張 淼 彭永臻 王 聰 汪傳新 薛曉飛 龐洪濤 曾 薇
(1北京工業(yè)大學(xué)北京市水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程重點(diǎn)實(shí)驗(yàn)室, 北京 100124)(2北京北控水務(wù)(中國(guó))投資有限公司, 北京 100124)
?
容積分配比對(duì)A2/O-生物接觸氧化工藝反硝化除磷特性的影響
張 淼1彭永臻1王 聰1汪傳新1薛曉飛2龐洪濤2曾 薇1
(1北京工業(yè)大學(xué)北京市水質(zhì)科學(xué)與水環(huán)境恢復(fù)工程重點(diǎn)實(shí)驗(yàn)室, 北京 100124)(2北京北控水務(wù)(中國(guó))投資有限公司, 北京 100124)
A2/O-生物接觸氧化;反硝化除磷;容積分配比;同步硝化反硝化;熒光原位雜交
隨著國(guó)家現(xiàn)代化進(jìn)程的加快,氮磷過量排放帶來的水體富營(yíng)養(yǎng)化已引起人們的廣泛關(guān)注[1].目前原水碳氮比低(m(COD)/m(TN)<5.0)已成為城市污水處理過程中普遍面臨的難題,傳統(tǒng)外加碳源的方式并不能從根本上解決碳源不足的問題,同時(shí)也增加了運(yùn)行成本[2-3].因此在污水排放標(biāo)準(zhǔn)日益嚴(yán)格的今天,研究和開發(fā)高效經(jīng)濟(jì)的生物脫氮除磷工藝已成為水污染控制領(lǐng)域的重點(diǎn)和熱點(diǎn)[4-5].
近年來,提出了一種新型的雙污泥處理系統(tǒng)A2/O-BAF (anaerobic anoxic oxic-biological aerated filter)[6],該工藝將長(zhǎng)短泥齡分離,實(shí)現(xiàn)了“一碳兩用”,尤其在低m(COD)/m(TN)條件下有利于反硝化聚磷菌(DNPAOs)成為優(yōu)勢(shì)菌,具有脫氮除磷效率高、節(jié)省碳源和曝氣量、污泥產(chǎn)率低等諸多優(yōu)點(diǎn)[7].但BAF易堵塞、運(yùn)行周期短、需定期反沖洗[8]、對(duì)風(fēng)壓要求高、運(yùn)行管理復(fù)雜等問題限制了其進(jìn)一步的推廣應(yīng)用.
基于上述問題,本文提出了一種改進(jìn)的A2/O-生物接觸氧化(anaerobic anoxic oxic-biological contact oxidation, A2/O-BCO)工藝,主要采用孔隙率較大的懸浮填料替代BAF單元,充分發(fā)揮生物接觸氧化池處理負(fù)荷高、抗沖擊能力強(qiáng)、不易堵塞、運(yùn)行穩(wěn)定、維護(hù)管理方便[9-10]等優(yōu)點(diǎn).除此之外,本工藝中生物接觸氧化池采用三段串聯(lián)的運(yùn)行方式,可根據(jù)氨氮負(fù)荷靈活調(diào)控各格室的曝氣量,硝化效果穩(wěn)定且節(jié)能降耗.同時(shí),廊道式的格局便于系統(tǒng)的一體化構(gòu)建,為現(xiàn)有或新建污水處理廠的達(dá)標(biāo)排放和升級(jí)改造[11]提供了思路.
為了實(shí)現(xiàn)工藝的推廣應(yīng)用,設(shè)計(jì)參數(shù)的調(diào)控和優(yōu)化是系統(tǒng)運(yùn)行的前提和關(guān)鍵[12],作為一種新工藝,不同運(yùn)行參數(shù)對(duì)系統(tǒng)脫氮除磷性能的影響尚不明確.本研究以實(shí)際生活污水為處理對(duì)象,著重考察A2/O反應(yīng)器中不同厭氧/缺氧/好氧容積分配比對(duì)系統(tǒng)反硝化除磷特性的影響,以期為實(shí)際工程的應(yīng)用管理提供參考.
1.1 試驗(yàn)裝置
A2/O-BCO工藝主要由A2/O反應(yīng)器、中間沉淀池、BCO反應(yīng)器順序連接組成,系統(tǒng)裝置見圖1.原水首先進(jìn)入A2/O反應(yīng)器,經(jīng)過厭氧區(qū)、缺氧區(qū)沿程推流,好氧區(qū)出水經(jīng)中心管進(jìn)入中間沉淀池;完成泥水分離后,上清液進(jìn)入BCO反應(yīng)器,沉淀污泥回流到A2/O反應(yīng)器的厭氧區(qū);含有氨氮的上清液在BCO反應(yīng)器三格內(nèi)沿程推流,完成氨氮的氧化,硝化液經(jīng)斜板沉淀進(jìn)入A2/O反應(yīng)器的缺氧區(qū),為反硝化除磷提供電子受體. A2/O反應(yīng)器有效容積為42 L,均分為7個(gè)格室,總水力停留時(shí)間為8 h;通過改變硝化液回流口的位置和曝氣閥門的開關(guān),實(shí)現(xiàn)厭氧/缺氧/好氧區(qū)容積比的調(diào)節(jié);其中厭氧區(qū)和缺氧區(qū)內(nèi)均設(shè)有攪拌裝置,好氧區(qū)底部設(shè)有曝氣頭,溶解氧DO=0.5~1.5 mg/L,氧化還原電位ORP=-50~-20 mV, A2/O反應(yīng)器的污泥齡12 d左右.中間沉淀池為豎流式,采用中間進(jìn)水周邊出水的運(yùn)行方式,有效容積為15 L,污泥回流比為100%.BCO反應(yīng)器3格(記為N1,N2,N3)串聯(lián),有效容積為18 L,內(nèi)設(shè)聚丙烯懸浮填料,比表面積為900 m2/m3,密度略低于水,可在水中懸浮,填充率為45%;該階段主要完成氨氮的氧化,硝化液回流比為300%.此外,曝氣采用空氣壓縮機(jī),總曝氣量為0.18~0.20 m3/h,通過流量計(jì)調(diào)節(jié)各格室的曝氣量.進(jìn)水、污泥回流以及硝化液回流均通過蠕動(dòng)泵控制.
1.2 進(jìn)水水質(zhì)及試驗(yàn)方案
試驗(yàn)用水取自某大學(xué)化糞池的實(shí)際生活污水,水質(zhì)特征見表1,屬于典型的碳氮比m(COD)/m(TN)低的污水.整個(gè)試驗(yàn)歷時(shí)208 d,在此期間進(jìn)水水質(zhì)波動(dòng)較大,主要通過向原水水箱投加乙酸鈉,保證進(jìn)水m(COD)/m(TN)<3.50,試驗(yàn)期間水溫在22.8~25.5 ℃范圍內(nèi).在特定的水力停留時(shí)間(HRT)下,考察不同的厭氧/缺氧/好氧停留時(shí)間對(duì)系統(tǒng)釋磷、吸磷及反硝化特性的影響.本試驗(yàn)分為5個(gè)工況,分別記為工況1~工況5,具體試驗(yàn)條件見表1.在保持其他運(yùn)行參數(shù)不變的情況下,主要分析了A2/O 反應(yīng)器中不同的容積分配比對(duì)整個(gè)系統(tǒng)脫氮除磷性能的影響.為了保證試驗(yàn)數(shù)據(jù)的可靠性,每個(gè)工況的運(yùn)行時(shí)間至少持續(xù)3個(gè)SRT.系統(tǒng)啟動(dòng)過程中,接種污泥取自校園內(nèi)同樣處理生活污水的中試SBR反應(yīng)器,馴化15 d后脫氮除磷效果基本穩(wěn)定.
圖1 A2/O-BCO工藝裝置示意圖
表1 A2/O-生物接觸氧化系統(tǒng)進(jìn)水水質(zhì)及試驗(yàn)條件 mg/L
1.3 常規(guī)項(xiàng)目監(jiān)測(cè)
1.4 系統(tǒng)氮元素平衡分析方法
系統(tǒng)中氮的去除主要包括A2/O 反應(yīng)器內(nèi)反硝化除磷脫氮率RDPR、微生物同化作用固氮率RAssi以及生物接觸氧化反應(yīng)器中同步硝化反硝化脫氮率RSND,可通過下列公式進(jìn)行理論計(jì)算[18-19]:
(1)
(2)
(3)
RSND=Rtotal-RDPR-RAssi
(4)
式中,Rtotal為TN的總?cè)コ?Cinf,Ceff為系統(tǒng)進(jìn)出水的TN濃度,mg/L;CA,inf,CA,eff為缺氧區(qū)進(jìn)出水的TN濃度, mg/L;R,r為硝化液回流比和污泥回流比;MLSSwaste為剩余污泥濃度,mg/L;fvss/ss為混合液揮發(fā)性懸浮固體濃度與懸浮固體濃度之比;Vwaste為每天排放的剩余污泥量,L/d;fN/biomass為污泥中氮的含量,計(jì)算中取12.39%[20];Q為進(jìn)水流量,L/d.
2.1 系統(tǒng)中有機(jī)物的去除特性
由圖2可知,進(jìn)水COD濃度在130~300 mg/L范圍內(nèi)波動(dòng),但經(jīng)過A2/O 反應(yīng)器出水的COD濃度已基本低于60 mg/L.再經(jīng)過BCO反應(yīng)器,最終出水的COD均可滿足《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》(GB18918—2002)一級(jí)A排放標(biāo)準(zhǔn).上述現(xiàn)象表明盡管進(jìn)水水質(zhì)波動(dòng)較大,但系統(tǒng)對(duì)有機(jī)物的去除依然體現(xiàn)了較好的穩(wěn)定性.同時(shí)可以看到,在上述5種工況下,COD的去除效果差別不大,平均去除率為80.73%~83.41%,說明容積比的變化并沒有影響系統(tǒng)對(duì)碳源的利用.主要是由于原水首先進(jìn)入?yún)捬鯀^(qū),其中約70%的COD(大多數(shù)為易降解有機(jī)物)被DNPAOs用于合成內(nèi)碳源PHA[21],此時(shí)COD基本低于75 mg/L,再經(jīng)過缺氧區(qū)的部分反硝化作用,使COD得到進(jìn)一步的降解.可見,厭氧區(qū)是有機(jī)物被吸收和利用的主要場(chǎng)所,缺氧區(qū)在外碳源缺乏的條件下,刺激DNPAOs利用PHA進(jìn)行同步脫氮除磷(PHA利用率超過75%),有利于反硝化聚磷菌成為優(yōu)勢(shì)菌.同時(shí)好氧區(qū)的存在與否對(duì)系統(tǒng)COD的去除效率影響不大.此外,A2/O反應(yīng)器中COD的去除率和系統(tǒng)的總?cè)コ氏嘟?見圖2),試驗(yàn)數(shù)據(jù)表明正是由于有機(jī)物在A2/O反應(yīng)器中的高效利用,才為BCO反應(yīng)器中自養(yǎng)型硝化菌的富集提供了可能[6].
圖2 系統(tǒng)中COD的去除特性
2.2 系統(tǒng)中氮的去除特性
對(duì)于反硝化效果而言, 工況5的TN去除率明顯偏低,平均出水TN濃度為22.78 mg/L,尚未達(dá)到一級(jí)B排放標(biāo)準(zhǔn).而工況1和工況3的TN去除率分別達(dá)到75.22%和78.70%,平均出水TN濃度為14.50, 13.41 mg/L,此數(shù)據(jù)表明為了實(shí)現(xiàn)TN的高效去除,缺氧反應(yīng)時(shí)間應(yīng)不少于4.57 h(4格).上述2種工況下缺氧區(qū)的反硝化負(fù)荷達(dá)到0.10~0.14 kg/(kg·d).Ma等[3]考察了不同的分流比(側(cè)流流量/進(jìn)水流量)對(duì)AAO系統(tǒng)反硝化除磷特性的影響,試驗(yàn)結(jié)果表明缺氧區(qū)的污泥負(fù)荷在0.08~0.10 kg/(kg·d)時(shí)平均TN去除率為72%~76%.此外,Vaiopoulou等[22]研究發(fā)現(xiàn),在UCT(University of Cape Town)工藝中,當(dāng)進(jìn)水m(COD)/m(TN)=5.8、缺氧停留時(shí)間為4.3 h時(shí),系統(tǒng)達(dá)到了最理想的脫氮效果(TN去除率為83%).相比之下,本系統(tǒng)體現(xiàn)了較高的反硝化能力和TN去除率(即使進(jìn)水m(COD)/m(TN)=3.50).對(duì)于工況4,雖然保持較高的TN去除率,但由于沒有好氧區(qū)的吹脫作用,中間沉淀池的污泥沉降性較差,容易發(fā)生污泥流失.
(a) TN,NH+4-N進(jìn)出水濃度及去除率
(b) 不同工況下TN,NO-x-N的沿程變化
由圖3(b)中TN的變化趨勢(shì)可發(fā)現(xiàn),5種工況下,中間沉淀池和最終出水的TN濃度均存在不同程度的氮損失. BCO反應(yīng)器中的混合液濁度一直比較低(NTU<15),平均SS(suspended solid)含量在20~30 mg/L,所以計(jì)算時(shí)忽略了這部分污泥中氮的含量.根據(jù)式(1)~(4)對(duì)系統(tǒng)進(jìn)行氮元素平衡分析,盡管缺氧區(qū)反硝化除磷是系統(tǒng)主要的脫氮途徑,但是BCO反應(yīng)器中的同步硝化反硝化(SND)現(xiàn)象對(duì)TN去除的貢獻(xiàn)卻不容忽視.如表2所示,5種工況下BCO反應(yīng)器中同步硝化反硝化脫氮率RSND分別為7.61%, 14.71%, 7.93%, 6.41%和12.07%,在一定程度上強(qiáng)化了TN的去除效果.當(dāng)然,由于BCO反應(yīng)器中COD的濃度已經(jīng)比較低(見圖2),碳源的缺乏導(dǎo)致SND效率不高.葛士建等[23]也研究發(fā)現(xiàn),改良UCT分段進(jìn)水工藝中好氧區(qū)的SND貢獻(xiàn)率達(dá)35.3%,很大程度上提高了系統(tǒng)的TN去除率.因此在保證硝化效果的前提下,最大程度地強(qiáng)化SND作用有利于實(shí)現(xiàn)深度脫氮.
表2 A2/O-BCO系統(tǒng)氮元素平衡分析
(a) 全菌,探針標(biāo)記EUBmix
(b) 目標(biāo)菌,探針標(biāo)記Anammox
2.3 系統(tǒng)中磷的去除特性
(a) PO3-4-P進(jìn)出水濃度及去除率
(b) 不同工況下PO3-4-P的沿程變化
2.4 系統(tǒng)反硝化除磷特性分析
作為一種能量的儲(chǔ)存與釋放過程,內(nèi)碳源PHA(80%以上的含量為PHB)的合成與降解在聚磷菌的釋磷、吸磷過程中發(fā)揮著十分重要的作用[29].為了更直觀地認(rèn)識(shí)生物除磷機(jī)理并驗(yàn)證污泥的反硝化除磷性能,本研究在系統(tǒng)運(yùn)行的132 d時(shí)嘗試了對(duì)聚磷污泥的細(xì)胞染色,包括PHB染色和polyP染色,鏡檢照片如圖6所示.取厭氧區(qū)污泥進(jìn)行PHB染色,圖中粉紅色部分為細(xì)胞質(zhì),藍(lán)黑色顆粒物為PHB顆粒,藍(lán)黑色顆粒的出現(xiàn)表明厭氧釋磷過程聚磷菌體內(nèi)發(fā)生了PHB的合成.同時(shí)取缺氧區(qū)污泥進(jìn)行polyP染色,圖中淺藍(lán)色部分為細(xì)胞質(zhì),而大量的深藍(lán)色顆粒為polyP顆粒,即證明了缺氧階段微生物細(xì)胞確實(shí)吸收了大量的磷.細(xì)胞染色結(jié)果再次說明了聚磷菌能較好地發(fā)揮微生物代謝功能,為整個(gè)系統(tǒng)的脫氮除磷奠定了基礎(chǔ).此外,根據(jù)Brdjanovic等[30]給出的理論公式,計(jì)算得出本系統(tǒng)中污泥的含磷量為6.04%~8.62%,是傳統(tǒng)A2/O工藝的2~3倍[31],反硝化除磷過程中較高的含磷量在強(qiáng)化除磷效果的同時(shí)有利于改善污泥沉降性.
(a) PHB染色圖
(b) polyP染色圖
1) 系統(tǒng)對(duì)有機(jī)物的去除具有較好的穩(wěn)定性,A2/O反應(yīng)器可實(shí)現(xiàn)碳源的高效利用,且容積分配比對(duì)COD的去除效果影響不大,平均去除率為80.73%~83.41%.
2) 厭氧階段在2.28 h內(nèi)完成了充分的釋磷,為了實(shí)現(xiàn)TN的高效去除,缺氧反應(yīng)時(shí)間應(yīng)不少于4.57 h;同時(shí)為了防止A2/O反應(yīng)器發(fā)生硝化反應(yīng),好氧反應(yīng)時(shí)間應(yīng)不超過1.14 h.
3) BCO反應(yīng)器中SND現(xiàn)象強(qiáng)化了TN的去除效果,同步硝化反硝化脫氮率RSND占TN去除率的6.41%~14.71%.FISH試驗(yàn)表明,厭氧氨氧化菌占全菌約為 (0.86±0.15)%,在一定程度上也促進(jìn)了氮損失.
References)
[1]Rahimi Y, Torabian A, Mehrdadi N, et al. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR) [J].JournalofHazardousMaterials, 2011, 185(2): 852-857.
[2]Kim D, Kim T S, Ryu H D, et al. Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification [J].ProcessBiochemistry, 2008, 43(4): 406-413.
[3]Ma Y, Peng Y Z, Wang X L. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal [J].Desalination, 2009, 246(1): 534-544.
[4]Zhu G B, Peng Y Z, Wang S, et al. Effect of influent flow rate distribution on the performance of step-feed biological nitrogen removal process [J].ChemicalEngineeringJournal, 2007, 131(1): 319-328.
[5]Xu X Y, Liu G, Zhu L. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source [J].BioresourceTechnology, 2011, 102(22): 10340-10345.
[6]Chen Y Z, Peng C Y, Wang J H, et al. Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system[J].BioresourceTechnology, 2011, 102(10): 5722-5727.
[7]Zhang W T, Hou F, Peng Y Z, et al. Optimizing aeration rate in an external nitrification-denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment[J].ChemicalEngineeringJournal, 2014, 245: 342-347.
[8]Vigne E, Choubert J M, Canler J P, et al. A biofiltration model for tertiary nitrification of municipal wastewaters[J].WaterResearch, 2010, 44(15): 4399-4410.
[10]Bassin J P, Dezotti M, Sant’ Anna G L. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor [J].JournalofHazardousMaterials, 2011, 185(1): 242-248.
[11]孟濤,劉杰,楊超,等.MBBR工藝用于青島李村河污水處理廠升級(jí)改造[J].中國(guó)給水排水,2013,29(2):59-61. Meng Tao, Liu Jie, Yang Chao, et al. Application of MBBR process in upgrading and reconstruction of Licunhe WWTP in Qingdao city [J].ChinaWaterandWastewater, 2013, 29(2): 59-61. (in Chinese)
[12]Wang Y Y, Peng Y Z, Stephenson T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process [J].BioresourceTechnology, 2009, 100(14): 3506-3512.
[13]Clesceri L,Greenberg A E,Eaton A D.Standardmethodsfortheexaminationofwaterandwastewater[M]. 21st ed. Washington, DC,USA: American Public Health Association/American Water Works Association/Water Environment Federation, 2005.
[14]Gong L X, Jun L, Yang Q, et al. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage [J].BioresourceTechnology, 2012, 119: 277-284.
[15]曹雪梅.A2/O工藝反硝化除磷的實(shí)現(xiàn)及性能的研究[D].哈爾濱:哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院,2007.
[16]Guo J H, Peng Y Z, Wang S Y, et al. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater [J].ProcessBiochemistry, 2009, 44(9): 979-985.
[17]Lahav O, Massada I B, Yackoubov D, et al. Quantification of anammox activity in a denitrification reactor for a recirculating aquaculture system [J].Aquaculture, 2009, 288(1/2): 76-82.
[18]Chen Y, Wen Y, Zhou Q, et al. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment [J].WaterResearch, 2014, 63: 158-167.
[19]Lee J K, Choi C K, Lee K H, et al. Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system[J].BioresourceTechnology, 2008, 99(16): 7788-7796.
[20]葛士建,彭永臻,曹旭,等.改良UCT分段進(jìn)水工藝處理生活污水性能優(yōu)化研究[J].環(huán)境科學(xué),2011,32(7): 2006-2012. Ge Shijian, Peng Yongzhen, Cao Xu, et al. Optimization of a modified UCT step feed process treating municipal wastewater[J].EnvironmentalScience, 2011, 32(7): 2006-2012. ( in Chinese)
[21]Ma J, Peng Y Z, Wang S Y, et al. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy[J].JournalofEnvironmentalSciences, 2009, 21(9): 1169-1174.
[22]Vaiopoulou E, Aivasidis A. A modified UCT method for biological nutrient removal: Configuration and performance[J].Chemosphere, 2008, 72(7): 1062-1068.
[23]葛士建,彭永臻,張亮,等.改良UCT分段進(jìn)水脫氮除磷工藝性能及物料平衡[J].化工學(xué)報(bào),2010,61(4):1009-1017. Ge Shijian, Peng Yongzhen, Zhang Liang, et al. Performance and material balance of modified UCT step feed enhanced biological nitrogen and phosphate removal process [J].CIESCJournal, 2010, 61(4): 1009-1017. (in Chinese)
[24]Guo J B, Zhang L H, Chen W, et al. The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures [J].BioresourceTechnology, 2013, 133: 59-67.
[25]Joo H S,Hirai M,Shoda M. Piggery wastewater treatment using Alcaligenes faecalis strain No.4 with heterotrophic nitrification and aerobic denitrification[J].WaterResearch, 2006, 40(16): 3029-3036.
[26]Cao G H, Wang S Y, Peng Y Z, et al. Biological nutrient removal by applying modified four step-feed technology to treat weak wastewater [J].BioresourceTechnology, 2013, 128: 604-611.
[27]Liu H B, Zhu M L, Gao S S, et al. Enhancing denitrification phosphorus removal with a novel nutrient removal process: role of configuration[J].ChemicalEngineeringJournal, 2014, 240: 404-412.
[28]王曉蓮,王淑瑩,王亞宜,等.強(qiáng)化A2/O工藝反硝化除磷性能的運(yùn)行控制策略[J].環(huán)境科學(xué)學(xué)報(bào),2006,26(5):722-727. Wang Xiaolian,Wang Shuying,Wang Yayi, et al. Control strategies of enhancing denitrifying phosphorus removal performance of the conventional anaerobic-anoxic-oxic process[J].ActaScientiaeCircumstantiae, 2006, 26(5): 722-727. (in Chinese)
[29]Zhou Y, Lim M, Harjono S, et al. Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source[J].JournalofEnvironmentalSciences, 2012, 24(9): 1616-1623.
[30]Brdjanovic D, Slamet A, van Loosdrecht M C M, et al. Impact of excessive aeration on biological phosphorus removal from wastewater [J].WaterResearch, 1998, 32(1): 200-208.
[31]李欣,彭永臻,王建華,等.A2O-BAF與A2O工藝處理較高C/N比生活污水時(shí)的污泥沉降性對(duì)比分析[J].中南大學(xué)學(xué)報(bào):自然科學(xué)版,2012,43(3):1198-1203. Li Xin, Peng Yongzhen, Wang Jianhua, et al. Comparative analysis of sludge settleability of A2O-BAF process and A2O process treating higher C/N ratio domestic sewage[J].JournalofCentralSouthUniversity:ScienceandTechnology, 2012, 43(3): 1198-1203. (in Chinese)
Effect on denitrifying phosphorus removal by optimizing volume ratios in A2/O-biological contact oxidation (A2/O-BCO) process
Zhang Miao1Peng Yongzhen1Wang Cong1Wang Chuanxin1Xue Xiaofei2Pang Hongtao2Zeng Wei1
(1Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China) (2Beijing Enterprises Water Group (China) Investment Limited, Beijing 100124, China)
anaerobic anoxic oxic-biological contact oxidation (A2/O-BCO); denitrifying phosphorus removal; volume ratio; simultaneous nitrification denitrification (SND); fluorescence in situ hybridization (FISH)
10.3969/j.issn.1001-0505.2015.03.021
2014-10-25. 作者簡(jiǎn)介: 張淼(1989—),女,博士生;彭永臻(聯(lián)系人),男,博士,教授,博士生導(dǎo)師,pyz@bjut.edu.cn.
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2012AA063406)、北京市科研基地建設(shè)-科技創(chuàng)新平臺(tái)資助項(xiàng)目、北京工業(yè)大學(xué)第十三屆研究生科技基金資助項(xiàng)目(ykj-2014-10614).
張淼,彭永臻,王聰,等.容積分配比對(duì)A2/O-生物接觸氧化工藝反硝化除磷特性的影響[J].東南大學(xué)學(xué)報(bào):自然科學(xué)版,2015,45(3):531-538.
10.3969/j.issn.1001-0505.2015.03.021
X703.1
A
1001-0505(2015)03-0531-08