• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    利用LNG冷能的海水淡化流程比較

    2015-06-15 06:50:54林文勝黃美斌顧安忠
    化工學(xué)報(bào) 2015年2期
    關(guān)鍵詞:上海交通大學(xué)淡化化工

    林文勝,黃美斌,顧安忠

    (上海交通大學(xué)制冷與低溫工程研究所,上海200240)

    Introduction

    The use of liquefied natural gas (LNG)is increasing rapidly in today's world.At receiving terminals,LNG is delivered to consumers mostly in the form of gaseous natural gas,which means LNG must be regasified.Because of the large temperature difference between LNG and the heating source,usually seawater or air,great amount of cold energy,estimated about 850kJ·kg-1,will be released from LNG during its evaporation.So it is important and necessary to make use of the LNG cryogenic exergy.LNG cold energy has by far been used in power generation and related CO2recovery[1-3],in air separation[4-5],in light hydrocarbon separation[6-7],and so on.

    In recent years,with the rapid economic development and population growth,the lack of fresh water has become a global problem.In the 21st century,fresh water will become an important strategic and economic resource.On the other hand,the earth has plenty of seawater resources,accounting for about 97%of the global total water,so seawater desalination technology has aroused more and more attention.

    Desalination methods are classified into three categories:distillation,membrane and freezing method.The freezing desalination method needs refrigeration system that consumes electricity power.However,LNG will release cold energy during its vaporization,which can be used in freezing desalination system.The freezing desalination method with LNG cold energy utilization not only saves the cost of electric refrigeration equipment,but also achieves energysaving and emission reduction.Some scholars have done research work about this kind of desalination.

    Cravalhoetal[8]proposed a zero-energy theoretic system recovering LNG cold energy for fresh water production in 1970s.The system includes a heat engine,a heat pump,an LNG heat exchanger and two seawater heat exchangers.The heat engine works between the LNG heat exchanger and one of the seawater heat exchanger.The power from the heat engine is used to drive the heat pump.Systematic theoretical maximum output of fresh water is about 6.7 (kg water)·(kg LNG)-1.

    Antonelli[9]proposed a desalination method using organic Rankine cycle (ORC)and the secondary refrigerant freezing process (SRF)to obtain fresh water with LNG cold energy utilization at LNG receiving terminal.n-Butane is selected as the secondary refrigerant.The power generated from organic Rankine cycle (ORC)is used to drive the secondary refrigerant freezing process (SRF).

    Chenetal[10-12]and Qinetal[13]studied solute inclusion in ice formed from falling film flows on a sub-cooled surface.The relationship between the average solute distribution coefficient,the average ice growth rate and the bulk concentration of solute at various solution velocities have been measured and correlated using an empirical equation.Songetal[14-17]established a population balance model to predict the volumetric heat transfer coefficient for direct-contact evaporation in a bubble.

    In recent years,some processes were proposed to integrate the desalination process adopting LNG cold energy recovery with some other processes.Wangetal[18]combined freeze desalination with membrane distillation,while Xiaetal[19]integrated the desalination process with a solar-powered transcritical CO2power cycle.

    This paper proposes and compares two kinds of seawater freezing desalination methods,which are the refrigerant/seawater direct-contact method[20]and the refrigerant/seawater indirect-contact method.The result shows that the indirect-contact method has some advantages over the direct-contact method.Then,two processes are presented with the indirect-contact method,which are the non-phasechange process and the phase-change process.Performances of the two processes at different running temperatures are analysed.The study shows that the phase-change process has some advantages.

    Fig.1 Layout of refrigerant/seawater direct-contact freezing desalination system

    1 Two freezing desalination methods

    Freezing desalination is classified into directcontact method and indirect-contact method according to the way of heat transfer between seawater and refrigerant.These two methods are compared here to decide which is more suitable for actual experimental conditions.To simplify the comparison,it is assumed that the system operates at steady state.The mass flow of fresh water obtained from the freezing desalination systems is set as 150L·h-1.

    1.1 Refrigerant/seawater direct-contact method

    The layout of the direct-contact system is shown in Fig.1.The low temperature liquid secondary refrigerant goes into the crystallizer and mixes with pre-cooled seawater.The refrigerant absorbs heat from high temperature seawater and gasifies into gas.Afterwards,the refrigerant gas from the top of the crystallizer flows through the heat exchanger and is condensed by LNG.Then,the low temperature liquid refrigerant is drained out and sprayed into the crystallizer by apump.In the crystallizer,the seawater partially crystallizes to form ice.The ice is transported to a continuous convective washer and the salt attached on the surface of ice crystals is washed away.Then,the ice is collected and melts in a melter.The water from the melter is the fresh water product,which is partially used as washing water.

    In order to know the characteristics of this kind of freezing seawater desalination,some calculations and simulations are carried out by HYSYS software.The temperatures at point 1,2and 3are set as-100,-5and-100℃,respectively.The mass flow rate of LNG required to supply cold energy is 82.7kg·h-1,and the volume of the crystallizer is 0.09m3.

    1.2 Refrigerant/seawater indirect-contact method

    The layout of the indirect-contact system is shown in Fig.2.The low temperature liquid secondary refrigerant goes into the refrigerant side of the crystallizer,absorbs heat from high temperature seawater and gasifies.Then,the refrigerant gas from the crystallizer flows through the lowtemperature heat exchanger and is condensed by LNG.Afterwards,the low temperature liquid refrigerant is drained out and flows into the freezer by apump.In the freezer,the seawater partially crystallizes to form ice.The ice is transported to a continuous convective washing device and the salt attached on the surface of ice crystals is washed away.Then,the ice is collected and melts in an icemelting device.The water from the ice-melting device is the fresh water product,which is partially used as washing water.

    Some calculations and simulations are also carried out for this system.The temperatures at point 1,2and 3are set as-40,-25and-40℃,respectively.The mass flow rate of LNG required to supply cold energy is 85.0kg·h-1,and the volume of the freezer is 3.60m3.

    Fig.2 Layout of refrigerant/seawater indirect-contactfreezing desalination system

    1.3 Comparison of two seawater desalination methods

    Because the secondary refrigerant is sprayed into the seawater in the direct-contact system,the cold energy carried by the refrigerant is absorbed directly and almost completely by the seawater.Since the heat loss is reduced to minimum,the direct-contact freezing method has distinguishing features of high heat transfer efficiency and small size for the crystallizer.Theoretically speaking,the direct-contact method is almost perfect for seawater freezing desalination.

    On the other hand,indirect-contact freezing method has some advantages in practice.The crystallizer (freezer)in the indirect-contact system is similar to an ice-making machine,which is commercially available.The ice produced in this kind of system is easily to be separated from the seawater.Furthermore,the ice may contains less salt because large size of ice block is produced,instead of little ice crystals in the direct-contact system.

    2 Two processes of indirect-contact freezing

    The indirect-contact method is then chosen for further study because it is simple and easy to be applied.Two processes are presented with different refrigerant conditions.In the non-phase-change process,the secondary refrigerant remains as subcooled liquid in the whole cycle.Sensible heat is transferred from seawater to the secondary refrigerant.In the phase-change process,however,the secondary refrigerant is vaporized when freezing the seawater,and then it is condensed when gasifying the LNG.Latent heat is transferred between seawater and the secondary refrigerant in the crystallizer.Performances of the two systems at different refrigerating temperatures are analysed here.

    In order to understand the characteristics of these two processes,the refrigerant circulation loop is calculated and simulated through software HYSYS.R410Ais selected as the secondary refrigerant.The flow chart of non-phase-change process is the same as that of the phase-change process,shown in Fig.3.Fig.4is thep-h(huán)diagram of the non-phase-change process and figure 5is for the phase-change process.

    Fig.3 Flow chart of secondary refrigerant

    In order to simplify analysis and comparison,the initial conditions are given.Taking into account the frictional drag and heat leakage of pipes,the temperature of LNG will rise a little before going into the cryogenic heat exchanger,so the initial state of LNG can be set at 0.15MPa and-160℃,at the state of subcooled liquid.The parameters of outlet natural gas are assumed as 0.1MPa and-160℃.Adiabatic efficiency of the pump in this system is 75%.The pressure drop of the secondary refrigerant is 20kPa in both of the crystallizer and the heat exchanger.The maximum pressure of the system is 0.5MPa,and the heat load of the crystallizer is 18.06kW,the temperature of R410Aat the inlet of crystallizer is-25℃,and the outlet temperature changes from-40to-30℃.

    Fig.4 p-h(huán)diagram of non-phase-change process

    Fig.5 p-h(huán)diagram of phase-change process

    With these parameters set,simulations of the two processes are performed by HYSYS software.Fig.6and Fig.7show main differences between these two processes.

    Fig.6 Mass flow of secondary refrigerant at different temperatures

    Fig.7 Required pump power at different temperatures

    From Fig.6and Fig.7,the main differences between these two processes are flow rate of the secondary refrigerant R410Aand pump power consumption under the same conditions.In the nonphase-change process,the mass flow rate of R410Ais very large,and the pump power consumption is a bit high.That is because there is only sensible heat transfer between seawater and the secondary refrigerant in the crystallizer.R410A's sensible heat from-25to-40℃or-30℃is much smaller than its latent heat.Therefore,when the heat load of the crystallizer is the same,mass flow rate will increase rapidly along with the increase of outlet temperature of R410Ain the non-phasechange process,which means that the secondary refrigerant flow velocity is very high or the diameter of pipeline is very large,which also leads to much larger pump power consumption.In the phase-change process,the cold energy is mainly transferred by vaporization latent heat,which results in smaller mass flow and lower pump power consumption than those of the non-phase-change process.

    In summary,the non-phase-change process has the advantage of simple fluid state,and it is also easy to be controlled.Whereas,because of lager mass flow rate,the pipe diameter and pump power consumption is relatively large for the nonphase-change process.Considering its much lower pump power consumption,the phase-change process is more suitable for the seawater freezing desalination system utilizing LNG cold energy.

    3 Conclusions

    The conventional freezing desalination method needs cold energy from refrigeration system that consumes much electricity power.On the other hand,LNG will release a lot of cold energy during its vaporization process,which will be wasted if not recovered.This paper present a system integrating the two processes of LNG vaporization and seawater freezing,i.e.the freezing seawater desalination system with LNG cold energy utilization.Two kinds of seawater freezing desalination methods are proposed and compared,which are the refrigerant/seawater direct-contact method and the refrigerant/seawater indirect-contact method.

    The indirect-contacting method is chosen for further study because the system is simple,because the ice is easily to be separated from the seawater,and also because the ice may contains less salt.Two processes,the non-phase-change process and the phase-change process,are presented with different refrigerant conditions for the indirect-contact method.In the two processes,the main differences are the mass flow of the secondary refrigerant and the pump power consumption.In this study,the flow rate of the refrigerant is about 300 kg·h-1and the pump power consumption is 0.02 kW for the phase-change process.But for the non-phase-change process,the refrigerant flow rate varies from about 3000kg·h-1to about 9000kg·h-1,while the pump power consumption varies from 0.15to 0.45kW.The study shows that the phase-change process of indirect-contact method is more suitable for the seawater freezing desalination system utilizing LNG cold energy,considering its much lower pump power consumption.

    [1] Kim T S,Ro S T.Power augmentation of combined cycle power plants using cold energy of liquefied natural gas[J].Energy,2000,25:841-856.

    [2] Lin Wensheng, Huang Meibin, He Hongming, Gu Anzhong.A transcritical CO2Rankine cycle with LNG cold energy utilization and liquefaction of CO2in gas turbine exhaust [J].JournalofEnergyResourcesTechnology-TransactionsoftheASME,2009,131 (4):042201.

    [3] Wang Tao,Lin Wensheng,Gu Anzhong.Analysis of working fluid and variable working conditions of organic Rankine cycle utilizing LNG cold energy [J].CIESCJournal(化工學(xué)報(bào)),2010,61 (S2):107-111.

    [4] Takashi N,Naohiko Y.Air separating method using external cold source[P]:US,5220798.1993-06-22.

    [5] Rakesh A.Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high nitrogen stream[P]:US,5137558.1992-08-11.

    [6] Gao Ting,Lin Wensheng,Gu Anzhong.Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized[J].EnergyConversionandManagement,2011,52 (6):2401-2404.

    [7] Gao Ting (高婷),Lin Wensheng (林文勝),Gu Anzhong(顧安忠).Light hydrocarbons separation at high pressure from liquefied natural gas with its cryogenic energy utilized[J].CIESCJournal(化工學(xué)報(bào)),2009,60 (S1):73-76.

    [8] Cravalho E G,McGrath J J,Toscano W M.Thermodynamic analysis of the regasification of LNG for the desalination of sea water [J].Cryogenics,1977,17 (3):135-139.

    [9] Antonelli A.Desalinated water production at LNG-terminals[J].Desalination,1983,45 (2):383-390.

    [10] Chen Ping,Chen Xiaodong,F(xiàn)ree K W.An experimental study on the spatial uniformity of solute inclusion in ice formed from falling film flows on a sub-cooled surface [J].JournalofFoodEngineering,1999,39 (1):101-105.

    [11] Chen Ping,Chen Xiaodong,F(xiàn)ree K W.Solute inclusion in ice formed from sucrose solutions on a sub-cooled surface-an experimental study [J].JournalofFoodEngineering,1998,38 (1):1-13.

    [12] Chen Xiaodong,Chen Ping,F(xiàn)ree K W.A note on the two models of ice growth velocity in aqueous solutions derived from an irreversible thermodynamics analysis and the conven-tional heat and mass transfer theory[J].JournalofFood Engineering,1997,37 (3):395-402.

    [13] Qin F G F,Chen Xiaodong,F(xiàn)arid M M.Growth kinetics of ice films spreading on a subcooled solid surface[J].SeparationandPurificationTechnology,2004,39 (1/2):109-121.

    [14] Song M,Steiff A,Weinspach P-M.Parametric analysis of direct contact evaporation process in a bubble column [J].InternationalJournalofHeatandMassTransfer,1998,41 (12):1749-1758.

    [15] Song M,Steiff A, Weinspach P-M.Direct-contact heat transfer with change of phase:apopulation balance model[J].ChemicalEngineeringScience,1999,54 (17):3861-3871.

    [16] Song M,Steiff A,Weinspach P-M.The analytical solution for a model of direct contact evaporation in spray columns[J].InternationalCommunicationsinHeatandMass Transfer,1996,23 (2):263-272.

    [17] Song M,Steiff A,Weinspach P-M.A very effective new method to solve the population balance equation with particlesize growth[J].ChemicalEngineeringScience,1997,52(20):3493-3498.

    [18] Wang Peng,Chung T S.A conceptual demonstration of freeze desalination-membrane distillation (FD-MD)hybrid desalination process utilizing liquefied natural gas (LNG)cold energy [J].WaterResearch,2012,46 (13):4037-4052.

    [19] Xia Guanghui,Sun Qingxuan,Cao Xu,Wang Jiangfeng,Yu Yizhao,Wang Laisheng.Thermodynamic analysis and optimization of a solar-powered transcritical CO2(carbon dioxide)power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG(liquefied natural gas)[J].Energy,2014,66:643-653.

    [20] Huang Meibin (黃美 斌),Lin Wensheng (林文勝),Gu Anzhong(顧安忠),Huang Jianmin(黃建民).Refrigerant direct-contact seawater desalination utilizing LNG cold energy[J].JournalofChemicalIndustryandEngineering(China)(化工學(xué)報(bào)),2008,59 (S2):204-209.

    猜你喜歡
    上海交通大學(xué)淡化化工
    上海交通大學(xué)
    《化工管理》征稿簡(jiǎn)則
    化工管理(2022年30期)2022-11-15 05:05:10
    《化工管理》征稿簡(jiǎn)則
    化工管理(2022年15期)2022-11-15 04:12:20
    一起化工安全事故的警示
    上海交通大學(xué)參加機(jī)器人比賽
    提升下垂的嘴角 淡化法令紋
    應(yīng)用化工第43卷(1~12期)目次
    《疾風(fēng)圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    海水淡化前途無(wú)量
    上海交通大學(xué)外國(guó)語(yǔ)學(xué)院簡(jiǎn)介
    国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 久久99精品国语久久久| 午夜福利一区二区在线看| 国产无遮挡羞羞视频在线观看| 日日爽夜夜爽网站| 脱女人内裤的视频| 日韩av免费高清视频| 一级,二级,三级黄色视频| 永久免费av网站大全| 777久久人妻少妇嫩草av网站| 国产精品 欧美亚洲| 午夜老司机福利片| 男女边摸边吃奶| 国产亚洲精品久久久久5区| 日韩欧美一区视频在线观看| 亚洲伊人色综图| 午夜日韩欧美国产| 又粗又硬又长又爽又黄的视频| 国产精品一国产av| 美女大奶头黄色视频| 女人久久www免费人成看片| 午夜免费成人在线视频| 最近手机中文字幕大全| 日本av手机在线免费观看| 18禁裸乳无遮挡动漫免费视频| 天天躁夜夜躁狠狠久久av| 啦啦啦 在线观看视频| 精品国产一区二区三区四区第35| 亚洲av综合色区一区| 老司机深夜福利视频在线观看 | 国产一卡二卡三卡精品| 精品人妻1区二区| 亚洲精品成人av观看孕妇| 丁香六月欧美| av天堂久久9| 国产亚洲欧美精品永久| 久9热在线精品视频| 天堂中文最新版在线下载| 国产成人一区二区在线| av在线app专区| 国产日韩欧美视频二区| 欧美日韩av久久| 亚洲国产精品成人久久小说| 老司机影院成人| 手机成人av网站| 国产99久久九九免费精品| 在线观看国产h片| 少妇的丰满在线观看| 麻豆av在线久日| 99国产精品一区二区蜜桃av | 韩国精品一区二区三区| 18禁观看日本| 五月天丁香电影| 亚洲国产最新在线播放| 欧美日韩亚洲国产一区二区在线观看 | 男女边吃奶边做爰视频| www.av在线官网国产| 中文字幕亚洲精品专区| 亚洲欧美激情在线| 2021少妇久久久久久久久久久| 少妇人妻久久综合中文| 久久99一区二区三区| 亚洲精品美女久久av网站| 欧美97在线视频| 国产日韩欧美亚洲二区| 国产精品一二三区在线看| 日日摸夜夜添夜夜爱| 久久久久视频综合| 日韩大码丰满熟妇| 成在线人永久免费视频| 国产av一区二区精品久久| www.自偷自拍.com| 下体分泌物呈黄色| 在线观看免费高清a一片| 一级片'在线观看视频| 亚洲av男天堂| 欧美黄色淫秽网站| 最新在线观看一区二区三区 | 女性生殖器流出的白浆| 久久毛片免费看一区二区三区| 少妇精品久久久久久久| 自线自在国产av| 久久久久久久国产电影| 一级黄色大片毛片| 国产片特级美女逼逼视频| 亚洲欧美清纯卡通| 在线观看免费高清a一片| 一边亲一边摸免费视频| 极品人妻少妇av视频| 亚洲欧美一区二区三区黑人| 久久99精品国语久久久| 一本一本久久a久久精品综合妖精| 日本欧美视频一区| 人人妻,人人澡人人爽秒播 | 国产老妇伦熟女老妇高清| 50天的宝宝边吃奶边哭怎么回事| 午夜久久久在线观看| 人人妻人人澡人人看| 久久性视频一级片| 十八禁人妻一区二区| 久久天躁狠狠躁夜夜2o2o | 脱女人内裤的视频| 久久影院123| 国产亚洲午夜精品一区二区久久| 婷婷色综合大香蕉| 国产精品一国产av| 成人手机av| 免费高清在线观看视频在线观看| 丝袜人妻中文字幕| 欧美精品一区二区免费开放| 91国产中文字幕| 国产精品 国内视频| 国产一区二区三区综合在线观看| 国产精品九九99| videosex国产| 美女高潮到喷水免费观看| 黄色一级大片看看| 熟女av电影| 捣出白浆h1v1| 蜜桃在线观看..| 中文字幕人妻丝袜一区二区| 亚洲国产精品一区三区| 国产成人精品久久二区二区91| 满18在线观看网站| 黑丝袜美女国产一区| 免费女性裸体啪啪无遮挡网站| 国产av精品麻豆| 精品免费久久久久久久清纯 | 精品人妻在线不人妻| 久久狼人影院| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁夜夜躁狠狠躁躁| 久久久久国产精品人妻一区二区| 美女国产高潮福利片在线看| 男人爽女人下面视频在线观看| 国产片特级美女逼逼视频| 亚洲国产精品成人久久小说| 2021少妇久久久久久久久久久| 久久精品国产综合久久久| av电影中文网址| 久久精品国产综合久久久| 大片免费播放器 马上看| 亚洲精品久久午夜乱码| 欧美国产精品va在线观看不卡| 国产精品免费视频内射| 久热爱精品视频在线9| 下体分泌物呈黄色| tube8黄色片| 亚洲av美国av| videosex国产| 免费观看人在逋| 大话2 男鬼变身卡| 国产精品 国内视频| 国产熟女午夜一区二区三区| 国产成人av教育| 一级片'在线观看视频| 中国国产av一级| 欧美日韩国产mv在线观看视频| 亚洲欧美中文字幕日韩二区| 下体分泌物呈黄色| 无限看片的www在线观看| 在现免费观看毛片| 男人爽女人下面视频在线观看| 下体分泌物呈黄色| 国产高清视频在线播放一区 | 亚洲精品国产av成人精品| 中文字幕最新亚洲高清| 黄片播放在线免费| 高清不卡的av网站| 2021少妇久久久久久久久久久| 国产黄色视频一区二区在线观看| 亚洲五月色婷婷综合| 亚洲中文字幕日韩| 老司机靠b影院| 久久久久久久国产电影| tube8黄色片| 99re6热这里在线精品视频| 国产免费现黄频在线看| 五月开心婷婷网| 老司机影院毛片| 狠狠婷婷综合久久久久久88av| cao死你这个sao货| 色精品久久人妻99蜜桃| 亚洲精品在线美女| 欧美成人精品欧美一级黄| 国产欧美日韩一区二区三区在线| av线在线观看网站| 国产淫语在线视频| a级片在线免费高清观看视频| 国产伦理片在线播放av一区| 亚洲,欧美,日韩| 99re6热这里在线精品视频| 国产男女超爽视频在线观看| 国产伦人伦偷精品视频| 电影成人av| 成人手机av| 精品国产乱码久久久久久小说| 日本vs欧美在线观看视频| 精品熟女少妇八av免费久了| av片东京热男人的天堂| 国产精品欧美亚洲77777| 一级毛片女人18水好多 | 久久亚洲国产成人精品v| 欧美xxⅹ黑人| 777米奇影视久久| 久久久久网色| 亚洲午夜精品一区,二区,三区| 亚洲精品第二区| 午夜视频精品福利| av在线app专区| 欧美激情 高清一区二区三区| 波野结衣二区三区在线| 十八禁人妻一区二区| 狂野欧美激情性xxxx| 精品一区二区三区av网在线观看 | 精品一区二区三卡| 成年人免费黄色播放视频| 亚洲天堂av无毛| 日本vs欧美在线观看视频| 久久久久久久久免费视频了| 国产精品久久久久成人av| 免费在线观看影片大全网站 | 精品久久久久久久毛片微露脸 | 欧美精品高潮呻吟av久久| 男女无遮挡免费网站观看| 老汉色av国产亚洲站长工具| 中文字幕另类日韩欧美亚洲嫩草| cao死你这个sao货| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 色视频在线一区二区三区| 国产精品熟女久久久久浪| 精品国产超薄肉色丝袜足j| 91字幕亚洲| 亚洲国产毛片av蜜桃av| 国产一卡二卡三卡精品| 女性生殖器流出的白浆| 又大又爽又粗| 99热国产这里只有精品6| 777米奇影视久久| 中国国产av一级| 老司机深夜福利视频在线观看 | 中文乱码字字幕精品一区二区三区| 蜜桃国产av成人99| 巨乳人妻的诱惑在线观看| 亚洲av日韩精品久久久久久密 | xxx大片免费视频| 一区二区三区四区激情视频| 亚洲午夜精品一区,二区,三区| av视频免费观看在线观看| www.av在线官网国产| 青草久久国产| svipshipincom国产片| 精品高清国产在线一区| 欧美精品亚洲一区二区| 97在线人人人人妻| 少妇被粗大的猛进出69影院| 国产av精品麻豆| 最黄视频免费看| av国产久精品久网站免费入址| 国产亚洲av高清不卡| 国产亚洲一区二区精品| 亚洲欧美色中文字幕在线| 国产一卡二卡三卡精品| 成人亚洲精品一区在线观看| 18在线观看网站| 国产精品人妻久久久影院| 国产成人免费无遮挡视频| 黄网站色视频无遮挡免费观看| 精品人妻1区二区| 久久久久精品人妻al黑| 久久免费观看电影| 成人国语在线视频| 中文字幕高清在线视频| 999精品在线视频| 国产欧美亚洲国产| 老司机午夜十八禁免费视频| 国产高清国产精品国产三级| 手机成人av网站| 国产亚洲av片在线观看秒播厂| 午夜福利,免费看| 国产成人精品久久二区二区91| 久久精品久久久久久噜噜老黄| 国产片内射在线| 国产在视频线精品| 国产精品久久久久久精品古装| 青春草视频在线免费观看| 九草在线视频观看| 天天躁夜夜躁狠狠久久av| 少妇人妻久久综合中文| 久久热在线av| 精品福利永久在线观看| 精品熟女少妇八av免费久了| 国产男女内射视频| 91九色精品人成在线观看| 999精品在线视频| 两个人免费观看高清视频| 亚洲九九香蕉| 日本色播在线视频| 午夜久久久在线观看| 一区二区三区乱码不卡18| 蜜桃国产av成人99| 久久久欧美国产精品| 国产黄色免费在线视频| 亚洲精品国产一区二区精华液| 天天躁日日躁夜夜躁夜夜| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 欧美精品一区二区免费开放| 国产精品一区二区免费欧美 | 久久精品国产综合久久久| 悠悠久久av| 日本黄色日本黄色录像| 青草久久国产| 在线观看国产h片| 亚洲精品成人av观看孕妇| 精品视频人人做人人爽| 久久人妻熟女aⅴ| 首页视频小说图片口味搜索 | 国产成人精品在线电影| 一区二区av电影网| 人人澡人人妻人| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 只有这里有精品99| av网站在线播放免费| 久久精品国产综合久久久| 国产成人欧美| 午夜免费观看性视频| 最近中文字幕2019免费版| 精品久久久久久电影网| 精品卡一卡二卡四卡免费| 美女视频免费永久观看网站| 亚洲人成网站在线观看播放| 欧美亚洲 丝袜 人妻 在线| 精品欧美一区二区三区在线| 婷婷色综合www| 韩国精品一区二区三区| 亚洲视频免费观看视频| 大话2 男鬼变身卡| 一本—道久久a久久精品蜜桃钙片| 免费在线观看视频国产中文字幕亚洲 | 两性夫妻黄色片| 男女国产视频网站| 国产精品国产三级国产专区5o| 宅男免费午夜| 国产一区二区三区av在线| 50天的宝宝边吃奶边哭怎么回事| 91字幕亚洲| 90打野战视频偷拍视频| 久久这里只有精品19| 亚洲国产欧美网| 99久久人妻综合| 人体艺术视频欧美日本| 成人国产av品久久久| 亚洲国产精品国产精品| 性高湖久久久久久久久免费观看| bbb黄色大片| 中文字幕高清在线视频| 老熟女久久久| 中文字幕另类日韩欧美亚洲嫩草| 在线av久久热| 老司机深夜福利视频在线观看 | 少妇粗大呻吟视频| 国产在线视频一区二区| 精品熟女少妇八av免费久了| 亚洲欧美精品综合一区二区三区| kizo精华| 一区在线观看完整版| 午夜日韩欧美国产| 涩涩av久久男人的天堂| 少妇裸体淫交视频免费看高清 | 国产女主播在线喷水免费视频网站| 国产男人的电影天堂91| 精品福利观看| 两个人免费观看高清视频| 免费看十八禁软件| 看免费av毛片| tube8黄色片| 天天躁夜夜躁狠狠久久av| 50天的宝宝边吃奶边哭怎么回事| 十八禁高潮呻吟视频| 欧美xxⅹ黑人| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一区蜜桃| 国产精品 国内视频| 91九色精品人成在线观看| 久久精品aⅴ一区二区三区四区| 制服诱惑二区| 9191精品国产免费久久| 国产又爽黄色视频| 亚洲五月婷婷丁香| 亚洲成人手机| 欧美变态另类bdsm刘玥| 18禁黄网站禁片午夜丰满| 免费在线观看视频国产中文字幕亚洲 | 精品高清国产在线一区| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 满18在线观看网站| 国产精品一区二区在线不卡| 天天躁夜夜躁狠狠躁躁| 日韩一本色道免费dvd| 亚洲av片天天在线观看| 亚洲精品久久成人aⅴ小说| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 女人久久www免费人成看片| 亚洲 国产 在线| 亚洲av美国av| 日本一区二区免费在线视频| 午夜激情av网站| 国产欧美亚洲国产| 最新在线观看一区二区三区 | 97在线人人人人妻| 亚洲黑人精品在线| 9色porny在线观看| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| av国产精品久久久久影院| av视频免费观看在线观看| 女警被强在线播放| 日本欧美国产在线视频| 久久亚洲国产成人精品v| 日韩伦理黄色片| 美女国产高潮福利片在线看| 99re6热这里在线精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 2021少妇久久久久久久久久久| 91麻豆精品激情在线观看国产 | 亚洲精品国产区一区二| 色网站视频免费| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 成在线人永久免费视频| 久久国产亚洲av麻豆专区| 国产成人一区二区在线| 日韩中文字幕视频在线看片| 激情视频va一区二区三区| 久久女婷五月综合色啪小说| √禁漫天堂资源中文www| 老司机靠b影院| 你懂的网址亚洲精品在线观看| 黑人猛操日本美女一级片| 飞空精品影院首页| 高清黄色对白视频在线免费看| 天堂8中文在线网| 搡老岳熟女国产| 国产精品成人在线| 人妻人人澡人人爽人人| 欧美变态另类bdsm刘玥| 亚洲人成电影免费在线| 老司机影院成人| 亚洲精品美女久久av网站| 亚洲成国产人片在线观看| 麻豆乱淫一区二区| 国产精品一区二区在线观看99| 国产男女内射视频| 欧美日韩亚洲高清精品| 国产成人精品久久久久久| 亚洲情色 制服丝袜| 国产午夜精品一二区理论片| 叶爱在线成人免费视频播放| 亚洲av电影在线观看一区二区三区| 午夜精品国产一区二区电影| 大型av网站在线播放| 欧美日韩视频高清一区二区三区二| 精品亚洲成国产av| 国产色视频综合| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| 国产成人啪精品午夜网站| 亚洲欧美色中文字幕在线| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 久久精品人人爽人人爽视色| 多毛熟女@视频| 十八禁高潮呻吟视频| 大香蕉久久成人网| 欧美成人午夜精品| a级毛片在线看网站| 99国产精品一区二区三区| 免费高清在线观看日韩| 久久ye,这里只有精品| 精品亚洲成a人片在线观看| 成年人黄色毛片网站| 女性被躁到高潮视频| 日韩熟女老妇一区二区性免费视频| 熟女少妇亚洲综合色aaa.| 乱人伦中国视频| 亚洲人成电影观看| av电影中文网址| 欧美日本中文国产一区发布| 日韩av免费高清视频| 黑人巨大精品欧美一区二区蜜桃| 最新的欧美精品一区二区| 亚洲自偷自拍图片 自拍| 国产三级黄色录像| 久久影院123| 欧美97在线视频| 极品人妻少妇av视频| 国产无遮挡羞羞视频在线观看| 国产成人精品久久久久久| 色视频在线一区二区三区| 久久国产精品男人的天堂亚洲| 日韩伦理黄色片| 国产视频一区二区在线看| 亚洲七黄色美女视频| 91精品伊人久久大香线蕉| 欧美人与善性xxx| 高清av免费在线| 午夜福利视频在线观看免费| 日本午夜av视频| 精品少妇一区二区三区视频日本电影| 少妇裸体淫交视频免费看高清 | 亚洲免费av在线视频| 免费看av在线观看网站| 亚洲国产欧美一区二区综合| 欧美乱码精品一区二区三区| 91精品三级在线观看| 激情五月婷婷亚洲| 国产又爽黄色视频| 精品久久久久久电影网| 欧美成人精品欧美一级黄| 亚洲人成电影观看| 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 精品少妇内射三级| 国产欧美日韩精品亚洲av| 久久热在线av| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一区蜜桃| 精品国产乱码久久久久久小说| 91精品三级在线观看| 一级片'在线观看视频| 国产亚洲av片在线观看秒播厂| 国产欧美日韩综合在线一区二区| 黄网站色视频无遮挡免费观看| 久久免费观看电影| 免费日韩欧美在线观看| 99精国产麻豆久久婷婷| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区| 中文字幕色久视频| 新久久久久国产一级毛片| 精品国产一区二区久久| 午夜视频精品福利| 制服诱惑二区| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 97精品久久久久久久久久精品| 欧美在线一区亚洲| 中文字幕精品免费在线观看视频| 天天添夜夜摸| 午夜日韩欧美国产| 视频区欧美日本亚洲| 国产av国产精品国产| 一二三四社区在线视频社区8| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免| 伦理电影免费视频| 久久亚洲国产成人精品v| 亚洲情色 制服丝袜| 亚洲成人国产一区在线观看 | 国产日韩欧美在线精品| 欧美黄色淫秽网站| 少妇精品久久久久久久| 精品久久蜜臀av无| 国产日韩欧美在线精品| 啦啦啦在线观看免费高清www| 国产日韩欧美在线精品| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 色综合欧美亚洲国产小说| 国产免费又黄又爽又色| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| 一级片'在线观看视频| 亚洲国产看品久久| 国产精品免费大片| 久久亚洲精品不卡| 伦理电影免费视频| 亚洲av美国av| 国产1区2区3区精品| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 免费观看人在逋| 在线 av 中文字幕| 美女大奶头黄色视频| 一级a爱视频在线免费观看| 中国美女看黄片| 亚洲精品在线美女| 欧美日韩一级在线毛片| 韩国精品一区二区三区| 日本vs欧美在线观看视频| 日本91视频免费播放| 国产男人的电影天堂91| 一区二区日韩欧美中文字幕| 黑人猛操日本美女一级片| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 国产欧美亚洲国产| 亚洲av片天天在线观看| 中文字幕人妻丝袜制服| 男人爽女人下面视频在线观看| a级毛片在线看网站| 国产视频一区二区在线看|