• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Purif i cation and structural analysis of the toxin AP-I from the pathogen of Bambusa pervariabilis×Dendrocalamopsis grandis blight

    2015-06-09 18:06:54?,2??
    Journal of Forestry Research 2015年4期

    ?,2??

    ORIGINAL PAPER

    Purif i cation and structural analysis of the toxin AP-I from the pathogen of Bambusa pervariabilis×Dendrocalamopsis grandis blight

    Shujiang Li1?Tianhui Zhu1,2?Tianmin Qiao1?Shan Han1

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    Bambusapervariabilis×Dendrocalamopsis grandisblight is caused by a toxin from the fungusArthrinium phaeospermum(corda)M.B.Ellis.We used shaking culture in a modif i ed Fries culture medium and methanol extraction to isolate the toxin.The optimal developing solvent mixture(methanol:ethyl acetate:H2O at 7:1.5:3)was selected using thin layer chromatography and used as the eluent for toxin purif i cation by silica gel column chromatography.Two toxic fractions were identifi ed in the bioassay.A f l axen oil substance,AP-I,showed higher toxicity than a toxic white powder,AP-II.The more toxic AP-I was determined to be dibutyl phthalate (C16H22O4,molecular weight of 278)by mass spectrometry,nuclear magnetic resonance,and infrared spectrophotometry.Dibutyl phthalate might contribute to the pathogenesis of bamboo blight.

    Arthrinium phaeospermum?Bambusa pervariabilis×Dendrocalamopsis grandis?Infrared spectrophotometry?Mass spectrometry?Nuclear magnetic resonance?Toxin

    Introduction

    Bambusa pervariabilis×Dendrocalamopsis grandis,a major species native to China,is an important component of the ecological barrier to soil erosion in the Changjiang River basin.This hybrid bamboo is prevalent in warm and humid bamboo-growing areas all over China,and has signif i cantly contributed to the building of this ecological barrier.Arthrinium phaeospermum(corda)M.B.Ellis, which is a novel pathogenic fungus that causes hybrid bamboo wilting and death,was recently discovered in regions of forest reclamation(from farmland)in the Middle and Upper Reaches of the Changjiang River(Zhu et al. 2009).This fungus can also infect other bamboo species, includingPhyllostachys heterocycla(Xia et al.1995)andPhyllostachys prominens(Ma et al.2003).The occurrence and spread of this bamboo blight has been closely monitored(Zhu et al.2009),but very few studies have been conducted on the pathogenic mechanism ofA. phaeospermum.

    Phytotoxins are major pathogenic factors in the infection of host plants.Plant pathogens produce many toxic compounds that can overcome disease resistance of many host species or multiple resistance mechanisms of one host (Dong 1995;Zhang 1996).A total of 21 species of pathogenic fungi from nine genera are known to produce host-specif i c toxins(HSTs),whereas at least 60 species are known to produce nonhost-specif i city toxins(NHSTs) (Andrie et al.2008;Amnuaykanjanasin and Daub 2009; Meca et al.2009;Kim et al.2010).With the development of new extraction and purif i cation technologies,manyfungal toxins have been isolated and characterised(Bok et al.1999).Previous studies focused mainly on polysaccharides(including glycoproteins)(Abang et al.2009), hemiterpenes(Rattan 2010),alkaloids(Fumiharu et al. 2006;Lorenz et al.2009;Uhlig et al.2010)and reductones (Raoudha et al.2006;Xu et al.2010),but the toxicity ofA. phaeospermumcompounds has only been reported in human studies(Vijayakumar et al.1996;Bloor 2008).We reported on the protein AP-toxin produced byA. phaeospermum,which played an important role in mediating the phytotoxic activities ofA.phaeospermum(Li et al.2013).But whether other type of phytotoxin produced from this fungus contribute to bamboo wilting disease,is unknown.

    Dibutyl phthalate(DBP)is a common phthalate acid ester(PAE)used in many different industrial processes.As of this writing,most toxicology studies on DBP have focused on its carcinogenic and estrogenic effects(Pedersen and Larsen 1996)on aquatic animals(Patyna and Cooper 2000)and hydrophytes(Staples et al.1985), bioaccumulation in the food chain(Peijnenburg and Struijs 2006),degradation methods(Yuan et al.2002),acute toxicity to mature marine f i sh species(Lin et al.2003)and reproductive toxicity to generative cells of mature organisms(Adams et al.1995).Natural DBP has also been isolated fromMimusops elengi(Ruikar et al.2010),Streptomyces(Lee 2000;Roy et al.2006)andPenicillium bilaii(Savard et al.1994),and can mediate the toxicity and antimicrobial activity of these species.Whether DBP can be produced in toxic quantities byA.phaeospermumhas not been established.

    Our primary objective was to isolate and purify the nonprotein toxic secondary metabolite fromA.phaeospermumby column chromatography,thin layer chromatography (TLC)and high-performance liquid chromatography (HPLC).Once the toxin was conf i rmed,our second objective was to determine the molecular structure by mass spectrometry(MS),nuclear magnetic resonance(NMR) and infrared spectroscopy(IR).

    Materials and methods

    Fungal cultures and plant samples

    The pathogenic fungusA.phaeospermumwas provided by the Key Laboratory of Forest Protection of Sichuan Province and isolated from diseasedB.pervariabilis×D. grandis.The fungus was revived from storage at-20°C by pipetting a thawed suspension onto potato dextrose agar (PDA)plates and grown at 25°C for 5 days.Hybrid bamboo(1-year-old)samples were collected from the bamboo-growing areas of reclaimed farmland(elevation 393–1431 m,mean annual temperature of 16°C and annual precipitation of 1400–1700 mm)in Sichuan,China.

    Preparation of crude toxin

    Mycelial discs(5 mm)were grown in bottles containing 100 mL of modif i ed Fries nutrient solution for liquid culture(Pestka et al.1985)(containing 20 g/L dextrose,5 g/L tartaric acid ammonium,1 g/L NH4NO3,1 g/L KH2PO4, 0.5 g/L MgSO4?7H20,0.1 g/L NaCl,0.1 g/L CaC12?2H2O, and 1 g/L yeast extract).Sterile distilled water was cultured as a blank control and worked through all the steps below to eliminate the effects of the test apparatus and basic isolation procedure.After 15 days of growth in a rotary shaker(140 rpm)in the dark at 26°C,the culture was f i ltered over double gauze and the supernatant was centrifuged at 6000 rpm for 10 min.The clarif i ed supernatant was then mixed with an equal volume of methanol. The mixture was centrifuged at 6000 rpm for 10 min and condensed to 5 mL by vacuum evaporation at 40°C.This process was repeated three times to obtain three batches of crude toxin sample.Extracts were stored at-20°C.

    Determination of the developing solvent

    According to the permittivity and polarity of different solvents,more than 100 different solvent systems were tested by varying the volume ratio.The crude toxin and blank control were spotted on silica gel plates (5 cm×10 cm)with an equal volume of solvent and the distance travelled by the solvent system was determined. After the developing solvents were volatilised,the coloration spots were examined with iodine vapour.The optimal developing solvent was determined by the maximum Rf value(distance travelled by the compound/distance travelled by the solvent front).

    Purif i cation of the toxin and assay of activity

    The crude toxin and blank control were respectively loaded onto silica gel for column chromatography(100–200 mesh) with the selected eluent and the f l ow rate was maintained constant at 2 mL/min.Under these conditions,the volume of each pure compound collected was less than 1 mL after drying by distillation.Samples were arranged in order of elution time until the silica gel column turned white and the eluent contained no material after drying.The compounds were dissolved in H2O and combined with the same samples from the next trial of silica gel column chromatography.The combined products from three purif i cation trials were stored at-20°C.

    The impregnation method(Ho et al.1996)was used to test the toxicity of the purif i ed products against hybridbamboo.The clean shoots were cultured in solution containing 1 mL of 100 μg/mL of each purif i ed compound in centrifuge tubes.The symptoms(wilting and brown discoloration)of the branches and leaves were surveyed after culturing at 22°C for 24 h(12 h light and 12 h dark).Each treatment was repeated three times.

    Assay of the purity of the toxin

    TLC and HPLC were used to test the purity.In TLC,after developing on the TLC,the purif i ed compound was stained with phosphomolybdic acid hydrate and iodine vapour.For HPLC,the purif i ed compound was analysed using an 1101LC system(Agilent,USA)with automatic sampler (G1316A)and variable wavelength detector(G1314A)set to absorbance at 276 nm.The HPLC column was a VPODS C18 5 μm reversed-phase capillary chromatography column(4.6 mm×150 mm).The eluent was a mixture of A and B phases(A phase:65%acetonitrile;B phase:35% H2O)at a f l ow rate of 1.0 mL/min with a linearity of 10 μL at 30°C.The DBP standard was obtained from Beijing Beihua Hengxin Technology Co.Ltd.(China).

    Identif i cation of the toxin structure

    For mass spectrometry(MS)analysis,the selected sample (AP-1)was scanned using a MS-QP2010 Plus MS(Shimadzu,Japan)with electron impact ionisation(EI).The voltage of the ionisation chamber was 70 eV and the temperature was 250°C.Both1H and13C nuclear magnetic resonance(NMR),with distortionless enhancement by polarisation transfer(DEPT)and heteronuclear multiple quantum coherence(HMQC)NMR(Unity Inova, 400 MHz;Varian,USA),were obtained for AP-1 in the solvent CDCl3.The internal standard was(CH3)4Si.For infrared(IR)spectroscopic analysis,the IR absorption spectrum was analysed using a 170 SX IR spectrophotometer(Nicolet,USA)with disc-formed samples of KBr.

    Bioassay

    Puncture assay(Cuq et al.1993)was used to test the symptoms induced byA.phaeospermum(5×106CFU/ mL),the purif i ed toxin(100 μg/mL),or standard dibutyl phthalate(100 μg/mL)to bamboo joints in the f i eld. Control plants were treated with an equal volume(1 mL) of the following:1)sterile distilled water and 2)sterile distilled water cultured under the same condition as toxin. Each treatment protocol was repeated on 50 plants.After 5, 10,15,and 20 days,the numbers and areas of brown rhombic spots on the stems were recorded.

    The spot area was calculated using the following formula:S(cm2)=(a×b)/2(S:rhombic spot area;a,b(cm):two diagonals).All data were subjected to one-way ANOVA to determine the signif i cance of individual differences atp<0.05.Signif i cant differences between means were computed using the LSD post hoc test.All statistical analyses were conducted using the SPSS commercial statistical package(SPSS,Version 13.0 for Windows,SPSS Inc.,Chicago,USA).

    Results

    Optimal developing solvent

    Only four solvent combinations yielded at least f i ve clear spots on the TLC plates.Among these combinations,we determined that methanol:ethyl acetate:H2O at 7:1.5:3 was the optimal ratio as determined by the Rf values (Table 1).

    Purif i ed toxins and their activity

    From the crude toxin cultured from mycelia,we collected 51 separate volumes that attained a maximum absorption at 276 nm during the entire elution time(4 days).The optical density of compound No.11 was the highest,whereas Nos. 5,9 and 20 were in the mid-range.No substance was found above sample No.38(Fig.1).

    Compound No.11 was obtained as a f l axen oily transparent liquid(A1)and showed one spot on TLC(Fig.2). This sample also had the highest bioactivity(Table 2)and turned the stems of hybrid bamboo to brown and caused the leaves to wilt.The sensitivity of leaves was higher than that of branches(Table 2).After treatment with compound A1for 24 h,the leaves exhibited chlorisis,wilting,and putrescence.By contrast,treatment with another toxin (compound A2,a white powder isolated from sample No. 20)did not evoke this response until 72 h after application. After 5 days,wilting was observed(Fig.3),and compound No.11 yielded the most serious wilting.Based on these results,compound No.11 was subjected to structural analysis.

    Table 1 Optimisation of the developing solvent

    Fig.1 Compounds isolated from A.phaeospermum by ultraviolet spectrophotometry

    Fig.2 Pure compound A1 collected by TLC.A1:a f l axen oily transparent liquid developed on the thin layer plate;chromogenic reagent: phosphomolybdic acid hydrate and iodine vapour

    HPLC analysis of A1 showed that this compound had an absorption peak at 12.914 min(Fig.4a)and was designated as AP-I according to the naming conventions for plant pathogenic toxins.Compared with the HPLC results of standard substances(Fig.4b),AP-I was presumed to be dibutyl phthalate.

    Structure of the toxin AP-I

    MS(Fig.5)revealed the peaks of the cracking ions of carboxylate carbonyl carbon at m/z 43,57,and 71,and phthalate base at m/z 149,which was considered for the characterisation of phthalate ester with lateral chains larger than two carbons.Considering an[M+H]+ion peak at 279,the molecular weight of AP-I was inferred to be 278.

    NMR analysis(Table 3)indicated the presence of two methyl groups,six methylene units(two O-bearing methylenes),four sp2aromatic carbons,two sp2quaternarycarbons and two carbonyl carbons.The1H NMR spectrum showed a characteristic AA’BB’system at δ7.71(2H,dd,J=9.12,2.11 Hz)and 7.26(2H,dd,J=8.78,2.63 Hz), as well as13C NMR data at δ132.47(s),128.79(d)and 130.86(d),which indicate that the compound had a diortho-substituted aromatic ring.

    Table 2 Pathogenic activity of compounds isolated by column chromatography

    Fig.3 Symptoms of hybrid bamboo infected by toxin. Control 1 sterile water;control 2 sterile Fries solution;bottle 5, 9,11 and 20:the compounds isolated from A.phaeospermum

    IR spectrum showed a–C–(CH2)2–CH3group (2860.09–2959.55 cm-1indicatedνCH,1380.59 and 1463.40 cm-1indicated δCH3and δCH2),an aromatic system(3070.53,1600.09,and 742.78 cm-1),and an ester moiety(1731.80 and 1271.03 cm-1),which indicate carbonyl and phenyl functional groups.These data suggestthat compound AP-I was dibutyl phthalate.The structural formula is illustrated in Fig.6.

    Fig.4 HPLC on VP-ODS C18 5 μm reversed-phase capillary chromatography column(4.6 mm×150 mm).a HPLC prof i les of compound A1;the solid bar indicates the fraction containing toxicity at 12.914.b HPLC prof i les of DBP standard;the solid bar indicates the fraction containing toxicity at 12.822

    Fig.5 MS spectrum compound A1

    Table 3 NMR data of compound AP-I

    Activity of the toxin AP-I

    The symptoms induced by toxin AP-I were compared with those induced byA.phaeospermumand dibutyl phthalate in naturally growing bamboo(50 plants each).Brown rhombic spots appeared on the stems of all 150 plants treated. Moreover,the spot areas of AP-I-treated plants were not signif i cantly different from those produced by DBP throughout the observation period.By contrast,AP-I-induced spots were larger than those produced byA. phaeospermumtreatment before day 10,but similar after day 15(Table 4).This difference in response time may ref l ect the slower action of the live pathogen compared with the purif i ed toxic metabolite.With respect to the shape,area, and colour of these disease spots,the results suggest that the toxin AP-I was the main pathogenic factor ofA. phaeospermum,and it was verif i ed to be dibutyl phthalate.

    Fig.6 Structure of compound A1.The numbers are the order of carbon atoms

    Discussion

    Many studies have reported on the pathogenic toxins produced by fungi(Ueno et al.1973;Brain and Harold 1994; Shizawa et al.1995;Ostry and Anderson 2009).However, the toxins from pathogenicA.phaeospermumhave not been identif i ed.Bloor(2008)demonstrated thatA. phaeospermumcan produce arthrinic acid while infecting humans,which indicated that the toxic substance is a polyhydroxy acid(PHA).However,we found that this fungus produced a novel ester phytotoxic compound, dibutyl phthalate.

    TLC and HPLC analyses showed two active toxic compounds,namely,AP-I(a f l axen oil)and AP-II(a whitepowder),with AP-II being the less toxic compound.Thus, compound AP-I was considered to be the pathogenic factor that caused the typical lesions on hybrid bamboos.Moreover,a previous study conf i rmed that dibutyl phthalate can be produced byMicromonosporasp.on a halophyte(Shi et al.2005),Streptomyces albidof l avus(Roy et al.2006),Cryphonectria parasitica(Han and Zhu 2009)andEnterobacter sp.(Fang et al.2010).Further tests by MS,NMR, and IR spectroscopy indicated that compound AP-I was dibutyl phthalate(C16H22O4,molecular weight=278).In addition,the bioassay reconf i rmed that AP-I was the pathogenic factor dibutyl phthalate.

    Table 4 Rhombic spot areas of different treatments on hybrid bamboo stems

    In the process of purif i cation,bioactive substances produced in low amounts can be easily lost.Many of these rare compounds,or their combinations,can still cause plant damage(Zhu et al.2005).However,once these multiple compounds are separated from each other,their bioactivities become weak or are lost completely and un-detected using a bioassay(Zhang et al.2003;Zhu et al.2003). Similarly,our results show that the activity and action sites of different compounds were distinct,suggesting that plant diseases could be caused by different compounds acting separately or synergistically.Moreover,the purif i ed toxin produced a much more rapid pathological response than the fungal infection,which was probably due to the higher concentration of toxin in the bioassay solution than the concentration of toxin released quickly from the natural pathogen.

    In conclusion,highly toxic dibutyl phthalate was isolated fromA.phaeospermum.This study is the f i rst report on the production of non-protein toxin byA.phaeospermum,which also causes bamboo blight.Further preparation and isolation are required to assess the toxic activity of this and other compounds,alone and in combination.Furthermore,the natural concentration and action site should be studied.These results provide the foundation for studies on the pathogenic mechanisms ofA.phaeospermumand may lead to methods for inactivating this toxin and rescuing ecologically valuable bamboo hybrids.

    AcknowledgmentsThis research was supported by the National Natural Science Foundation of China(31070578)and the National Natural Science and Technology Resources Sharing Platform of China(2005DKA21207-13).

    Abang MM,Abraham WR,Asiedu R,Hoffmann P,Wolf G,Winter S (2009)Secondary metabolite pro fi le and phytotoxic activity of genetically distinct forms ofColletotrichum gloeosporioidesfrom yam(Dioscoreaspp.).Mycol Res 113:130–140

    Adams WJ,Biddinger GR,Robillard KA(1995)A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms.Environ Toxicol Chem 14:1569–1574

    Amnuaykanjanasin A,Daub ME(2009)The ABC transporter ATR1 is necessary for ef fl ux of the toxin cercosporin in the fungusCercospora nicotianae.Fungal Genet Biol 46:146–158

    Andrie RM,Schoch CL,Hedges R,Spatafora JW,Ciuffetti LM (2008)Homologs ofToxB,a host-selective toxin gene fromPyrenophora tritici-repentis,are present in the genome of sisterspeciesPyrenophora bromiand other members of the Ascomycota.Fungal Genet Biol 45:363–377

    Bloor S(2008)Arthrinic acid,a novel antifungal polyhydroxyacid fromArthrinium phaeospermum.J Antibiot 61:515–517

    Bok JW,Lermer L,Chilton J(1999)Antitumor sterols from the mycelia ofCordyceps sinensis.Phytochemistry 51:891–898

    Brain LB,Harold SG(1994)Characterization of sugarcane response toBipolaris sacchari:inoculations and host-speci fi c HS-toxin. Phytopathology 84:672–676

    Cuq F,Henmann-Gorline S,Klaebe A,Rossignol M,Petitprez M (1993)Monocerin inExserohilum turcicumisolates from maize and a study of its phytotoxity.Phytochemistry 34:1265–1270

    Dong HS(1995)Induced resistance against diseases in plants principle and practice.Science Press,Beijing,pp 62–66

    Fang CR,Yao J,Zheng YG,Jiang CJ,Hu LF,Wu YY,Shen DS (2010)Dibutyl phthalate degradation byEnterobactersp.T5 isolated from municipal solid waste in landf i ll bioreactor.Int Biodeterior Biodegrad 64:442–446

    Fumiharu H,Hiroyasu N,Hideo H(2006)Purif i cation and structure determination of glucosides of capsaicin and dihydrocapsaicin from variousCapsicumfruits.J Agric Food Chem 54:5948–5953

    Han S,Zhu TH(2009)Isolation,purif i cation and structure of Cp-I Toxin fromCryphonectria parasitica.Mycosystema 28:535–540

    Ho SH,Koh L,Ma Y,Huang Y,Sim KY(1996)The oil of garlic,Allium sativumL.(Amaryllidaceae),as a potential grain protectant againstTribolium castaneum(Herbst)andSitophilus zeamaisMotsch.Postharvest Biol Technol 9:41–48

    Kim TG,Kim MY,Yang MS(2010)Cholera toxin B subunit-domain III of dengue virus envelope glycoprotein E fusion protein production in transgenic plants.Protein Expr Purif 74:236–241

    Lee DS(2000)Dibutyl phthalate,a glucosidase inhibitor fromStreptomyces melanosporofaciens.J Biosci Bioeng 89:271–273

    Li SJ,Zhu TH,Zhu HMY,Liang M,Qiao TM,Han S,Che GN(2013) Purif i cation of protein AP-toxin fromArthrinium phaeospermumcausing blight inBambusa pervariabilis×Dendrocalamopsis grandisand its metabolic effects on four bamboo varieties. Phytopathology 103:135–145

    Lin Z,Ikonomou MG,Jing H(2003)Determination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inlet.Environ Sci Technol 37:2100–2108

    Lorenz N,Haarmann T,Pazˇoutova′S,Jung M,Tudzynski P(2009) The ergot alkaloid gene cluster:functional analyses and evolutionary aspects.Phytochemistry 70:1822–1832

    Ma GL,Hu GL,Yu CZ,Wu JL,Xu BC(2003)Phyllostachys prominensplum shoot wilt pathogenic fungoid and it s biological characteristics.J Zhejiang For Coll 20:44–48

    Meca G,Sospedra I,Soriano JM,Ritieni A,Valero MA,Man?es J (2009)Isolation,purif i cation and antibacterial effects of fusaproliferin produced byFusarium subglutinansin submerged culture. Food Chem Toxicol 47:2539–2543

    Ostry ME,Anderson NA(2009)Genetics and ecology of theEntoleuca mammata–Populuspathosystem:b Implications for aspen improvement and management.For Ecol Manag 257:390–400

    Patyna P,Cooper KR(2000)Multigeneration reproductive effects of three phthalate esters in Japanese medaka(Oryzias latipes).Mar Environ Res 50:194

    Pedersen BF,Larsen R(1996)Identif i cation of agricultural crops in Denmark by satellite Imagery.In:Proceedings,NJF seminar, report of the Finnish Geodetic Institute.Finnish Agricultural Research Centre,Jokoinen,vol 96,pp 4–8

    Peijnenburg W,Struijs J(2006)Occurrence of phthalate esters in the environment of the Netherlands.Ecotoxicol Environ Safe 63:204–215

    Pestka JJ,Bahrawy AE,Hart LP(1985)Deoxynivalenol and 15-monoacetyl deoxynivalenol production byFusarium graminearumR6576 in liquid media.Mycopathologia 91:23–28

    Raoudha BAM,Samiha S,Lilia FBF(2006)Purif i cation and structure determination of four bioactive molecules from a newly isolatedStreptomycessp.TN97 strain.Process Biochem 41:1506–1513

    Rattan RS(2010)Mechanism of action of insecticidal secondary metabolites of plant origin.Crop Prot 29:913–920

    Roy RN,Laskar S,Sen SK(2006)Dibutyl phthalate,the bioactive compound produced byStreptomyces albidof l avus321.2.Microbiol Res 161:121–126

    Ruikar AD,Gadkari TV,Phalgune UD,Puranik VG,Deshpande NR (2010)Dibutyl phthalate,a secondary metabolite fromMimusops elengi.Chem Nat Compd 46:955–956

    Savard ME,Miller JD,Blais LA,Seifert KA,Samson RA(1994) Secondary metabolites ofPenicillium bilaiistrain PB-50. Mycopathologia 127:19–27

    Shi Y,Tian L,Pei YH(2005)The chemical constituents from the mycelia of marine fungusRhizopussp.Chin J Med Chem 15:221–223

    Shizawa H,Takahashi M,Takaatsu T(1995)Trachyspic acid,a new metabolite produced byTalaromyces trachyspermusthat inhibits tumourcell heparanase.J Antibiot 48:357–363

    Staples CA,Wenrner AF,Hoogheem TJ(1985)Assessment of priority poiiutant concentrations in the United States using STORET database.Environ Toxicol Chem 4:131–142

    Ueno Y,Sato N,Ishii K(1973)Biological and chemical detection of trichothecene mycotoxins ofFusariumspecies.Apply Environ Microbiol 25:699–704

    Uhlig S,Petersen D,Role`n E,Jacobsen WE,Vra¨lstad T(2010) Ergosedmine,a new peptide ergot alkaloid(ergopeptine)from the ergot fungus,Claviceps purpureaparasitizingCalamagrostis arundinacea.Phytochem Lett 167:1–7

    Vijayakumar EK,Roy K,Chatterjee S(1996)Arthrichitin.A new cell wall active metabolite fromArthrinium phaeospermum.J Org Chem 61:6591–6593

    Xia LM,Zhang SX,Huang JH(1995)Studies onArthrinium phaeospermumcausing moso bamboo foot rot.J Nanjing For Univ 16:23–28

    Xu LS,Jia JG,Lv J,Liang XF,Han DJ,Huang LL,Kang ZS(2010) Characterization of the expression prof i le of a wheat acireductone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses.Plant Physiol Biochem 48:461–468

    Yuan SY,Liu C,Liao CS(2002)Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49:1295–1299

    Zhang YS(1996)Plant pathology and pathophysiology.Jiangsu Technology Press,Nanjing,p 56

    Zhang LH,Liu YH,Dong JG(2003)Isolation and purif i cation of specif i c toxin factions produced byExserohdum tareicum.Acta Phytopathol Sin 33:67–71

    Zhu TH,Luo MJ,Ye HZ(2003)Isolation and purif i cation of Pftoxin fromPestalotia funerea.Acta Phytopathol Sin 33: 541–545

    Zhu TH,Ye HZ,Luo MJ(2005)The chemical composition of Pftoxin fromPestalotia funerea.Struct Pathog Mater I Mycosystema 24:112–115

    Zhu TH,Huang ZC,Gao QZ,Li FL,Luo LJ,Li XD(2009)Pathogen and occurrence regularity ofBambusa ervariabilis×Dendrocalamopsis daiiblight.For Pest Dis 28:10–12

    19 March 2013/Accepted:8 January 2014/Published online:5 August 2015

    Project founding:This research was supported by the National Natural Science Foundation of China(31070578)and the National Natural Science and Technology Resources Sharing Platform of China(2005DKA21207-13).

    The online version is available at http://www.springerlink.com

    Corresponding editor:Chai Ruihai

    ?Tianhui Zhu

    zhuth1227@126.com

    1College of Forestry,Sichuan Agricultural University, Chengdu 611130,Sichuan,People’s Republic of China2Key Laboratory of Forest Protection of Sichuan Province, Sichuan Agricultural University,Chengdu 611130,Sichuan, People’s Republic of China

    日韩大码丰满熟妇| 波多野结衣巨乳人妻| 成年免费大片在线观看| www.www免费av| 亚洲性夜色夜夜综合| 波多野结衣av一区二区av| 欧美精品亚洲一区二区| 韩国av一区二区三区四区| 成人亚洲精品av一区二区| 欧美一级毛片孕妇| 99在线视频只有这里精品首页| 丝袜人妻中文字幕| 国内毛片毛片毛片毛片毛片| 久久香蕉国产精品| 宅男免费午夜| 亚洲第一av免费看| 日韩精品中文字幕看吧| 成人欧美大片| xxx96com| 97超级碰碰碰精品色视频在线观看| 久久久久国内视频| а√天堂www在线а√下载| 久久精品影院6| 日本五十路高清| 国产黄片美女视频| 午夜两性在线视频| 黄网站色视频无遮挡免费观看| 日韩欧美 国产精品| 每晚都被弄得嗷嗷叫到高潮| 香蕉久久夜色| 亚洲精品av麻豆狂野| 人妻久久中文字幕网| 桃色一区二区三区在线观看| 国产欧美日韩一区二区精品| 日韩av在线大香蕉| 日韩三级视频一区二区三区| 丁香欧美五月| 精品人妻1区二区| 97人妻精品一区二区三区麻豆 | 一边摸一边做爽爽视频免费| www日本在线高清视频| 精品第一国产精品| 亚洲免费av在线视频| 欧美乱妇无乱码| 免费女性裸体啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 国产在线观看jvid| 久久国产精品影院| 91九色精品人成在线观看| 亚洲国产精品久久男人天堂| 国产麻豆成人av免费视频| 男女视频在线观看网站免费 | 国产精品久久久av美女十八| 久久精品91蜜桃| 老司机深夜福利视频在线观看| 国产精品一区二区免费欧美| 精品午夜福利视频在线观看一区| 欧美日韩一级在线毛片| 日韩大码丰满熟妇| 亚洲av第一区精品v没综合| www.999成人在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 伦理电影免费视频| 亚洲免费av在线视频| 国产高清有码在线观看视频 | 手机成人av网站| 久久久久免费精品人妻一区二区 | 麻豆久久精品国产亚洲av| 日韩中文字幕欧美一区二区| 曰老女人黄片| 国产精品乱码一区二三区的特点| 久久久久免费精品人妻一区二区 | 亚洲午夜精品一区,二区,三区| 久久久久免费精品人妻一区二区 | 国产一级毛片七仙女欲春2 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人国产一区在线观看| av天堂在线播放| 午夜福利在线在线| 神马国产精品三级电影在线观看 | 欧美三级亚洲精品| 国产精品亚洲一级av第二区| 777久久人妻少妇嫩草av网站| 婷婷亚洲欧美| 亚洲va日本ⅴa欧美va伊人久久| 香蕉久久夜色| 男男h啪啪无遮挡| av电影中文网址| 国产亚洲精品一区二区www| 色婷婷久久久亚洲欧美| 欧美日韩黄片免| 此物有八面人人有两片| 免费看a级黄色片| 亚洲三区欧美一区| 搞女人的毛片| 国产精品一区二区精品视频观看| 9191精品国产免费久久| 人妻丰满熟妇av一区二区三区| 亚洲国产精品久久男人天堂| 免费看日本二区| 国产成人欧美在线观看| 亚洲成国产人片在线观看| 精品欧美一区二区三区在线| 日韩一卡2卡3卡4卡2021年| x7x7x7水蜜桃| 午夜成年电影在线免费观看| 99热6这里只有精品| 中文字幕人妻熟女乱码| 两性夫妻黄色片| 久久精品91无色码中文字幕| 色播亚洲综合网| 在线观看日韩欧美| 精品无人区乱码1区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人影院久久av| 免费人成视频x8x8入口观看| 性色av乱码一区二区三区2| 琪琪午夜伦伦电影理论片6080| 久久久久久久久久黄片| 18禁国产床啪视频网站| 宅男免费午夜| 黄片小视频在线播放| 国产精品久久久人人做人人爽| 午夜福利一区二区在线看| 1024香蕉在线观看| 国产91精品成人一区二区三区| 天堂√8在线中文| 国产一区二区三区在线臀色熟女| 欧美激情高清一区二区三区| 最近最新中文字幕大全免费视频| 亚洲aⅴ乱码一区二区在线播放 | 久久天堂一区二区三区四区| www.999成人在线观看| 日本精品一区二区三区蜜桃| 日韩视频一区二区在线观看| 黄片大片在线免费观看| 免费在线观看黄色视频的| 在线观看免费日韩欧美大片| 日韩大码丰满熟妇| 99精品久久久久人妻精品| 国产av又大| 婷婷丁香在线五月| 国产激情久久老熟女| 黑人欧美特级aaaaaa片| 亚洲国产精品久久男人天堂| 亚洲男人的天堂狠狠| 欧美久久黑人一区二区| 精品第一国产精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲av五月六月丁香网| 麻豆成人av在线观看| 欧美三级亚洲精品| 精品电影一区二区在线| av中文乱码字幕在线| www日本黄色视频网| 精品无人区乱码1区二区| 日本免费a在线| 亚洲国产欧美一区二区综合| av视频在线观看入口| 欧美激情高清一区二区三区| 亚洲欧美一区二区三区黑人| 成人午夜高清在线视频 | 制服人妻中文乱码| 黑人欧美特级aaaaaa片| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 国产熟女xx| 757午夜福利合集在线观看| 欧美精品亚洲一区二区| 亚洲中文字幕日韩| 999久久久国产精品视频| 精品国产一区二区三区四区第35| 女生性感内裤真人,穿戴方法视频| 日韩欧美一区二区三区在线观看| 亚洲成av片中文字幕在线观看| 1024香蕉在线观看| 哪里可以看免费的av片| 视频区欧美日本亚洲| 久久亚洲真实| 丝袜人妻中文字幕| 在线观看日韩欧美| 国产日本99.免费观看| svipshipincom国产片| 日本三级黄在线观看| 两个人看的免费小视频| 日本一本二区三区精品| 日本熟妇午夜| 手机成人av网站| 亚洲专区中文字幕在线| 日韩欧美 国产精品| 成人av一区二区三区在线看| 亚洲av成人不卡在线观看播放网| 中文字幕人成人乱码亚洲影| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品成人综合色| www.www免费av| aaaaa片日本免费| 国内久久婷婷六月综合欲色啪| 欧美一级a爱片免费观看看 | 熟女少妇亚洲综合色aaa.| 亚洲一区高清亚洲精品| 美女扒开内裤让男人捅视频| 亚洲在线自拍视频| 国产激情偷乱视频一区二区| 一级毛片高清免费大全| 超碰成人久久| 在线观看66精品国产| 18禁观看日本| 婷婷六月久久综合丁香| 久久亚洲精品不卡| 国产一卡二卡三卡精品| 久久中文字幕一级| 三级毛片av免费| 国产人伦9x9x在线观看| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| 久久久久久九九精品二区国产 | 亚洲专区中文字幕在线| 97碰自拍视频| 88av欧美| 性色av乱码一区二区三区2| 亚洲色图 男人天堂 中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人免费av一区二区三区| xxx96com| av电影中文网址| 每晚都被弄得嗷嗷叫到高潮| 在线观看一区二区三区| 欧美性猛交黑人性爽| 丝袜人妻中文字幕| 欧美丝袜亚洲另类 | 国产成人av激情在线播放| 中文资源天堂在线| 麻豆成人av在线观看| 一进一出抽搐gif免费好疼| 亚洲第一av免费看| 99精品欧美一区二区三区四区| 日韩欧美免费精品| 最近在线观看免费完整版| 免费看日本二区| 午夜免费鲁丝| 日本黄色视频三级网站网址| 国内少妇人妻偷人精品xxx网站 | 国产欧美日韩一区二区精品| 在线看三级毛片| 中文字幕最新亚洲高清| 一级毛片高清免费大全| 午夜激情av网站| 午夜福利高清视频| av中文乱码字幕在线| 久热这里只有精品99| 国产精品日韩av在线免费观看| 亚洲国产精品成人综合色| 国产成人av教育| 亚洲天堂国产精品一区在线| 91九色精品人成在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合久久99| 欧美一级a爱片免费观看看 | 在线国产一区二区在线| 麻豆久久精品国产亚洲av| 99re在线观看精品视频| 91成年电影在线观看| 在线观看日韩欧美| 久久人妻av系列| 欧美不卡视频在线免费观看 | 人人妻,人人澡人人爽秒播| 亚洲激情在线av| 欧美在线一区亚洲| 亚洲成国产人片在线观看| 一级毛片高清免费大全| 国内少妇人妻偷人精品xxx网站 | 精品久久久久久成人av| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 一a级毛片在线观看| 91成年电影在线观看| 午夜精品在线福利| 狂野欧美激情性xxxx| 国产激情欧美一区二区| 一本大道久久a久久精品| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 国产区一区二久久| 成人永久免费在线观看视频| 亚洲精品在线观看二区| 一二三四社区在线视频社区8| 亚洲国产欧美一区二区综合| 午夜福利成人在线免费观看| 国产精品亚洲美女久久久| 欧美又色又爽又黄视频| videosex国产| 在线观看免费午夜福利视频| 啦啦啦观看免费观看视频高清| 一区二区三区高清视频在线| 天堂√8在线中文| 日本一区二区免费在线视频| 中文字幕高清在线视频| 欧美黑人欧美精品刺激| 亚洲最大成人中文| 999精品在线视频| 久久中文看片网| 99久久无色码亚洲精品果冻| 久久草成人影院| 9191精品国产免费久久| 一进一出抽搐gif免费好疼| 国产一卡二卡三卡精品| 欧美在线一区亚洲| 一进一出抽搐动态| 亚洲在线自拍视频| 国产精品免费视频内射| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 日韩国内少妇激情av| 手机成人av网站| 久久天堂一区二区三区四区| 欧美在线一区亚洲| 成熟少妇高潮喷水视频| www日本在线高清视频| www日本黄色视频网| 中国美女看黄片| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 一区福利在线观看| 亚洲国产欧美一区二区综合| 正在播放国产对白刺激| 午夜两性在线视频| 亚洲第一青青草原| 国产色视频综合| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久中文| 日本五十路高清| 国产成人精品久久二区二区91| 欧洲精品卡2卡3卡4卡5卡区| 国产精品亚洲一级av第二区| 天堂动漫精品| 性欧美人与动物交配| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产99精品国产亚洲性色| 99久久99久久久精品蜜桃| 亚洲精品一区av在线观看| 亚洲精品中文字幕一二三四区| 亚洲avbb在线观看| 精品少妇一区二区三区视频日本电影| 一区福利在线观看| 在线观看免费日韩欧美大片| 亚洲国产看品久久| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 婷婷亚洲欧美| 亚洲自拍偷在线| 老鸭窝网址在线观看| 精品久久久久久久久久免费视频| 91成人精品电影| 男女之事视频高清在线观看| 最新在线观看一区二区三区| 国产成+人综合+亚洲专区| 欧美av亚洲av综合av国产av| 亚洲av第一区精品v没综合| 欧美丝袜亚洲另类 | 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观 | 久久久久精品国产欧美久久久| 熟女电影av网| 亚洲av成人av| 18禁黄网站禁片午夜丰满| 精品高清国产在线一区| 国产亚洲精品第一综合不卡| 中文字幕另类日韩欧美亚洲嫩草| 夜夜夜夜夜久久久久| 国产熟女xx| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清 | 欧美日韩乱码在线| 欧美成人免费av一区二区三区| 色婷婷久久久亚洲欧美| 国产不卡一卡二| 久久久久九九精品影院| 一级毛片高清免费大全| 大型黄色视频在线免费观看| 午夜福利免费观看在线| 老司机午夜十八禁免费视频| 一级毛片高清免费大全| 神马国产精品三级电影在线观看 | 国产精品精品国产色婷婷| 日本三级黄在线观看| 欧美精品亚洲一区二区| 天堂√8在线中文| 国产视频内射| 久热爱精品视频在线9| 亚洲国产欧洲综合997久久, | 午夜视频精品福利| 久久人妻福利社区极品人妻图片| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 天天添夜夜摸| 亚洲天堂国产精品一区在线| 欧美又色又爽又黄视频| 一个人观看的视频www高清免费观看 | 熟女少妇亚洲综合色aaa.| 日韩中文字幕欧美一区二区| 亚洲性夜色夜夜综合| 精品久久久久久久久久久久久 | 色综合站精品国产| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 露出奶头的视频| 免费看日本二区| 欧美三级亚洲精品| 国产精品av久久久久免费| 欧美日韩亚洲国产一区二区在线观看| 又紧又爽又黄一区二区| 天堂√8在线中文| 99久久精品国产亚洲精品| 亚洲人成网站在线播放欧美日韩| 日韩三级视频一区二区三区| 日本三级黄在线观看| 99国产精品一区二区三区| 亚洲成人国产一区在线观看| 国产精华一区二区三区| 麻豆一二三区av精品| 精品久久久久久,| 后天国语完整版免费观看| 亚洲午夜精品一区,二区,三区| 亚洲第一青青草原| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 长腿黑丝高跟| 女人被狂操c到高潮| 日韩中文字幕欧美一区二区| 亚洲熟妇中文字幕五十中出| 免费在线观看亚洲国产| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 国产99白浆流出| 黄频高清免费视频| 亚洲人成网站高清观看| 久久久久久九九精品二区国产 | 亚洲美女黄片视频| a级毛片在线看网站| 成人欧美大片| 国产又爽黄色视频| 国产av又大| 国产成+人综合+亚洲专区| 国产蜜桃级精品一区二区三区| 久9热在线精品视频| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 好男人在线观看高清免费视频 | 免费在线观看日本一区| 老司机在亚洲福利影院| 成人亚洲精品一区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 一个人观看的视频www高清免费观看 | 叶爱在线成人免费视频播放| 精品久久久久久久久久免费视频| 亚洲欧美日韩无卡精品| 麻豆av在线久日| 美国免费a级毛片| 国产一卡二卡三卡精品| 日韩一卡2卡3卡4卡2021年| 国产黄片美女视频| 琪琪午夜伦伦电影理论片6080| 精品欧美一区二区三区在线| 国产午夜福利久久久久久| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 亚洲片人在线观看| 国内精品久久久久久久电影| 国产午夜福利久久久久久| 性色av乱码一区二区三区2| 精品第一国产精品| 日本五十路高清| bbb黄色大片| 精品国产亚洲在线| 日韩大码丰满熟妇| 婷婷精品国产亚洲av| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 久久国产乱子伦精品免费另类| 国产熟女午夜一区二区三区| 色播在线永久视频| 国产91精品成人一区二区三区| 91麻豆av在线| 国产高清视频在线播放一区| 亚洲黑人精品在线| 午夜日韩欧美国产| 丰满的人妻完整版| 成年免费大片在线观看| 在线观看免费视频日本深夜| or卡值多少钱| 亚洲在线自拍视频| 国产免费av片在线观看野外av| 午夜福利成人在线免费观看| 美女免费视频网站| 国产麻豆成人av免费视频| 夜夜看夜夜爽夜夜摸| cao死你这个sao货| 国产伦在线观看视频一区| 色综合站精品国产| 国产又黄又爽又无遮挡在线| 日本五十路高清| 午夜免费激情av| 久久精品亚洲精品国产色婷小说| 亚洲熟妇中文字幕五十中出| 高清在线国产一区| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 国产99白浆流出| 亚洲aⅴ乱码一区二区在线播放 | 美女扒开内裤让男人捅视频| 欧美+亚洲+日韩+国产| 国产精华一区二区三区| 精品福利观看| 淫秽高清视频在线观看| 怎么达到女性高潮| 两个人免费观看高清视频| 两人在一起打扑克的视频| 国产午夜福利久久久久久| 免费搜索国产男女视频| 国产精品乱码一区二三区的特点| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 亚洲成人国产一区在线观看| 日本在线视频免费播放| 国产一区在线观看成人免费| 精品无人区乱码1区二区| 999精品在线视频| 亚洲五月天丁香| 香蕉久久夜色| 国产精品九九99| 亚洲精品国产一区二区精华液| av天堂在线播放| 免费在线观看黄色视频的| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 琪琪午夜伦伦电影理论片6080| 免费在线观看日本一区| 88av欧美| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| 日本 av在线| www.精华液| 国产私拍福利视频在线观看| xxx96com| 长腿黑丝高跟| 窝窝影院91人妻| 老汉色av国产亚洲站长工具| 中文字幕久久专区| 在线免费观看的www视频| 黄色丝袜av网址大全| 18禁黄网站禁片免费观看直播| 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 免费在线观看黄色视频的| 精品一区二区三区视频在线观看免费| 日韩大码丰满熟妇| 午夜两性在线视频| 俺也久久电影网| 日本黄色视频三级网站网址| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av| 久久九九热精品免费| 亚洲国产高清在线一区二区三 | 亚洲色图 男人天堂 中文字幕| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 啪啪无遮挡十八禁网站| 亚洲av五月六月丁香网| 欧美zozozo另类| 婷婷亚洲欧美| 日韩av在线大香蕉| 美女国产高潮福利片在线看| 国产高清有码在线观看视频 | 亚洲成人久久爱视频| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 日韩欧美 国产精品| 中文字幕精品亚洲无线码一区 | av在线天堂中文字幕| 黑人操中国人逼视频| 成在线人永久免费视频| 成人永久免费在线观看视频| 国内毛片毛片毛片毛片毛片| av电影中文网址| 少妇裸体淫交视频免费看高清 | 欧美黄色淫秽网站| 无遮挡黄片免费观看| 亚洲成国产人片在线观看| 国产一区在线观看成人免费| 国产v大片淫在线免费观看| 亚洲自拍偷在线| 午夜福利成人在线免费观看| 国产av一区二区精品久久| 日韩欧美在线二视频| 色综合亚洲欧美另类图片| 午夜成年电影在线免费观看| 国产主播在线观看一区二区| 伦理电影免费视频| 亚洲国产欧洲综合997久久, | 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 亚洲av美国av|