• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Use of infrared thermal imaging to diagnose health of Ammopiptanthus mongolicus in northwestern China

    2015-06-05 08:54:26WeijieYuanYiYuYongdeYueJiWangFengchunZhangXiaohongDang
    Journal of Forestry Research 2015年3期
    關(guān)鍵詞:體系生態(tài)經(jīng)濟(jì)

    Weijie Yuan?Yi Yu?Yongde Yue?Ji Wang?Fengchun Zhang?Xiaohong Dang

    Use of infrared thermal imaging to diagnose health of Ammopiptanthus mongolicus in northwestern China

    Weijie Yuan1,2?Yi Yu1?Yongde Yue1?Ji Wang3?Fengchun Zhang4?Xiaohong Dang3

    Population of the rare and endangered species Ammopiptanthus mongolicus(Maxim.)Cheng f.declined rapidly in China’s arid region and CentralAsia.There is an urgent need to protect this species,which is particularly important in maintaining biodiversity throughout the arid region of northwestern China.By analyzing the infrared thermal images based on plant-transpiration transfer coefficient(hat)and photosynthetic parameters,we made quantitative and accurate diagnoses of the plantgrowth and health status of A.mongolicus.Using an LI-COR6400 photosynthesis system,we measured the netphotosynthetic rate(Pn),stomatalconductance(Gs),and transpiration rate (Tr).Infrared thermal images obtained in the field were processed by ENVI4.8 software to calculate surface temperatures of the plant subjects.We found that the plant transpiration transfer coefficient of A.mongolicus was inthe order of old plants>young plants>intermediate-aged plants.Declining health levels of young,intermediate,and old plants were divided into three categories:<0.4,0.4–0.7, and>0.7.The coefficient showed a significant negative correlation with Tr,Gs,and Pn,indicating that they can simultaneously reflect the state of plant growth.By establishing hatand photosynthetic parameters in regression model Y=a-blnx,we can accurately diagnose plant growth and decline of plant health conditions.

    Photosynthetic parameters·Plant stress· Stomatalconductance·Thermography·Three-temperature (3T)model·Plant-transpiration transfer coefficient

    Introduction

    Protection of rare and endangered species,such as Ammopiptanthus mongolicus(Maxim.)Cheng f.(Liu 1998),is a global issue and important in maintaining biodiversity. This plant is one of the most important species in the arid region in western China(Zhang and Jiang 1987)and the only broad-leaved evergreen shrub species there.This species has long attracted the research interests of plant physiologists,ecologists,and geographers because itis an ancient tertiary flora relict with significant scientific value (Wang and Yin 1991).

    Due to its long-term evolution in a harsh environment,it possesses drought-and disease-resistance characteristics and is an excellent sand-fixation plant(Zhou et al.2001). However,this valuable plant has rapidly declined in recent years in the distribution area,as did its overall plant community health,to varying degrees in northwestern China.There is an urgent need to protect this rare andendangered plantand maintain its relatively stable habitats in the region.Effective protection of any plant community dominated by A.mongolicus depends upon efficient management based on correct and accurate diagnosis of plant health.The first step in rejuvenating the plants is to measure plant growth and environmental stresses.Current methods for assessing plant growth and environmental stress include measuring photosynthesis,transpiration, biomass,and growth potential and so on.However,these methods generally are complicated:they are time-consuming,can damage plant leaf or tissues,and may limit sample size.Infrared thermal imaging used in this study provides accurate,reliable,and non-damaging diagnosis of plant growth and degree of environmental stresses.

    Infrared thermal imaging is a non-contact,non-destructive technology(Chaerle and Van der Straeten 2000), where a radiometer transforms the energy emitted from targetobjects in the infrared band into an electronic video signal and ultimately a visible image.The energy radiated from an object is mainly a function of its surface temperature.Infrared thermal imaging is a two-dimensional temperature measurement(Meola and Carlomagno 2004). In our application,the heat radiation energy is directly related to the surface temperature of the A.mongolicus.

    Industry,agriculture,environmental protection,and scientificresearch haveemployed thistechniquewidely sincethe early 1980s.In plant science,it is used to study stomatal movement conductance,photosynthesis(Omasa and Takayama 2003),and—more recently—plant droughtresistance(Bettina et al.2010;Giuseppe et al.2011),salt stress (Jamesetal.2008),and stomatalmutation(Merlotetal.2002; Song et al.2006),and screening of plant genotypes(Jones 1999).However,little research has used this technology to diagnoseplanthealth in CentralAsiaand China’sarid regions.

    Under normal environmental conditions,the surface temperature of a plant stays relatively stable through transpiration.Butwith externalstress,such as drought,the stomatalbehavior of a plantwillchange in porosity,as will other physiological parameters,such as conductance and transpiration intensity(Jones 1999).These changes usually alter the heat loss from the leaf surface,causing the leaf temperature to change(Chaerle and Van der Straeten 2000).Plant surface temperature varies as evapotranspiration,photosynthesis,and environmental factors change in response to differentexternalconditions.Despite this,plant surface temperature is often used to measure plant water status,stomatal opening,and transpiration attenuation as a means of monitoring water and environmental stress of plants(Chaerle and Van der Straeten 2000;Qiu et al. 2009).A recently proposed algorithm,the three-temperature(3T)model—air temperature,land surface temperature,and land reference temperature—estimates actual evapotranspiration and environmental quality(Qiu et al. 2006a,2009).It has the advantages of fewer parameters, simple calculation,easy operation,and accurate estimation, which was known as a very informative and a significant step towards using remote sensing to truly measure hydrologic processes(Qiu et al.2006b,c).

    The 3T model incorporates five basic models:soil evaporation,soil-evaporation transfer coefficient(evaluated soil moisture and soil environmental quality),plant transpiration,plant-transpiration transfer coefficient(evaluation of water status of vegetation and vegetation environmental quality),and plant water-deficit coefficient. Using vegetation surface temperature withouttranspiration, we were able to calculate the amount of plant transpiration and the plant-transpiration transfer coefficient.

    In this study,we used infrared thermalimaging to obtain field images of A.mongolicus and record canopy surface temperatures,in order to calculate the plant-transpiration transfer coefficient using the 3T model,analyze planttranspiration transfer coefficient correlations between plant photosynthetic parameters with ENVI,and diagnose the health of the plant.The results of the study provided valuable information for restoring the ecosystems dominated by A.mongolicus in northwestern China.

    Materials and methods

    Experimentalsite

    This study was conducted in the West Ordos National Nature Reserve(WONNR)in western Inner Mongolia, China.The geographicalcoordinates of the study area are 106°44′59.7′′–107°43′12′′E,39°13′35′′–40°10′50′′N. WONNR lies in the warm temperate continentalmonsoon climate zone with plateau characteristics,such as large diurnal and seasonal temperature variations,dry climate, long hours ofsunshine,high solar radiation,and high wind speed.The mean annual,maximum,and minimum air temperatures are 8.2,39.4,and-35.7°C,respectively.The warmest month is July and coolest month is January. Maximum land surface temperature can reach 63.4°C and a yearly mean humidity of 13%.Average annualsunshine hours are 3046.1 h.Annual rainfall is 272.3 mm,mostly from June to August,with a mean rainfall of 173.9 mm, accounting for 63.9%of the annual precipitation.The annual evaporation rate is 2470.4 mm,which was nine times that of precipitation.Annual average wind speed is about 3.2 m/s.

    Vegetation in the study area comprises xerophytic shrubs and semi-shrubs,dominated by A.mongolicus. Other species include Tetraena mongolica Maxim.,Zygop hyllumxant hoxylon Bunge,Helianthemum soongoricum Schrenk,Potaninia mongolica Maxim.,and Prunesmongolica.Our investigation of A.mongolicus in this area showed that it had rapidly declined in plant community health and was having difficulty regenerating in recent years.

    Experimentaldesign

    We selected a 50×50 m sample plotin a flatarea.Shrubs covered more than 75%of the plot and the distribution of plants was relatively concentrated and contiguous.We selected five A.mongolicus plantsfromeach ofthree age groups: young,intermediate-aged,and old.Newly geminated plants, emerging from recent stubble,were marked as young plants (H≤20 cm,30<W≤60 cm).Plantswithoutstubble were marked as intermediate-aged(60<H≤120 cm, 60<W≤180 cm)orold(H>120 cm,W>180 cm),according to the heightand canopy ofthe plants.We measured the heightand canopy of plants three times(Table 1).Field measurements were made on September26 and 27,2012.

    Data collection

    Thermal infrared data were obtained using a Ti55FT IR Flex Cam thermal imager(FLUKE Co.,Washington, USA).The detector parameters of the instrument were focal plane array 320×240,25μpixel pitch vanadium oxide(VOX),and no refrigeration.The field of view (FOV)of the instrument was 23°×17°(horizontal×vertical),spatial resolution of instantaneous field of view(IFOV)was 1.3 mrad,and spectral band was 8–14μm.Temperature measurement range was-20 to 600°C with a resolution of 0.05°C.The screen operation of the instrument was thermal infrared light,visible light, or combined thermal infrared/visible light.In cloudless weather,we took photographs attwo-hour intervals,at9:00 am,11:00 am,1:00 pm,3:00 pm,and 5:00 pm.When taking photos,we had to keep the lens perpendicular to the vegetation canopy at a distance of 1 m.

    We created a reference leaf(without transpiration)by cutting out the shape of a leaf from a card in a natural leaf color,which was placed on the upper canopy to avoid being shaded by other leaves.The inclination angle of the reference leaf was the same as real leaves(Fig.1).

    Infrared thermal images obtained in the field were processed and analyzed to calculate surface temperatures of select plant leaves,using ENVI4.8 software.Air temperature,solar radiation,and other meteorological parameterswere measured with a DavisVantage Pro 2 weather station.Data were automatically recorded every two minutes.In addition,we also used a LI-COR6400 portable photosynthesis system(LI-COR Inc.,Nebraska,USA)to measure the netphotosynthetic rate(Pn,μmolCO2m-2s-1), stomatal conductance(Gs,mol H2O m-2s-1),and transpiration rate(Tr,mmol H2O m-2s-1)of the A.mongolicus. We selected three healthy leaves for each treatment and measured each leafthree times.Plantleafarea wasmeasured using image-scanning technology(Bond-Lamberty et al. 2003).

    Calculation and data analysis

    According to the 3T model equation,

    T was the transpiration rate(MJ m-2d-1);Rnand Rnpwere non-canopy and canopy transpiration reference net radiation(MJ m-2d-1);Tcwas the canopy layer temperature with transpiration;Tpwas the reference canopy temperature without transpiration;and Tawas the air temperature(°C).

    The plant transpiration transfer coefficient(hat)was calculated using the following formula:

    where(hat)ranged from 0 to 1.The scope of the transpiration rate was from the minimum transpiration rate(0)to the maximum transpiration rate(potential transpiration). When Tc=Tp,hathad the maximum value(hat=1)and the corresponding plant transpiration had the minimum amountof evapotranspiration(0).Conversely,when the hathad the minimum value(hat=0),the corresponding planttranspiration had the maximum amount of potential transpiration.In other words,when plants did not suffer from water deficit or environmental stress,the transpiration transfer coefficient had a minimum value.When plants were under serious water stress,the transpiration transfer coefficient reached the maximum value.

    Table 1 Statistical analysis of the growth index for selected Ammopiptanthus mongolicus in the experiment

    Fig.1 Infrared thermal image(left)and visible color light image(right)of A.mongolicus

    The plant transpiration transfer coefficient(hat)can be used as an index of crop water deficit to measure the evapotranspiration of plant and evaluate its water use potential.The main advantage of hatis its simplicity in infrared applications.The data were analyzed by SPSS 16.0 and Origin 8.0.

    Results

    Plant transpiration transfer coefficients(hat)

    Tc1,Tc2,and Tc3 are canopy temperatures of young,intermediate-aged,and old plants,respectively.Both the canopy temperature(Tc1,Tc2,and Tc3)and airtemperature (Ta)showed similar patterns,where the highest value was reached atnoon during the measuring period(Fig.2a).For old plants,the highest canopy temperature came at 1:00 pm,and at 3:00 pm for young and intermediate-aged plants.This reflected hysteresis in accordance with the highest value of air temperature.The highest and lowest difference values between air and canopy temperatures were 11.47 and 0.59°C,respectively.Differentages of A. mongolicus plants showed different canopy temperatures. The daily average canopy temperature values of young, intermediate-aged,and old plants were 20.29,18.85,and 21.39°C,respectively.

    Fig.2 Variations in a temperatures(Ta,Tp,Tc1,Tc2,Tc3)and b hatvalues ofdifferentgrowth and health status of A.mongolicus.Tc1,Tc2 and Tc3 are canopy temperatures of young plant,intermediate-aged plant and old plant,respectively

    The lowest values for all plant transpiration transfer coefficients(hat)of young,intermediate-aged,and old plants came atnoon—opposite the trends ofthe canopy and reference canopy temperatures on both September 26 and 27(Fig.2b).The lowest value of hatof young, intermediate-aged,and old plants appeared at 11:00 am, 1:00 pm,and 1:00 pm,respectively,indicating that the plants suffered less water stress.The daily mean value of hatof young,intermediate-aged,and old plants was 0.62, 0.40,and 0.78,respectively,during the measuring period.

    Photosynthetic parameters

    The net photosynthetic rate(Pn,μmol CO2m-2s-1), stomatal conductance(Gs,mol H2O m-2s-1),and transpiration rate(Tr,mmol H2O m-2s-1)of A.mongolicus showed a clear diurnal pattern—a single peak curve (Fig.3;Table 2).Pn,Trand Gswere significantly different among the treatments.The patterns showed that intermediate-aged plants>young plants>old plants in Pn,Tr,and Gsat the measuring points.

    鄱陽湖生態(tài)經(jīng)濟(jì)區(qū)由水庫、堤防、蓄滯洪區(qū)組成的防洪工程體系,已經(jīng)形成基本框架,但是這一體系尚不完善,體系運(yùn)用中還存在一些建設(shè)、政策等方面的問題。部分流域還沒有采取工程措施控制,這些地區(qū)產(chǎn)生的洪水依然威脅下游地區(qū)的防洪安全。堤防的防洪能力難以滿足生態(tài)經(jīng)濟(jì)區(qū)建設(shè)要求,還需要繼續(xù)提高。蓄滯洪區(qū)人口增長、經(jīng)濟(jì)發(fā)展,加上蓄滯洪區(qū)經(jīng)費(fèi)投入不足、標(biāo)準(zhǔn)低,安全設(shè)施少等原因,啟用蓄滯洪區(qū)難度大,損失嚴(yán)重?,F(xiàn)有的防洪體系與生態(tài)經(jīng)濟(jì)區(qū)內(nèi)的經(jīng)濟(jì)發(fā)展需求不相適應(yīng)。

    The transpiration rates(Tr)of intermediate-aged and young plants reached maximum values around 1:00 pm and noon,respectively,with daily average values of 3.29 and 2.54 mmol H2O m-2s-1on September 26 and 2.80 and 2.17 mmol H2O m-2s-1on September 27(Fig.3a).The transpiration rate of old plants reached its maximum value at11:00 am,with a daily average of 1.76 mmol H2O m-2s-1on September 26 and 1.56 mmol H2O m-2s-1on September 27.

    Fig.3 Variations in photosynthetic parameters(Tr,Gs,Pn)of different growth and health status of A.mongolicus

    The stomatal conductance of the intermediate-aged and young plants reached their maximum around 11:00 am (Fig.3b).The daily average values were 0.16 and 0.13 mol H2O m-2s-1on September26 and 0.14 and 0.12 molH2O m-2s-1on September27.The stomatalconductance ofold plants reached their maximum values at 9:00 am,with a daily average of 0.09 mol H2O m-2s-1on September 26 and 0.08 mol H2O m-2s-1on September 27.

    The net photosynthetic rate(Pn)of the intermediateaged and young plants reached maximum values around 11:00 am,with daily averages of 15.69 and 13.44μmol CO2m-2s-1on September 26 and 14.71 and 12.01μmol CO2m-2s-1on September 27;while the net photosynthetic rate ofthe old plants reached theirmaximum at9:00 am,with daily averages of 10.33μmol CO2m-2s-1on September 26 and 8.12μmol CO2m-2s-1on September 27(Fig.3c).

    Correlation analysis and regression models

    The correlation analysis of the plant transpiration transfer coefficients(hat)and corresponding photosynthetic parameters(Tr,Gs,and Pn)for young,intermediate-aged,and old plants is shown in Table 3.We found that the plant transpiration transfer coefficients were significantly negatively correlated with Tr,Gs,and Pnin all age classes (p<0.01).The optimal regression equations between the planttranspiration transfer coefficients(hat)and their corresponding photosynthetic parameters(Tr,Gs,and Pn)for young,intermediate-aged,and old plantsisshown in Table 4.

    Discussion

    Age composition is an important indicator of plant population dynamics(Xie et al.1999).In order to avoid destroying rare and endangered species,size structure of individual plants is used to gauge plant age(Xie et al.1995;Yan etal.2001),with good results.A.mongolicus is a shrub species with more branches at its roots and no apparent trunk.Annual rings cannot be distinguished, making it difficult to use growth cone or diameter class to determine plantage.Previous studies(Hou etal.1994;Wei et al.2005;He et al.2006)have shown that the age of a plant correlates with height and crown breadth.Based on these findings,ourstudy selected heightand crown breadth to analyze A.mongolicus population dynamics.

    Table 3 Correlation analysis between the planttranspiration transfer coefficients(hat)and their corresponding photosynthetic parameters

    In general,the photosynthetic physiological characteristics of plants constantly change as they age.The photosynthetic capacity of young leaves is not well developed: they have small stomatal openings;immature mesophyll cells with a low rate of gas exchange with the outside world,underdeveloped chloroplasts,and fewer photosynthetic pigments;weak light-harvesting capacity;and low levels of photosynthetic enzymes(especially ribulose-1, 5-bisphosphate carboxylase/oxygenase,or Rubisco)(Pan 2012).As they develop,plantleaves gradually increase the number of stomata and their chlorophyll content,improve chloroplast structure,and strengthen electron transport and photosynthetic capacity(Greer and Halligan 2001;Chen and Tao 2003;Jiang et al.2005).When the area and thickness of leaves reach a maximum value,their photosynthetic rate also typically maximizes.As leaves become older,their stomatal conductance,photosynthetic electron transportcapacity,and Rubisco contentdecrease,and thus the photosynthetic capacity gradually weakens(Dai et al. 2004).

    Table 4 Regression models for estimating photosynthetic parameters(Tr,Gs,Pn)by using the plant transpiration transfer coefficients(hat)

    According to the 3T model,plant transpiration rates at different recessionary conditions were in the order of old plants<young plants<intermediate-aged plants,which was consistent with the order of photosynthesis measured with a LI-COR6400 system.Based on the mean values of the plant transpiration transfer coefficients,the recession levels ofthe young,intermediate-aged,and old plants were divided into three categories:<0.4,0.4–0.7,and>0.7.By establishing hatwith recession levels and the relationship between physiological and ecological indicators,we were able to identify the health conditions of A.mongolicus using infrared thermalimaging.

    Earlier methods for assessing plant growth and degradation of plant health included determining biomass, growth potential,and othergrowth indicators,ormeasuring a combination of photosynthesis,transpiration,and other physiological indicators.These methods are time-consuming,requiring significant labor and resources.Infrared thermal imaging provides quick and precise high-resolution spatial information on plants and environments without damaging them(Leinonen and Jones 2004;Jones 2004).The‘‘three-temperature’’model allows for simple and accurate diagnosis of plantgrowth and degradation of health(in situ,without contact),and continuous observation of plant growth.Previous studies mostly focused on the use of infrared thermal imaging to record the temperature of plants and did not look at the relation between temperature values and photosynthetic parameters.

    Conclusions

    As a resultofthe data we gained through the use of infrared thermal imaging,we were able to draw four conclusions from ourstudy.First,the orderofplant-transpiration transfer coefficients of A.mongolicus was old plants>young plants>intermediate-aged plants.Recession levels of the young, intermediate,and old plants were divided into three categories:<0.4,0.4–0.7,and>0.7.Second,the diurnal variation of photosynthetic parameters was contrary to hat.The orderofthe photosynthetic parameters of A.mongolicus was intermediated-aged plants>young plants>old plants.In other words,the higher the planttranspiration transfer coefficients,the lower the netphotosynthetic rate(Pn),stomatalconductance(Gs),and leaftranspiration rate(Tr).Third, the plant transpiration transfer coefficient showed a significant negative correlation with Tr,Gs,and Pn,indicating that hatand Pn,Gs,and Trcan simultaneously reflectthe state of plant growth.By establishing hatand photosynthetic parameters in regression model Y=a-blnx(where Y is photosynthetic parameters Pn,Gs,and Tr;x is the planttranspiration transfercoefficient hat;and a,b are constants), we can accurately diagnose plantgrowth and degradation of plant health conditions.Fourth,our results with A.mongolicus prove thatinfrared thermalimaging is a practicable and usefultechnique for diagnosing planthealth.

    AcknowledgmentsWe thank the West Ordos National Nature Reserve for its valuable assistance with manpower,materials,research,site selection,and other support.

    Bettina B,Boris P,Mark T(2010)High-throughputshoot imaging to study droughtresponses.J Exp Bot 61:3519–3528

    Bond-Lamberty B,Wang C,Grower ST(2003)The use of multiple measurement techniques to refine estimates of conifer needle geometry.Can J For Res 33:101–105

    Chaerle L,Van der Straeten D(2000)Imaging techniques and the early detection of plant stress.Trends Plant Sci 5:495–501

    Chen NL,Tao YH(2003)Study on photosynthetic property of Cucurbita maxima.Acta Bot Boreali-Occident Sin 23:976–981

    Dai JM,Gao HY,Zou Q(2004)Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol 6:171–177

    Davies WJ,Zhang J(1991)Rootsignals and the regulation of growth and developmentofplants in drying soil.Ann Rev Plant Physiol Plant Mol Biol 42:55–76

    Giuseppe R,Shamaila Z,Wolfram S,Ciro S,JillC,Jose LA,Joachim M(2011)Use of thermography for high throughputphenotyping of tropical maize adaptation in water stress.Comput Electron Agric 79(1):67–74

    Greer DH,Halligan EA(2001)Photosynthetic and fluorescence light responses for kiwifruitleaves atdifferent stages of development on vines grown at two different photon flux densities.Aust J Plant Physiol 28:373–382

    He HB,Zhang HJ,Jia GX(2006)Population structure and spatial distribution pattern of Ammopiptanthus mongolicus in Dengkou County,Inner Mongolia autonomous region.Sci Silvae Sin 42(10):13–18

    Hou P,Yin LK,Yan C(1994)Study on biomass of Ammopiptanthus mongolicus.Arid Zone Res 11(1):16–22

    Huo H,Wang CK(2007)Effects of canopy position and leaf age on photosynthesis and transpiration of Pinuskoraiensis.Chin J Appl Ecol 18(6):1181–1186

    James RA,Caemmerer SV,Condon AG,Zwart AB,Munns R(2008) Genetic variation in tolerance to the osmotic stress componentof salinity stress in durum wheat.Funct Plant Biol 35:111–123

    Jiang CD,Li PM,Gao HY,Zou Q(2005)Enhanced photoprotection at the early stages of leaf expansion in field-grown soybean plant.Plant Sci 168:911–919

    Jones HG(1999)The use of thermography for quantitative studies of spatialand temporalvariation of stomatalconductance over leaf surfaces.Plant,Cell Environ 22:1043–1055

    Jones HG(2004)Irrigation scheduling:advantages and pitfalls of plant-based methods.J Exp Bot 55:2427–2436

    Leinonen I,Jones HG(2004)Combining thermaland visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–1431

    Liu GH(1998)Study on the endangered reasons of Ammopitanthus mongolicus in the desertof Alashan.BullBot Res 18(3):341–345

    Meola C,Carlomagno GM(2004)Recent advances in the use of infrared thermography.Meas Sci Technol 15:27–58

    Merlot S,Mustilli AC,Genty B,North H,Lefebvre V,Sotta B, Vavasseur A,Giraudat J(2002)Use of infrared thermography to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Omasa K,Takayama K(2003)Simultaneous measurement of stomatal conductance,non-photochemical quenching,and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging.Plant Cell Physiol 44:1290–1300

    Pan RC(2012)Plant physiology.Higher education press,Beijing

    Qiu GY,ShiP,Wang L(2006a)Theoreticalanalysisofa soilevaporation transfercoefficient.Remote Sens Environ 101:390–398

    Qiu GY,Wang S,Wu X,Song XF(2006b)Three temperature model (3T)model—a method to estimate evapotranspiration and evaluate environmental quality based on surface temperature IV.Plant transpiration transfercoefficient.JPlant Ecol30(5):852–860

    Qiu GY,Wang S,Wu X(2006c)Three temperature model(3T) model—a method to estimate evapotranspiration and evaluate environmental quality.J Plant Ecol 30(2):231–238

    Qiu GY,Omasa K,Sase S(2009)An infrared-based coefficient to screen plantenvironmentalstress:concept,testand applications. Funct Plant Biol 36:990–997

    Ren LL,Gao HY(2008)Effects of NaCl stress on induction of photosynthesis and PS II photochemistry efficiency of rumex K-1 leaves with different age.Acta Bot Boreali-Occident Sin 28(5):1014–1019

    Sauter A,Davies WJ,Hartung W(2001)The long-distance abscisic acid signal in the drougted plant:the fate of the hormone on its way from rootto shoot.J Exp Bot 52(363):1991–1997

    Schroeder JI,Kwak JM,Allen GJ(2001)Guard cell abscisic acid signaling and engineering drought hardiness in plants.Nature 410:327–330

    Song YW,Kang YL,Liu H,Zhao XL,Wang PT,An GY,Zhou Y, Miao C,Song CP(2006)Identification and primary genetic analysis of Arabidopsis stomatalmutants in response to multiple stresses.Chin Sci Bull 51(21):2586–2594

    Wang Y,Yin LK(1991)Measurementofsalttolerance oftwo species of Ammopitanthus mongolicus Maxim.Arid Zone Res 1:20–22

    Wang B,Zhao GD,Li SN,Bai XL,Deng ZF(2005)Diurnal photosynthetic change characteristics of the dominant species Castanopsis fargesii and Castanopsis sclerophylla in evergreen broad-leaved forest in Dagangshan mountain,Jiangxi province. Acta Agric Univ Jiangxiensis 27(4):577–579

    Wei QS,Wang JH,Li CL,Zhuang GH,Chen SK(2005)A preliminary study on the distribution patterns and characteristics of Ammopiptanthus mongolicus populations in different desert environments.Acta Phytoecol Sin 29(4):591–598

    Xie ZQ,Chen WL,Jiang MX,Huang HD,Zhu RG(1995)A preliminary study on the population of Cathaya argyrophlla in Bamianshan mountain.Acta Bot Sin 37:58–65

    Xie ZQ,Chen WL,Lu P,Hu D(1999)The demography and age structure of the endangered plant population of Cathaya argyrophlla.Acta Ecol Sin 19:523–528

    Xu DQ(1990)Ecology,physiology and biochemistry of midday depression of photosynthesis.Plant Physiol Commun 6:5–10

    Yan GQ,Zhao GF,Hu ZH,Yue M(2001)Population structure and dynamics of Larix chinenesis in Qinling mountain.Chin J Appl Ecol 12:824–828

    Zhang T,Jiang ZR(1987)Study on introduction and cultivation test of Ammopitanthus mongolicus Maxim.J Desert Res 7(3):41–47

    Zhou YJ,Liu CL,Feng JZ,Jia XH(2001)Advances of droughtresistance and frigid-resistance mechanism research on Ammopitanthus mongolicus.J Desert Res 21(3):312–316

    13 March 2014/Accepted:26 May 2014/Published online:15 May 2015

    ?Northeast Forestry University and Springer-Verlag Berlin Heidelberg 2015

    Project funding This work was supported by the nationalforestry nonprofitindustry research projects of China,‘‘Diagnosis of rare and endangered plants Ammopiptanthus mongolicus degradation and research of conservation technology’’(No.201304305).

    The online version is available at http://www.springerlink.com.

    Corresponding editor:Hu Yanbo.

    ?Yi Yu yuyi@icbr.ac.cn

    1International Centre for Bamboo and Rattan,Beijing 100102, China

    2Forestry Experiment Center of North China,Chinese Academy of Forestry,Beijing 102300,China

    3College of Ecology and Environmental Science,Inner Mongolia Agricultural University,Hohhot 010019,China

    4Foreign Economic Cooperation Office,Ministry of Environmental Protection,Beijing 100035,China

    猜你喜歡
    體系生態(tài)經(jīng)濟(jì)
    “林下經(jīng)濟(jì)”助農(nóng)增收
    “生態(tài)養(yǎng)生”娛晚年
    構(gòu)建體系,舉一反三
    增加就業(yè), 這些“經(jīng)濟(jì)”要關(guān)注
    民生周刊(2020年13期)2020-07-04 02:49:22
    住進(jìn)呆萌生態(tài)房
    生態(tài)之旅
    民營經(jīng)濟(jì)大有可為
    華人時刊(2018年23期)2018-03-21 06:26:00
    生態(tài)
    “曲線運(yùn)動”知識體系和方法指導(dǎo)
    “三位一體”德育教育體系評說
    中國火炬(2010年7期)2010-07-25 10:26:09
    91字幕亚洲| 亚洲精品美女久久av网站| 精品国产乱码久久久久久男人| 精品国产乱码久久久久久小说| 国产成人啪精品午夜网站| 精品卡一卡二卡四卡免费| 热re99久久精品国产66热6| 久久国产精品男人的天堂亚洲| 亚洲国产日韩一区二区| av福利片在线| 男男h啪啪无遮挡| 妹子高潮喷水视频| 中文字幕人妻丝袜一区二区| 久久天躁狠狠躁夜夜2o2o| 国产男人的电影天堂91| 欧美国产精品va在线观看不卡| 人人妻,人人澡人人爽秒播| 捣出白浆h1v1| 免费高清在线观看视频在线观看| 大码成人一级视频| www日本在线高清视频| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 欧美成狂野欧美在线观看| 日本猛色少妇xxxxx猛交久久| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 国产在线免费精品| 欧美人与性动交α欧美精品济南到| 国产精品一区二区在线不卡| 国产视频一区二区在线看| 久久亚洲精品不卡| 男女边摸边吃奶| 日本猛色少妇xxxxx猛交久久| 欧美精品啪啪一区二区三区 | 日韩三级视频一区二区三区| 女警被强在线播放| 一区二区三区乱码不卡18| 成人国产一区最新在线观看| 人人妻人人澡人人爽人人夜夜| 日韩有码中文字幕| 精品少妇内射三级| 女人高潮潮喷娇喘18禁视频| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 真人做人爱边吃奶动态| 韩国精品一区二区三区| 国产精品自产拍在线观看55亚洲 | 十八禁人妻一区二区| 亚洲国产中文字幕在线视频| 建设人人有责人人尽责人人享有的| 国产不卡av网站在线观看| 亚洲激情五月婷婷啪啪| 多毛熟女@视频| 国产精品99久久99久久久不卡| 一区福利在线观看| 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 69av精品久久久久久 | 又黄又粗又硬又大视频| 一区二区日韩欧美中文字幕| 汤姆久久久久久久影院中文字幕| 久久青草综合色| 蜜桃国产av成人99| 天天添夜夜摸| 成人三级做爰电影| 麻豆乱淫一区二区| 成年人免费黄色播放视频| 亚洲天堂av无毛| 看免费av毛片| 老熟妇仑乱视频hdxx| 日韩,欧美,国产一区二区三区| 成人黄色视频免费在线看| 日本av手机在线免费观看| 欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| 中文精品一卡2卡3卡4更新| av不卡在线播放| 国产成人系列免费观看| 亚洲一区二区三区欧美精品| 久久久久久久久免费视频了| 亚洲精品一区蜜桃| 精品免费久久久久久久清纯 | 国产精品 欧美亚洲| a 毛片基地| av视频免费观看在线观看| 亚洲精品日韩在线中文字幕| 一级毛片精品| 国产一区有黄有色的免费视频| 国产成人精品久久二区二区91| 亚洲精品国产一区二区精华液| 97人妻天天添夜夜摸| 精品人妻在线不人妻| 一级,二级,三级黄色视频| 成人影院久久| 在线观看www视频免费| 日本精品一区二区三区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产综合久久久| 男女午夜视频在线观看| 永久免费av网站大全| 欧美中文综合在线视频| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 91麻豆av在线| 久久久精品区二区三区| 一个人免费在线观看的高清视频 | 国产欧美日韩一区二区三区在线| 日韩欧美免费精品| 成人影院久久| 精品亚洲乱码少妇综合久久| 永久免费av网站大全| 亚洲欧洲精品一区二区精品久久久| 国产精品一二三区在线看| 十八禁网站免费在线| 热99re8久久精品国产| 国产在视频线精品| kizo精华| 99久久国产精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人妻丝袜制服| 久久ye,这里只有精品| 国产精品久久久久久精品古装| 欧美激情极品国产一区二区三区| 爱豆传媒免费全集在线观看| 韩国高清视频一区二区三区| www.av在线官网国产| 少妇人妻久久综合中文| 午夜久久久在线观看| 黑人猛操日本美女一级片| 久久中文字幕一级| 精品福利永久在线观看| 如日韩欧美国产精品一区二区三区| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| 嫩草影视91久久| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 亚洲三区欧美一区| 日韩欧美免费精品| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 久久九九热精品免费| 黄色毛片三级朝国网站| 国产成人系列免费观看| 久9热在线精品视频| 黑人操中国人逼视频| 天天影视国产精品| 久久久国产成人免费| 搡老熟女国产l中国老女人| 精品一区二区三卡| 久久久国产成人免费| 美国免费a级毛片| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 久久久久精品人妻al黑| 老司机福利观看| 国产视频一区二区在线看| av有码第一页| 自拍欧美九色日韩亚洲蝌蚪91| 侵犯人妻中文字幕一二三四区| 国产91精品成人一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 午夜精品久久久久久毛片777| 99久久综合免费| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 国产1区2区3区精品| 国产又爽黄色视频| 成人手机av| 大片免费播放器 马上看| 精品一区二区三卡| 久久这里只有精品19| 欧美激情久久久久久爽电影 | 日韩有码中文字幕| 丝袜脚勾引网站| 一二三四社区在线视频社区8| 亚洲伊人久久精品综合| 侵犯人妻中文字幕一二三四区| 亚洲中文av在线| 人妻久久中文字幕网| 黄网站色视频无遮挡免费观看| 久久女婷五月综合色啪小说| 精品第一国产精品| 国产精品影院久久| 亚洲av欧美aⅴ国产| 亚洲色图综合在线观看| 丁香六月天网| 国产成人影院久久av| 99国产精品99久久久久| 欧美在线黄色| 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看 | 国产精品一区二区在线不卡| 国产精品麻豆人妻色哟哟久久| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲 | 久久久久视频综合| 飞空精品影院首页| 丝袜人妻中文字幕| 99国产精品一区二区三区| 亚洲国产精品999| 成人黄色视频免费在线看| 国产高清videossex| 五月天丁香电影| 国产亚洲精品第一综合不卡| 啪啪无遮挡十八禁网站| 午夜福利影视在线免费观看| 国产精品九九99| 免费久久久久久久精品成人欧美视频| 午夜免费成人在线视频| 1024视频免费在线观看| 宅男免费午夜| 我的亚洲天堂| 久久精品国产亚洲av香蕉五月 | 黄片大片在线免费观看| 成年人午夜在线观看视频| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 亚洲av成人不卡在线观看播放网 | 中文字幕制服av| 久久99一区二区三区| 国产99久久九九免费精品| 日韩电影二区| 国产精品亚洲av一区麻豆| 黄网站色视频无遮挡免费观看| 久久中文字幕一级| 91精品国产国语对白视频| 精品视频人人做人人爽| 最新在线观看一区二区三区| 久久久久久人人人人人| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av成人精品| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 1024视频免费在线观看| 国产精品熟女久久久久浪| 捣出白浆h1v1| 国产片内射在线| 丝袜喷水一区| 国产成人一区二区三区免费视频网站| 国产成人欧美| 久久精品成人免费网站| 老司机影院成人| 亚洲中文av在线| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 黄色视频,在线免费观看| 丰满迷人的少妇在线观看| 啦啦啦免费观看视频1| 视频区图区小说| 一边摸一边做爽爽视频免费| 大型av网站在线播放| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| 丁香六月天网| 性少妇av在线| 亚洲精品国产av蜜桃| 一级,二级,三级黄色视频| 一本久久精品| 亚洲性夜色夜夜综合| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 老司机午夜十八禁免费视频| 久久久久久人人人人人| 如日韩欧美国产精品一区二区三区| 丝袜脚勾引网站| 99国产综合亚洲精品| 国产成人av激情在线播放| 精品一品国产午夜福利视频| 首页视频小说图片口味搜索| 午夜免费成人在线视频| 久久久精品国产亚洲av高清涩受| 中文字幕制服av| 欧美日韩成人在线一区二区| 老司机在亚洲福利影院| 日本a在线网址| 午夜福利视频精品| 日韩三级视频一区二区三区| 精品国产乱子伦一区二区三区 | 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 成人影院久久| 久久天堂一区二区三区四区| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 日韩有码中文字幕| 国产高清视频在线播放一区 | 好男人电影高清在线观看| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 国产一卡二卡三卡精品| 久久精品久久久久久噜噜老黄| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 人妻久久中文字幕网| 色婷婷av一区二区三区视频| 国产人伦9x9x在线观看| 在线观看www视频免费| 国产一卡二卡三卡精品| 亚洲五月婷婷丁香| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 国产欧美日韩精品亚洲av| 99热网站在线观看| 欧美日韩精品网址| 亚洲av美国av| 操美女的视频在线观看| 久久国产精品影院| 91精品三级在线观看| 国产麻豆69| 9热在线视频观看99| 老汉色av国产亚洲站长工具| 首页视频小说图片口味搜索| 亚洲五月色婷婷综合| 亚洲av日韩精品久久久久久密| 久久久久国产一级毛片高清牌| 日韩一区二区三区影片| 国产精品九九99| 人人澡人人妻人| 另类亚洲欧美激情| 久久ye,这里只有精品| 久久亚洲精品不卡| www.熟女人妻精品国产| av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 一个人免费看片子| 婷婷丁香在线五月| 日本欧美视频一区| 亚洲精品国产一区二区精华液| 欧美精品高潮呻吟av久久| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 人人妻人人澡人人看| 亚洲精品国产av蜜桃| 午夜精品久久久久久毛片777| 不卡一级毛片| 中文字幕人妻熟女乱码| 久久久久久久国产电影| 日本一区二区免费在线视频| 韩国精品一区二区三区| av片东京热男人的天堂| 午夜福利视频在线观看免费| 少妇的丰满在线观看| 91成人精品电影| 日韩制服骚丝袜av| 午夜福利视频在线观看免费| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看一区二区三区激情| 美女扒开内裤让男人捅视频| 久久久精品免费免费高清| 久久久国产一区二区| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣一区麻豆| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 国产亚洲av高清不卡| 国产黄色免费在线视频| 黄网站色视频无遮挡免费观看| a在线观看视频网站| 亚洲熟女毛片儿| 黄片大片在线免费观看| 悠悠久久av| 亚洲熟女精品中文字幕| 天天躁夜夜躁狠狠躁躁| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 麻豆国产av国片精品| 亚洲国产欧美日韩在线播放| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 最新在线观看一区二区三区| 青春草视频在线免费观看| 亚洲avbb在线观看| 考比视频在线观看| 天堂8中文在线网| 国产欧美日韩精品亚洲av| 国产av精品麻豆| 美女福利国产在线| 免费观看人在逋| 欧美性长视频在线观看| 久久久久久久久久久久大奶| 日韩中文字幕欧美一区二区| 最黄视频免费看| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人看| 国产精品影院久久| 精品欧美一区二区三区在线| 两个人免费观看高清视频| 正在播放国产对白刺激| 十八禁网站网址无遮挡| 大片免费播放器 马上看| 黄色视频,在线免费观看| 一本大道久久a久久精品| 最近最新中文字幕大全免费视频| a 毛片基地| 久久久久国内视频| 老汉色∧v一级毛片| 久久精品久久久久久噜噜老黄| av线在线观看网站| 国产男人的电影天堂91| 国产欧美日韩一区二区三 | 精品视频人人做人人爽| av天堂久久9| 久久亚洲国产成人精品v| 50天的宝宝边吃奶边哭怎么回事| 久久久国产精品麻豆| 搡老熟女国产l中国老女人| 黄频高清免费视频| 老司机在亚洲福利影院| 成人手机av| 国产欧美日韩一区二区三区在线| 最新在线观看一区二区三区| av欧美777| 大片电影免费在线观看免费| 国产不卡av网站在线观看| 日本av手机在线免费观看| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区久久| 精品福利永久在线观看| 热re99久久精品国产66热6| 亚洲视频免费观看视频| 天堂8中文在线网| 老汉色av国产亚洲站长工具| 在线观看舔阴道视频| 亚洲欧美精品自产自拍| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 亚洲色图综合在线观看| 免费观看人在逋| 午夜激情av网站| 中文欧美无线码| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 另类亚洲欧美激情| 中文字幕av电影在线播放| 久久人妻福利社区极品人妻图片| 狂野欧美激情性bbbbbb| 中文字幕人妻熟女乱码| tube8黄色片| 黑人猛操日本美女一级片| 99精品欧美一区二区三区四区| 久久 成人 亚洲| 俄罗斯特黄特色一大片| 手机成人av网站| 久久性视频一级片| 成人国产一区最新在线观看| av网站在线播放免费| 欧美老熟妇乱子伦牲交| 午夜日韩欧美国产| 欧美精品人与动牲交sv欧美| 飞空精品影院首页| 国产av又大| 动漫黄色视频在线观看| 超色免费av| av免费在线观看网站| 男女免费视频国产| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 我的亚洲天堂| 亚洲av美国av| 制服人妻中文乱码| 国产精品国产av在线观看| 大片电影免费在线观看免费| 国产在线观看jvid| 亚洲精品乱久久久久久| 亚洲av成人不卡在线观看播放网 | 国产成人欧美| 男人操女人黄网站| 不卡一级毛片| 欧美日韩视频精品一区| 超碰97精品在线观看| 免费高清在线观看视频在线观看| 久久国产精品影院| 久久久久久久久久久久大奶| 色老头精品视频在线观看| 高清黄色对白视频在线免费看| 五月天丁香电影| 国产黄色免费在线视频| 亚洲精品第二区| 国产精品久久久久久人妻精品电影 | 国产精品免费大片| 国产淫语在线视频| 熟女少妇亚洲综合色aaa.| 免费少妇av软件| 国产男人的电影天堂91| 亚洲第一av免费看| 久久久久国产一级毛片高清牌| 国产成人系列免费观看| 爱豆传媒免费全集在线观看| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区 | 热re99久久精品国产66热6| 黄片大片在线免费观看| 欧美日韩黄片免| 一区在线观看完整版| 日韩制服丝袜自拍偷拍| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品亚洲av| 免费在线观看视频国产中文字幕亚洲 | 中文字幕精品免费在线观看视频| 免费高清在线观看视频在线观看| 亚洲少妇的诱惑av| av天堂久久9| 免费高清在线观看日韩| 欧美精品亚洲一区二区| 女警被强在线播放| 精品人妻在线不人妻| 91精品国产国语对白视频| 交换朋友夫妻互换小说| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美精品永久| 亚洲精品美女久久av网站| 老司机亚洲免费影院| 波多野结衣一区麻豆| 午夜影院在线不卡| 日本av手机在线免费观看| 国产伦人伦偷精品视频| 老汉色∧v一级毛片| 欧美一级毛片孕妇| 亚洲久久久国产精品| 免费在线观看视频国产中文字幕亚洲 | 精品国产国语对白av| 久久中文字幕一级| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 热re99久久国产66热| 久久国产精品大桥未久av| 精品高清国产在线一区| 一个人免费在线观看的高清视频 | 亚洲全国av大片| 亚洲人成电影免费在线| 久久久久久久大尺度免费视频| 操出白浆在线播放| 欧美+亚洲+日韩+国产| 日韩一卡2卡3卡4卡2021年| 亚洲成人免费av在线播放| 91麻豆av在线| 80岁老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 91精品伊人久久大香线蕉| 国产成人精品在线电影| av电影中文网址| 永久免费av网站大全| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 欧美 日韩 精品 国产| 午夜老司机福利片| h视频一区二区三区| 美女福利国产在线| 最新的欧美精品一区二区| 免费黄频网站在线观看国产| 50天的宝宝边吃奶边哭怎么回事| 大型av网站在线播放| 久久人人97超碰香蕉20202| 亚洲精品国产色婷婷电影| 丝袜美腿诱惑在线| 欧美亚洲日本最大视频资源| 国产男女内射视频| 国产精品一区二区在线观看99| 亚洲欧美激情在线| 最新在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲午夜精品一区,二区,三区| 一区二区av电影网| 亚洲视频免费观看视频| 欧美 亚洲 国产 日韩一| 中文字幕人妻熟女乱码| 国产精品久久久人人做人人爽| av电影中文网址| 麻豆国产av国片精品| 久热这里只有精品99| 国产免费一区二区三区四区乱码| 亚洲五月婷婷丁香| 日本欧美视频一区| 国产成人a∨麻豆精品| 1024视频免费在线观看| 日本91视频免费播放| av在线播放精品| 最近最新免费中文字幕在线| 日本91视频免费播放| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 国产日韩欧美在线精品| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品| 亚洲国产毛片av蜜桃av| 国产1区2区3区精品| 欧美亚洲 丝袜 人妻 在线| 国产xxxxx性猛交| 亚洲av片天天在线观看| 香蕉国产在线看| 久热这里只有精品99| 日韩免费高清中文字幕av| 99香蕉大伊视频| 国产91精品成人一区二区三区 | 精品视频人人做人人爽| netflix在线观看网站| 亚洲天堂av无毛| 久久毛片免费看一区二区三区|