精品| 久久精品亚洲av国产电影网| 久久精品人人爽人人爽视色| 亚洲男人天堂网一区| h视频一区二区三区| 午夜精品国产一区二区电影| 亚洲自偷自拍图片 自拍| 亚洲成人免费av在线播放| 国产成人欧美在线观看 | 美女脱内裤让男人舔精品视频| 国产真人三级小视频在线观看| 国产一级毛片在线| 一级毛片我不卡| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 麻豆国产av国片精品| 久久久久精品人妻al黑| 91字幕亚洲| 丁香六月欧美| 夫妻午夜视频| 一本色道久久久久久精品综合| 精品免费久久久久久久清纯 | 中文字幕亚洲精品专区| 亚洲专区国产一区二区| 久久精品久久精品一区二区三区| 亚洲 欧美一区二区三区| 欧美精品一区二区免费开放| 国产有黄有色有爽视频| 亚洲成人国产一区在线观看 | 免费在线观看黄色视频的| 亚洲七黄色美女视频| 免费观看人在逋| 日韩,欧美,国产一区二区三区| 久久久久国产一级毛片高清牌| 国产精品一国产av| 成在线人永久免费视频| 91麻豆精品激情在线观看国产 | 久久午夜综合久久蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲免费av在线视频| 黄色片一级片一级黄色片| 日本色播在线视频| 国产黄频视频在线观看| 麻豆av在线久日| 丝袜人妻中文字幕| 亚洲国产精品一区二区三区在线| 美女脱内裤让男人舔精品视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品乱久久久久久| 欧美黄色淫秽网站| 欧美日韩视频精品一区| 久久久久久久久久久久大奶| 美女脱内裤让男人舔精品视频| 九草在线视频观看| 午夜福利视频在线观看免费| 夜夜骑夜夜射夜夜干| av国产精品久久久久影院| 精品第一国产精品| 欧美另类一区| 亚洲精品国产一区二区精华液| 亚洲综合色网址| 久久这里只有精品19| 香蕉国产在线看| 又大又爽又粗| 最近最新中文字幕大全免费视频 | 成人影院久久| 多毛熟女@视频| 国产亚洲欧美精品永久| 菩萨蛮人人尽说江南好唐韦庄| 欧美成狂野欧美在线观看| 欧美精品人与动牲交sv欧美| 中文字幕人妻丝袜制服| 看免费成人av毛片| 91麻豆精品激情在线观看国产 | av福利片在线| 免费高清在线观看视频在线观看| 久久精品国产亚洲av高清一级| 欧美变态另类bdsm刘玥| 久久精品熟女亚洲av麻豆精品| 成年av动漫网址| 欧美成人精品欧美一级黄| 久久久久久免费高清国产稀缺| 一级黄色大片毛片| 又黄又粗又硬又大视频| 大码成人一级视频| 欧美日韩一级在线毛片| 日本av免费视频播放| 交换朋友夫妻互换小说| 在线看a的网站| 亚洲av电影在线进入| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区三区在线| 欧美成人精品欧美一级黄| 九色亚洲精品在线播放| 啦啦啦在线免费观看视频4| xxx大片免费视频| 日韩制服骚丝袜av| 99香蕉大伊视频| 麻豆国产av国片精品| 国产精品国产三级专区第一集| 99国产精品一区二区蜜桃av | 婷婷色综合www| 国产1区2区3区精品| 精品一区二区三区av网在线观看 | 久久精品国产综合久久久| 一区二区三区四区激情视频| 国产高清videossex| 亚洲欧洲精品一区二区精品久久久| 国产精品人妻久久久影院| 国产97色在线日韩免费| 亚洲伊人久久精品综合| 嫁个100分男人电影在线观看 | 国产在视频线精品| 人妻人人澡人人爽人人| 久久久精品免费免费高清| 国产免费又黄又爽又色| 久久久国产欧美日韩av| 久久久久久人人人人人| 免费看av在线观看网站| 国产欧美日韩一区二区三区在线| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 蜜桃国产av成人99| 999精品在线视频| 国产精品一二三区在线看| 国产老妇伦熟女老妇高清| 亚洲精品日本国产第一区| 精品少妇一区二区三区视频日本电影| 中文乱码字字幕精品一区二区三区| 亚洲av片天天在线观看| 最近手机中文字幕大全| 亚洲精品国产av成人精品| 一本大道久久a久久精品| 免费在线观看视频国产中文字幕亚洲 | 亚洲第一av免费看| 在线观看www视频免费| 一本—道久久a久久精品蜜桃钙片| 欧美精品一区二区免费开放| 成年人免费黄色播放视频| 亚洲人成电影观看| 伊人亚洲综合成人网| 性色av乱码一区二区三区2| 国产黄色免费在线视频| 欧美精品一区二区免费开放| 波多野结衣一区麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美变态另类bdsm刘玥| 欧美黑人精品巨大| 国产av一区二区精品久久| av视频免费观看在线观看| 精品人妻在线不人妻| h视频一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲,欧美精品.| 高清视频免费观看一区二区| 欧美日本中文国产一区发布| 在线天堂中文资源库| 人体艺术视频欧美日本| 久久人妻熟女aⅴ| 亚洲黑人精品在线| 免费人妻精品一区二区三区视频| 欧美日韩福利视频一区二区| 成人黄色视频免费在线看| 亚洲国产av影院在线观看| av片东京热男人的天堂| 一区二区av电影网| 女警被强在线播放| 亚洲国产av新网站| 免费久久久久久久精品成人欧美视频| 色视频在线一区二区三区| 午夜福利视频精品| 亚洲精品国产av成人精品| 亚洲午夜精品一区,二区,三区| 国产精品一区二区精品视频观看| 一二三四在线观看免费中文在| 热re99久久精品国产66热6| 欧美 日韩 精品 国产| 久久久久久久大尺度免费视频| 曰老女人黄片| 精品福利观看| 久久久久久免费高清国产稀缺| 999精品在线视频| 亚洲精品国产区一区二| 欧美日韩亚洲高清精品| 人人妻,人人澡人人爽秒播 | 18禁国产床啪视频网站| 99国产精品免费福利视频| 女性生殖器流出的白浆| 国产亚洲精品久久久久5区| 色精品久久人妻99蜜桃| 波多野结衣一区麻豆| 老司机午夜十八禁免费视频| 国产精品人妻久久久影院| 欧美中文综合在线视频| 一级毛片女人18水好多 | 久久久精品免费免费高清| 在线天堂中文资源库| 丝袜美腿诱惑在线| 老鸭窝网址在线观看| 日本色播在线视频| 久久久久久亚洲精品国产蜜桃av| 免费久久久久久久精品成人欧美视频| 精品第一国产精品| 亚洲色图综合在线观看| 人妻人人澡人人爽人人| a 毛片基地| 丝袜在线中文字幕| 丝瓜视频免费看黄片| 只有这里有精品99| 亚洲国产日韩一区二区| 香蕉丝袜av| 久久性视频一级片| 亚洲欧美成人综合另类久久久| 操美女的视频在线观看| 免费av中文字幕在线| 脱女人内裤的视频| 少妇猛男粗大的猛烈进出视频| 超碰成人久久| 亚洲一区中文字幕在线| 国产精品一二三区在线看| 国产在线一区二区三区精| 男人添女人高潮全过程视频| 一本一本久久a久久精品综合妖精| 国产精品九九99| 一级毛片黄色毛片免费观看视频| 色精品久久人妻99蜜桃| av福利片在线| 国产精品免费大片| 91老司机精品| 人妻人人澡人人爽人人| 亚洲欧美精品综合一区二区三区| 婷婷成人精品国产| 日韩视频在线欧美| 亚洲国产日韩一区二区| 国产福利在线免费观看视频| 亚洲色图 男人天堂 中文字幕| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 青青草视频在线视频观看| 精品高清国产在线一区| 日韩 亚洲 欧美在线| 丝瓜视频免费看黄片| 免费在线观看完整版高清| 国产亚洲欧美在线一区二区| 亚洲国产欧美一区二区综合| bbb黄色大片| 国产片内射在线| 王馨瑶露胸无遮挡在线观看| av国产久精品久网站免费入址| 亚洲熟女毛片儿| 久久国产精品男人的天堂亚洲| 深夜精品福利| 亚洲欧美精品自产自拍| 最黄视频免费看| 国产成人啪精品午夜网站| 国产成人精品久久二区二区免费| 国产免费一区二区三区四区乱码| 国产精品免费视频内射| 精品亚洲成国产av| 国产又色又爽无遮挡免| 亚洲欧美一区二区三区黑人| 成人黄色视频免费在线看| 多毛熟女@视频| 夜夜骑夜夜射夜夜干| 飞空精品影院首页| 男人添女人高潮全过程视频| 黄色视频不卡| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 午夜日韩欧美国产| 国产精品一二三区在线看| 国产爽快片一区二区三区| 国产精品二区激情视频| 亚洲av欧美aⅴ国产| 国产97色在线日韩免费| 国产成人免费无遮挡视频| 欧美日韩精品网址| 在线观看人妻少妇| 尾随美女入室| 午夜福利在线免费观看网站| 大香蕉久久成人网| 国产亚洲午夜精品一区二区久久| 午夜91福利影院| 少妇粗大呻吟视频| 久久av网站| 久久久久久久久久久久大奶| 国产97色在线日韩免费| 亚洲精品av麻豆狂野| 久久精品久久久久久久性| 一个人免费看片子| 午夜福利免费观看在线| 免费观看a级毛片全部| av片东京热男人的天堂| 精品少妇久久久久久888优播| 日本欧美国产在线视频| 丝瓜视频免费看黄片| 黄片小视频在线播放| 国产精品 国内视频| 日韩大片免费观看网站| 国产免费一区二区三区四区乱码| 欧美亚洲日本最大视频资源| 国产精品香港三级国产av潘金莲 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲中文日韩欧美视频| 国产成人欧美| 久久狼人影院| 成人亚洲精品一区在线观看| 成人手机av| av一本久久久久| 欧美日韩国产mv在线观看视频| 水蜜桃什么品种好| 日韩电影二区| 中文字幕人妻丝袜制服| 在线观看免费日韩欧美大片| 黄色片一级片一级黄色片| 国产亚洲午夜精品一区二区久久| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网 | 搡老岳熟女国产| 成人三级做爰电影| 制服人妻中文乱码| 最近手机中文字幕大全| 人人妻,人人澡人人爽秒播 | 一级,二级,三级黄色视频| 午夜激情久久久久久久| 咕卡用的链子| 少妇粗大呻吟视频| 久久精品人人爽人人爽视色| 免费在线观看黄色视频的| 欧美另类一区| 亚洲精品一卡2卡三卡4卡5卡 | av国产久精品久网站免费入址| 久久久久久人人人人人| 一二三四社区在线视频社区8| 久9热在线精品视频| 两个人看的免费小视频| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 亚洲精品久久久久久婷婷小说| 午夜激情久久久久久久| 国产精品一区二区精品视频观看| 国产精品久久久av美女十八| 90打野战视频偷拍视频| 成人国产av品久久久| 天堂俺去俺来也www色官网| 搡老岳熟女国产| 久久久久久久久久久久大奶| 国产成人啪精品午夜网站| 五月天丁香电影| 午夜免费成人在线视频| 亚洲av日韩精品久久久久久密 | 在线观看国产h片| 国产精品久久久久成人av| 国产精品久久久av美女十八| 性色av乱码一区二区三区2| 国产国语露脸激情在线看| 一区二区三区四区激情视频| 亚洲精品中文字幕在线视频| www.999成人在线观看| 麻豆av在线久日| 久久久久久久久免费视频了| 飞空精品影院首页| 亚洲精品美女久久av网站| 久久精品亚洲av国产电影网| 丰满迷人的少妇在线观看| 国产成人欧美| 国产三级黄色录像| 日本wwww免费看| 悠悠久久av| 国产精品九九99| 亚洲av日韩精品久久久久久密 | www.熟女人妻精品国产| 日韩 亚洲 欧美在线| 久久久久精品人妻al黑| 亚洲天堂av无毛| 久久天躁狠狠躁夜夜2o2o | 午夜福利乱码中文字幕| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| 波多野结衣av一区二区av| 又大又爽又粗| 美女福利国产在线| 涩涩av久久男人的天堂| 国产精品九九99| 亚洲人成电影免费在线| 91精品伊人久久大香线蕉| 一区二区日韩欧美中文字幕| 这个男人来自地球电影免费观看| 亚洲色图综合在线观看| 欧美+亚洲+日韩+国产| 欧美激情高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 色94色欧美一区二区| 国产男人的电影天堂91| 热re99久久精品国产66热6| 叶爱在线成人免费视频播放| 91麻豆av在线| 老司机靠b影院| 性色av乱码一区二区三区2| svipshipincom国产片| 婷婷色av中文字幕| 色网站视频免费| 国产精品欧美亚洲77777| 悠悠久久av| 女人久久www免费人成看片| 国产激情久久老熟女| 国产亚洲av高清不卡| 午夜免费男女啪啪视频观看| 最黄视频免费看| 夜夜骑夜夜射夜夜干| 国产高清videossex| 人人妻人人添人人爽欧美一区卜| av国产久精品久网站免费入址| 男人添女人高潮全过程视频| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 男女无遮挡免费网站观看| 欧美精品一区二区大全| 成人三级做爰电影| 国产视频一区二区在线看| 国产男女超爽视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| kizo精华| 日韩大片免费观看网站| 久久精品久久久久久久性| 国产精品av久久久久免费| 多毛熟女@视频| 亚洲伊人色综图| 精品熟女少妇八av免费久了| 成年人午夜在线观看视频| 亚洲av美国av| 欧美日韩福利视频一区二区| 最近手机中文字幕大全| 精品人妻在线不人妻| 国产一区二区三区av在线| 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 王馨瑶露胸无遮挡在线观看| 热99久久久久精品小说推荐| 国产成人av教育| 韩国高清视频一区二区三区| 男女下面插进去视频免费观看| 黑人欧美特级aaaaaa片| 国产精品麻豆人妻色哟哟久久| 欧美成狂野欧美在线观看| 女性被躁到高潮视频| 美女高潮到喷水免费观看| 男女国产视频网站| 亚洲伊人色综图| 又大又爽又粗| 超碰成人久久| 午夜福利,免费看| 国产成人欧美在线观看 | 亚洲成人免费电影在线观看 | 免费一级毛片在线播放高清视频 | 国产在线观看jvid| 日韩伦理黄色片| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 丰满饥渴人妻一区二区三| 少妇裸体淫交视频免费看高清 | 久久ye,这里只有精品| videos熟女内射| 99香蕉大伊视频| 亚洲精品日本国产第一区| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 久久久久精品国产欧美久久久 | 两个人免费观看高清视频| 深夜精品福利| 国产精品av久久久久免费| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 免费看十八禁软件| 国产精品一区二区在线不卡| 国产一区有黄有色的免费视频| 婷婷色综合大香蕉| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 99久久99久久久精品蜜桃| 人人妻人人爽人人添夜夜欢视频| 亚洲成国产人片在线观看| 午夜视频精品福利| 一级片免费观看大全| 欧美乱码精品一区二区三区| 在线精品无人区一区二区三| 国产精品秋霞免费鲁丝片| 亚洲欧美激情在线| 国产有黄有色有爽视频| 国产伦人伦偷精品视频| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 国产欧美日韩一区二区三 | a 毛片基地| 成人亚洲欧美一区二区av| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 69精品国产乱码久久久| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 日本猛色少妇xxxxx猛交久久| 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级专区第一集| 我要看黄色一级片免费的| 亚洲男人天堂网一区| 国产亚洲欧美精品永久| 91成人精品电影| 午夜av观看不卡| 777久久人妻少妇嫩草av网站| 国产精品一区二区在线观看99| 啦啦啦中文免费视频观看日本| 纵有疾风起免费观看全集完整版| 国产精品偷伦视频观看了| 日本欧美国产在线视频| 性高湖久久久久久久久免费观看| 一区二区三区四区激情视频| 一个人免费看片子| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 中文欧美无线码| 啦啦啦在线免费观看视频4| 国产av一区二区精品久久| 婷婷丁香在线五月| 韩国精品一区二区三区| 香蕉国产在线看| 亚洲国产精品成人久久小说| 最近最新中文字幕大全免费视频 | 大片免费播放器 马上看| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 中文字幕精品免费在线观看视频| av有码第一页| 日日摸夜夜添夜夜爱| kizo精华| 国产一区二区 视频在线| 午夜免费成人在线视频| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 亚洲天堂av无毛| 晚上一个人看的免费电影| 这个男人来自地球电影免费观看| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av高清一级| 黄色毛片三级朝国网站| 男女床上黄色一级片免费看| svipshipincom国产片| 国产精品久久久人人做人人爽| 中文精品一卡2卡3卡4更新| 无遮挡黄片免费观看| 亚洲国产av新网站| 丁香六月天网| 一区二区av电影网| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人看| 丝瓜视频免费看黄片| 国产精品国产三级专区第一集| 精品福利观看| 欧美日韩综合久久久久久| 天天躁日日躁夜夜躁夜夜| 亚洲,欧美,日韩| av国产精品久久久久影院| 宅男免费午夜| 男女高潮啪啪啪动态图| 在线观看一区二区三区激情| av又黄又爽大尺度在线免费看| videos熟女内射| 大码成人一级视频| 新久久久久国产一级毛片| 99热网站在线观看| 18禁观看日本| 午夜老司机福利片| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 妹子高潮喷水视频| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 天天躁夜夜躁狠狠久久av| 成年人午夜在线观看视频| 亚洲黑人精品在线| 亚洲一区中文字幕在线| 亚洲精品自拍成人| 欧美性长视频在线观看| 亚洲黑人精品在线| a级毛片黄视频| 最近最新中文字幕大全免费视频 | 人人妻人人爽人人添夜夜欢视频| 多毛熟女@视频| 久久精品熟女亚洲av麻豆精品| 国产精品 欧美亚洲| 精品一品国产午夜福利视频| 国产高清videossex|