劉鵬,劉向明,馬建設(shè),
1.武漢工程大學(xué)機(jī)電工程學(xué)院,湖北 武漢 430205;2.清華大學(xué)深圳研究生院,廣東 深圳 518055
積分球通用LED光源燈座的優(yōu)化設(shè)計(jì)
劉鵬1,劉向明1,馬建設(shè)2,
1.武漢工程大學(xué)機(jī)電工程學(xué)院,湖北 武漢 430205;2.清華大學(xué)深圳研究生院,廣東 深圳 518055
積分球內(nèi)部的直插式燈座既不適用于鋁基板式LED光源的安裝,也不能滿足功率型LED光源的散熱要求.針對(duì)這一問題,通過三維軟件為積分球設(shè)計(jì)一種通用的外接燈座,利用ANSYS軟件的熱分析模塊,對(duì)該燈座加載模擬的最大設(shè)計(jì)熱載荷并進(jìn)行熱穩(wěn)態(tài)仿真分析,以得到整個(gè)燈座的模擬溫度場(chǎng)分布.然后利用ANSYS軟件的多目標(biāo)驅(qū)動(dòng)優(yōu)化分析工具,對(duì)燈座模擬溫度場(chǎng)中的最高溫度點(diǎn)(區(qū)域)進(jìn)行結(jié)構(gòu)優(yōu)化設(shè)計(jì),以降低燈座的最高溫度.最后在實(shí)驗(yàn)條件下,調(diào)節(jié)程控直流電源,加載最大設(shè)計(jì)電功率,驗(yàn)證熱穩(wěn)態(tài)下整個(gè)燈座的實(shí)際溫度分布,并與仿真進(jìn)行比較.結(jié)果表明,實(shí)驗(yàn)得到的燈座溫度場(chǎng)分布與仿真得到的溫度場(chǎng)分布十分接近,經(jīng)優(yōu)化后的燈座最高溫度明顯降低.
積分球;LED光源;燈座;多目標(biāo)驅(qū)動(dòng)優(yōu)化分析;優(yōu)化設(shè)計(jì)
積分球是專門用于LED光色參數(shù)測(cè)量和光譜分析的儀器.近年來,LED光源以其體積小、能耗低、響應(yīng)快、壽命長等諸多優(yōu)點(diǎn),在各個(gè)領(lǐng)域得到廣泛使用.積分球作為一種重要的LED測(cè)試分析儀器,在LED光源的快速研究和發(fā)展中發(fā)揮了極大作用.
積分球球內(nèi)設(shè)有兩腳直插燈座,適用于兩腳形式的LED光源,但由于目前絕大多數(shù)LED光源都采用鋁基板的形式,直插燈座不再適用.此時(shí)需另行設(shè)計(jì)積分球的外接燈座.此外,對(duì)于大功率LED光源,外接燈座還需兼具散熱器的功能.本文的目的在于為積分球設(shè)計(jì)一種通用的外接燈座,該燈座不僅能滿足鋁基板形式的LED光源的便捷安裝與測(cè)試,同時(shí)能充分滿足LED光源的散熱要求.
本文以0.5 m規(guī)格的積分球?yàn)槔摲e分球球體直徑為500 mm,對(duì)光通量的測(cè)試范圍為1~1 999 lm.
1.1 LED光源熱耗散功率Pd
良好散熱條件下,通常功率型LED光源的光效可達(dá)100 lm/W以上.本文選取實(shí)用光效為100 lm/W的光源作為設(shè)計(jì)樣本,即該規(guī)格積分球可測(cè)試的LED光源最大功率約20 W.目前LED光電轉(zhuǎn)換效率只有約20%~30%,剩余的都將轉(zhuǎn)化為熱量.取光電轉(zhuǎn)化效率為最低的20%,則該LED光源的熱耗散功率為16 W.
1.2 溫度設(shè)計(jì)
LED結(jié)溫超過120℃后會(huì)造成光通量下降、光效降低等不良后果.本文設(shè)計(jì)要求為LED結(jié)溫不高于120℃.LED芯片樣本內(nèi)熱阻約1.5℃/W,則此芯片殼溫不能高于90℃.鋁基板熱阻約為1℃/W,則鋁基板另一側(cè)溫度不高于70℃.鋁基板與燈座間的熱界面材料采用常用的導(dǎo)熱硅脂,導(dǎo)熱系數(shù)為3 W/(m·℃),厚度約0.5 mm,其熱阻為0.28℃/W,則燈座最高壁溫不得高于64.4℃.
1.3 外接燈座的設(shè)計(jì)
經(jīng)測(cè)量,積分球外接端口直徑為46 mm,深度為40 mm.外接燈座采用最常用的矩形肋片式散熱器形式,燈座材料采用最常用材料Al6063-T5,其導(dǎo)熱系數(shù)為209 W/(m·℃),表面經(jīng)過陽極氧化處理,輻射率約為0.6.為消除接觸熱阻,肋片由整塊鋁錠切削加工而來,肋厚與肋間距不宜過小,以保證可加工性.參照相關(guān)資料的經(jīng)驗(yàn)公式,并結(jié)合本文實(shí)際,確定燈座各個(gè)參數(shù)的初始值[1],如表1所示.
表1 燈座各參數(shù)初始設(shè)計(jì)值Table1The each initial design values of lamp holder
根據(jù)燈座入品處尺寸,結(jié)合表1中的燈座凸臺(tái)尺寸,利用Solidworks軟件建立外接燈座的三維模型,如圖1所示.
圖1 外接燈座三維模型Fig.1Three-dimensional model of the external lamp holder
1.4 散熱方式
自然對(duì)流散熱和強(qiáng)制對(duì)流散熱是肋片散熱器最常用的兩種散熱方式.本文條件下,燈座的肋片部分暴露在積分球外部,故肋片的外形尺寸可不受空間限制.此外,如采用強(qiáng)制對(duì)流散熱,肋片端需加裝風(fēng)扇固定位,還需考慮風(fēng)扇供電等問題.綜合以上因素,燈座采用自然對(duì)流散熱[2].
1.5 燈座肋片安裝方向
據(jù)場(chǎng)協(xié)同理論,當(dāng)肋片沿重力場(chǎng)方向時(shí)有最佳協(xié)同角和最佳散熱效果,故肋片沿肋長方向豎直放置.
ANSYS Workbench的穩(wěn)態(tài)熱分析需給定對(duì)流換熱系數(shù),該參數(shù)的準(zhǔn)確性對(duì)于整個(gè)熱分析的準(zhǔn)確性至關(guān)重要.采用試算迭代法來確定自然對(duì)流換熱系數(shù).即先假設(shè)一個(gè)試算值,用ANSYS Workbench穩(wěn)態(tài)熱分析計(jì)算得到燈座的溫度場(chǎng)和燈座肋片壁溫[3],再將此溫度作為條件代入相應(yīng)的實(shí)驗(yàn)關(guān)聯(lián)式中,計(jì)算出該溫度條件下的對(duì)流換熱系數(shù).比較兩個(gè)對(duì)流換熱系數(shù)的差值,并更換新的試算值,用ANSYS Workbench進(jìn)行第二次穩(wěn)態(tài)熱迭代計(jì)算.當(dāng)前后的換熱系數(shù)相差不超過1%,即可認(rèn)為迭代收斂,得到最終的換熱系數(shù).
據(jù)傳熱學(xué)理論,確定本文條件下燈座肋片與空氣對(duì)流散熱的流態(tài),并利用相關(guān)實(shí)驗(yàn)關(guān)聯(lián)式計(jì)算自然對(duì)流換熱系數(shù)[4],其迭代過程如表2所示.
表2 迭代計(jì)算值Table2Iterative calculation value
從表2可以看出,當(dāng)試算值h1=6.7 W/(m·℃)時(shí),穩(wěn)態(tài)熱分析前后的對(duì)流換熱系數(shù)相差僅為0.4%,迭代收斂,即本文實(shí)驗(yàn)條件下,空氣的自然對(duì)流換熱系數(shù)為6.7 W/(m·℃),此條件下燈座的ANSYS Workbench的熱穩(wěn)態(tài)分析溫度場(chǎng)如圖2所示.
燈座最高溫度位于與導(dǎo)熱硅脂接觸的壁面,為68.5℃,高于設(shè)計(jì)要求的64.4℃,因此需要對(duì)燈座的肋片參數(shù)進(jìn)行優(yōu)化,確保燈座最高壁溫不高于設(shè)計(jì)要求.
圖2 h=6.7 W·(m·℃)-1時(shí)燈座的溫度場(chǎng)分布Fig.2Temperature field distribution of the lamp holder when h=6.7 W/(m·℃)-1
ANSYS Workbench平臺(tái)具有卓越的優(yōu)化分析能力[5],本文采用其中的Goal Driven Optimization(多目標(biāo)驅(qū)動(dòng)優(yōu)化分析)工具,利用Parameters Correlation(參數(shù)相關(guān)性優(yōu)化分析工具)和Response Surface(響應(yīng)曲面優(yōu)化分析工具)對(duì)燈座的肋片參數(shù)進(jìn)行優(yōu)化設(shè)計(jì)[6].保持肋片數(shù)N為7個(gè)不變,選取基座厚d、基座長(肋長)L、基座寬W、肋高H、肋厚a、肋間距b等六個(gè)參數(shù)作為輸入變量,選取燈座最高壁溫和燈座體積兩個(gè)參數(shù)作為設(shè)計(jì)輸出.綜合各項(xiàng)邊界條件,給定各設(shè)計(jì)變量的取值范圍,詳見表3.
表3 設(shè)計(jì)變量取值范圍Table.3Design variables ranging
系統(tǒng)根據(jù)各個(gè)變量的取值范圍,采用蒙特卡羅抽樣方法,列出45個(gè)設(shè)計(jì)樣本,分別求解后,自動(dòng)找出產(chǎn)生極值的四個(gè)設(shè)計(jì)樣本.六個(gè)設(shè)計(jì)變量對(duì)輸出目標(biāo)的影響關(guān)系,如圖3所示.從圖3中可以看出,對(duì)燈座的體積影響最大的三個(gè)設(shè)計(jì)變量分別是肋厚a、肋高H、肋長L,對(duì)燈座壁溫影響最大的三個(gè)設(shè)計(jì)變量分別是肋高H、肋長L、肋厚a,可見這三個(gè)設(shè)計(jì)變量是優(yōu)化設(shè)計(jì)的關(guān)鍵參數(shù).
圖3 設(shè)計(jì)變量與輸出目標(biāo)的敏感關(guān)系Fig.3Sensitive relationship between design variables and output targets
設(shè)置溫度不高于64.4℃為硬性要求,尋找體積最小的設(shè)計(jì)樣本.軟件經(jīng)計(jì)算后會(huì)自動(dòng)篩選出的三個(gè)最符合要求的設(shè)計(jì)候選樣本中,其中一個(gè)設(shè)計(jì)樣本有最小體積1.27×105mm3,因此這個(gè)設(shè)計(jì)樣本就是最佳優(yōu)化設(shè)計(jì)樣本.
為了便于實(shí)際加工,對(duì)設(shè)計(jì)樣本A中的六個(gè)設(shè)計(jì)變量值進(jìn)行適當(dāng)處理.為保證基座寬度方向兩端不留空余(即滿足7a+6b=W),對(duì)多出的寬度予以切除,每個(gè)變量的小數(shù)點(diǎn)后僅保留一位.按照處理后的設(shè)計(jì)變量值修改燈座模型,重新進(jìn)行熱穩(wěn)態(tài)分析,將得到的結(jié)果與優(yōu)化前進(jìn)行比較,如表4所示.
表4 優(yōu)化前后的各參數(shù)對(duì)比Table4Each parameter comparison between before and after optimization
用優(yōu)化處理后的值更新燈座模型,重新進(jìn)行熱穩(wěn)態(tài)分析,對(duì)應(yīng)的穩(wěn)態(tài)熱分析得到的溫度分布:最高壁溫為64.2℃,最低壁溫為60.7℃.
按照優(yōu)化后的燈座尺寸,選擇AL-6063為材料,加工出燈座實(shí)體.實(shí)驗(yàn)設(shè)備安裝如圖4所示.
采用福祿克公司的紅外測(cè)量儀作為測(cè)溫設(shè)備,將程控直流電源輸入功率設(shè)為20 W,點(diǎn)亮LED光源.每隔10 min用紅外測(cè)量儀測(cè)試一次燈座的溫度,當(dāng)燈座壁溫不再升高并保持在一個(gè)穩(wěn)定溫度值時(shí),此時(shí)燈座溫度到達(dá)熱穩(wěn)態(tài),此時(shí)的燈座溫度場(chǎng)分布如圖5所示.
圖4 實(shí)驗(yàn)設(shè)備安裝示意圖Fig.4The installation diagram of experimental equipment
圖5 燈座溫度分布Fig.5 The temperature distribution of lamp holder
對(duì)比熱穩(wěn)態(tài)仿真得到的溫度分布與實(shí)驗(yàn)條件下得到的溫度分布,如表5所示.
表5 仿真與實(shí)驗(yàn)條件下的燈座溫度分布Table5The temperature distribution under simulation and experiment conditions
從表5可以看出,仿真結(jié)果與實(shí)驗(yàn)結(jié)果兩者十分接近,說明ANSYS Workbench仿真分析和優(yōu)化效果是可靠和準(zhǔn)確的.
在ANSYS Workbench中,利用其強(qiáng)大的多目標(biāo)驅(qū)動(dòng)優(yōu)化分析工具,結(jié)合穩(wěn)態(tài)熱分析,闡述了在滿足燈座壁溫不超過最高設(shè)計(jì)壁溫的前提下,縮小燈座體積,減輕燈座重量并節(jié)省材料的優(yōu)化設(shè)計(jì)方法,并用實(shí)驗(yàn)證實(shí)了這種優(yōu)化效果.與傳統(tǒng)方法相比,該設(shè)計(jì)方法不僅省時(shí)和高效,而且大大降低了生產(chǎn)成本.對(duì)于此類問題的優(yōu)化設(shè)計(jì)均具有指導(dǎo)意義.
致謝
在研究過程中,清華大學(xué)深圳研究生院國家光盤中心提供了實(shí)驗(yàn)場(chǎng)地與實(shí)驗(yàn)設(shè)備,在此表示衷心的感謝!
[1]龍昊,付桂翠,高澤溪.自然空氣冷卻情況下功率器件散熱器的優(yōu)化設(shè)計(jì)[J].電子元件與材料,2003,22(03):18-21.
LONG Hao,F(xiàn)U Gui-cui,GAO Ze-xi.Optimal design of natural air cooling radiator case power devices[J].Electronic Components and Materials,2003,22(3):18-21.(in Chinese)
[2]陳方,廖義德,郭敏,等.動(dòng)車檢修庫無罩引風(fēng)系統(tǒng)性能研究[J].武漢工程大學(xué)學(xué)報(bào),2011,33(08):95-98.
CHENFang,LIAOYide,GUOMin,etal.Studyof uncovered airinduced system in CRH base[J].Journal of Wuhan Institute of Technology,2011,33(8):95-98.(in Chinese)
[3]喻九陽,王明伍,鄭小濤,等.高溫法蘭連接系統(tǒng)溫度場(chǎng)的有限元分析[J].武漢工程大學(xué)學(xué)報(bào),2014,36(10):31-36.
YU Jiu-yang,WANG Ming-wu,ZHENG Xiao-tao,et al.Temperature field analysis of flanged joints at high temperature based on finite element method[J].Journal of Wuhan Institute of Technology,2014,36(10):31-36.(in Chinese)
[4]張奕,郭恩震.傳熱學(xué)[M].南京:東南大學(xué)出版社,2004.
ZHANG Yi,GUO En-zhen.Heat transfer[M].Nanjing:Southeast University Press,2004.(in Chinese)
[5]李兵,何正嘉,陳雪峰.ANSYS Workbench設(shè)計(jì)、仿真與優(yōu)化[M].北京:清華大學(xué)出版社,2008.
LIBing,HEZheng-jia,CHENXue-feng.ANSYS workbench design,simulation and opti mization[M].Beijing:Tsinghua University Press,2008.(in Chinese)
[6]鄭小濤,龔程,徐紅波,等.油-水-氣三相旋流器分離驗(yàn)證及氣-液腔結(jié)構(gòu)優(yōu)化[J].武漢工程大學(xué)學(xué)報(bào), 2014,36(10):37-41.
ZHENG Xiao-tao,GONG Cheng,XU Hong-bo,et al.Verification of separation performance of oil-water-gas cyclone and optimization of structure of liquid-gas separation chamber[J].Journal of Wuhan Institute of Technology,2014,36(10):37-41.(in Chinese)
Optimum design of universal LED light source holder for integrating sphere based on ANSYS
LIU Peng1,LIU Xiang-ming1,MA Jian-she2
1.School of Mechanical and Electrical Engineering,Wuhan Institution of Technology,Wuhan 430205,China;2.Graduate School at SHENZHEN,Tsinghua University,Shenzhen 518055,China
The internal direct-insert-type lamp holder of integrating sphere was not suited for the installment of aluminium substrate-type LED light source,and it was also not met the cooling requirement of the power LED light source.To solve this problem,an universal external lamp holder for integrating sphere was designed by 3D software,and the entire temperature distribution of this lamp holder was simulated by the thermal analysis module of ANSYS software,after loading the simulant maximal design load and making a thermal steady-state analysis.Then according to the highest temperature distribution points(areas),the structural optimization design of the lamp holder was made by the goal driven optimization tool of ANSYS software to reduce the maximal temperature of the lamp holder.Finally,the actual temperature distribution in the thermal steady-state was verified and the temperature distribution was compared with the simulation results,after loading the maximal design electric power by regulating the programmable direct current power source under experimental conditions.The results show that the temperature distribution of lamp holder obtained by experiment is very close to the temperature distribution obtained by the simulation,and the maximum temperature of the lamp holder is reduced significantly after optimization.
integrating sphere;LED light source;lamp holder;goal driven optimization;optimum design
TP3
A
10.3969/j.issn.1674-2869.2015.01.011
本文編輯:陳小平
1674-2869(2015)01-0049-05
2014-12-04
劉鵬(1986-),男,湖北孝感人,碩士研究生.研究方向:機(jī)密儀器設(shè)計(jì)與控制.