• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Role of a Vanishing Interfacial Layer inPerfect Elasto-Plasticity

    2015-06-01 09:18:50GillesFRANCFORTAlessandroGIACOMINI

    Gilles A.FRANCFORT Alessandro GIACOMINI

    (Dedicated to Luc Tartar Notwithstanding His Dislike for Elasto-Plasticity)

    1 Introduction

    1.1 Introductory remarks

    This paper focuses on the behavior of a two-phase elasto-plastic material in a small strain setting.

    The topic was first tackled mathematically in[10–11],and then,after a twenty five year long interlude,revisited in[3]within the framework of the rapidly expanding variational theory of rate independent evolutions(see,e.g.,[8]).The ensuing functional setting results in strain fields that can concentrate on sets of co-dimension at most 1 and displacement fields that can in particular jump along rectif i able hypersurfaces.So,as Luc Tartar repeatedly pointed out,the mathematical models of small strain elasto-plasticity are prima facie inconsistent with the small strain assumption which they were born out of.We gladly acknowledge this inconsistency which cannot be reconciled at present through the consideration of models of finite plasticity for lack of any kind of consensus of what such models could be.

    In[5],we derived what we believe to be the first evolution model for a multi-phase heterogeneous elasto-plastic material,although earlier work[9]previously analyzed a subclass of possible multi-phase heterogeneities.In any case,our results,specialized to a two-phase setting,demonstrate that the correct stress constraint on the interface only involves the resolved shear stress and that the corresponding set of admissible resolved shear stresses is that which corresponds to the intersection of the set of admissible stresses for each phase.This leads to a well-defined interfacial flow rule which,to the best of our knowledge,cannot be found in the abundant literature on elasto-plasticity,be it on the mathematical,or on the mechanical side.

    In this paper,we propose to investigate the impact of a vanishingly thin interface between the two phases and to demonstrate that such an interface is felt in the resulting two-phase model through an interfacial dissipation lower than that predicted by the pure two-phase problem.This question was suggested to us by Mark Peletier whom we gratefully acknowledge.Of course,we cannot consider a bona fide thin layer of a third material because the question of the modeling of the interface between that layer and the two phases would immediately render the investigation moot.Rather,we will consider a continuously varying set of admissible stresses near and on the interface and then propose to pass to the limit in the thickness of the transition.

    The result is given in Theorem 3.1 and further interpreted in Section 4.In a nutshell,we establish that any modeling of the interface as the limit of a vanishing third phase whose set of admissible stresses is smaller than the intersection of those in both phases will result in a lower interfacial dissipation,and hence that the pure two-phase material is the maximally dissipating model for the interface.

    So,in conclusion,it is indeed possible to model an elasto-plastic interface between two elasto-plastic phases.However,the interfacial dissipation cannot be chosen arbitrarily.It must be so that it is below that generated by the intersection of the sets of admissible stresses of both phases.

    1.2 Notations and preliminaries

    General NotationsFor A ? RN,χAdenotes the characteristic function of A,i.e.,χA(x)=1 for x ∈ A and χA(x)=0 for x 6∈ A.The indicator function of A,denoted by IA,is defined as IA(x)=0 for x ∈ A,and IA(x)=+∞ for x 6∈ A.The symbol?A stands for “restricted to A”.

    We will denote by LNthe N-dimensional Lebesgue measure and by HN?1the(N ?1)-dimensional Hausdorf fmeasure,which coincides with the usual area measure on sufficiently regular sets(see,e.g.,[4,Section 2.1]or[2,Section 2.8]).

    MatricesWe denote bythe set of N×N-symmetric matrices and bythe set of trace-free elements ofIf σ is an element ofthen σDis its deviatoric part,i.e.,its projection onto the subspaceoforthogonal to the identity matrix for the Frobenius inner product.The symbol·stands for that inner product and the symbol|·|for the Frobenius norm.The set of symmetric endomorphisms onis denoted byFor a,b∈RN,a⊙b stands for the symmetric matrix such that

    Functional SpacesGiven E?RNmeasurable,1≤p<+∞,and M a finite-dimensional normed space,Lp(E;M)stands for the space of p-summable functions on E with values in M,with associated norm denoted by k·kp.Given A ? RNopen,H1(A;M)is the Sobolev space of functions in L2(A;M)with distributional derivatives in L2.

    Finally,let X be a normed space.We denote by BV(a,b;X)and AC(a,b;X)the space of functions with bounded variation and the space of absolutely continuous functions from[a,b]to X,respectively.The total variation of f∈BV(a,b;X)is defined as

    MeasuresIf E is a locally compact separable metric space,and X a finite dimensional normed space,Mb(E;X)will denote the space of finite Radon measures on E with values in X.For μ ∈ Mb(E;X),we denote by|μ|its variation measure.The space Mb(E;X)is the topological dual ofthe set of continuous functions u from E to the vector dual X?of X which vanish at the boundary,i.e.,for every ε>0,there exists a compact set K ? E with|u(x)|< ε for x 6∈ K.

    The(Kinematic)Space BDLet ??RNbe open and bounded.The displacement field u lies in the space of functions of bounded deformations

    endowed with the norm

    We refer the reader to,e.g.,[12,Chapter 2]and[1]for background information.

    Besides elementary properties of BD(?),we will only appeal to the structure of Eu as a Radon measure:More precisely,as is the case for functions of bounded variation,the measure Eu decomposes as

    Here Eau denotes the part of the measure adsolutely continuous with respect to LN,so that

    The singular part is further decomposed into a jump part Eju and a Cantor part Ecu.Specifically,

    where Justands for the jump set of u(see[2,Definition 3.67]),[u]being the jump of u across Ju,while Ecu vanishes on Borel sets which are σ-finite with respect to the area measure HN?1(see[1,Proposition 4.4]).

    Finally,we say that

    iff

    The(Static)Space ΣLet ? ? RNbe open and bounded with a Lipschitz boundary.We set

    It is classical that,ifwith div σ ∈ L2(?;RN),σν is well-defined as an element of H?12(??;RN),ν being the outer normal to ??.

    More generally,consider an arbitrary Lipschitz subdomain A ? ? with outer normal ν,and? ? ?A open in the relative topology.We can define the restriction of σν on ? by testing against functions in H12(?A;RN)with compact support in ?.This amounts to viewing σν as an element of the dual to

    If σ ∈ Σ,then,in the spirit of[6,Lemma 2.4],we can define a tangential component[σν]τof σν on ? such that

    Indeed,consider any regularizationof σ onsuch that

    Define the tangential component[σnν]τ:=(σn)ν?((σn)ν·ν)ν.It is readily seen that[σnν]τ=[(σn)Dν]τ(the tangential component of(σn)Dis defined analogously).Since x 7→ ν(x)is an L∞(?;RN)-mapping,there exists an L∞(?;RN)-function[σν]τsuch that,up to a subsequence,

    If σD≡ 0,then clearly,[σν]τ≡ 0,so that[σν]τis only a function of(σn)Dwhich we will denote henceforth by[σDν]τ.Notice that[σDν]τmay depend upon the approximation sequence{σn}n(or at least upon{(σn)D}n).

    Finally,if?is a C2-hypersurface,i.e.,a C2-submanifold of RNof dimension N?1,then[σDν]τis uniquely determined as an element of L∞(?;RN).Indeed,for everywith support compactly contained in?(that is,by density

    where

    Since the normal component(? ·ν)ν of ? with respect to ? belongs toin view of the regularity of ν on ?,the definition of(σν)νis meaningful.

    2 Energetic Quasi-static Evolutions

    In this section,we review the variational formulation for a heterogeneous quasi-static evolution in perfect plasticity.When the spatial dependence of the convex set of admissible stresses is continuous,the problem was investigated in[9].However,in the case where the heterogeneity is made of the juxtaposition of several phases with no particular ordering properties,then the reader should refer to[5].Of course,both works find their root in the seminal paper[3]in which elasto-plastic evolution was analyzed as a variational evolution.

    The Reference Conf i gurationIn all that follows,??RNis an open bounded set with(at least)Lipschitz boundary and exterior normal ν.Further,the Dirichlet part Γdof ?? is a non-empty open set in the relative topology of?? with boundary ????Γdin ?? and we setReproducing the setting of[5,Section 6],we introduce the following definition.

    Definition 2.1We will say that ????Γdis admissible iff,for anywith

    where f ∈ LN(?;RN)and g∈ L∞(Γt;RN),and everysuch that there exists an associated pair(u,e)with

    the distribution,defined for all

    extends to a bounded Radon measure on RNwith|hσD,pi|≤ kσDk∞|p|.

    Definition 2.1 covers many “practical” settings like those of a hypercube with one of its faces standing for the Dirichlet part Γd.See[5,Section 6]for that and other such settings.

    Remark 2.1(2.2)defines a meaningful distribution on RN.Indeed,according to[5,Proposition 6.1],ifis such that divσ ∈ LN(?;RN)andthenfor every 1≤r<∞with

    for some Cr>0.On the other hand,u ∈ LN/N?1(?;RN)in view of the embedding of BD(?)into LN/N?1(?;RN).Further,u has a trace on ?? which belongs to L1(??;RN).Finally note that,if σ is the restriction to ? of a C1-function and if HN?1(????Γd)=0,then an integration by parts in BD(see[12,Chapter 2,Theorem 2.1])would demonstrate that the right-hand side of(2.2)coincides with the integral of ? with respect to the(well-defined)measure σDp.

    Further,we assume that ? is made up of two phases ?1,?2,together with the phase interface.Those phases are disjoint open sets with Lipschitz boundary.We haveand denote by Γ the inner interface,i.e.,

    We assume the existence of a compact set S?Γ with HN?1(S)=0 such that

    Finally,setting

    S′is taken to be such that

    and we set

    A domain ? that satisfies the collection of those(minimal)assumptions will be referred to henceforth as a C2-geometrically admissible multi-phase domain.

    Kinematic AdmissibilityGiven the boundary displacement w ∈ H1(?;RN),we adopt the following definition.

    Definition 2.2(Admissible Conf i gurations)A(w),the family of admissible configurations relative to w,is the set of triplets(u,e,p)with

    and such that

    where ν denotes the outer normal to ?? and(w?u)is to be understood in the sense of traces.

    The function u denotes the displacement field on ?,while e and p are the associated elastic and plastic strains.In view of the additive decomposition(2.3)of Eu and of the general properties of BD functions recalled earlier,p does not charge HN?1-negligible sets.Moreover,given a Lipschitz hypersurface D ? ? dividing ? locally into the subdomains ?+and ??,

    where ν is the normal to D pointing from ??to ?+,and u±are the traces on D of the restrictions of u to ?±.Since p is assumed to take values in the space of deviatoric matricesis perpendicular to ν,so that only particular plastic strains are activated along D.

    The Elasticity TensorThe Hooke’s law is given by an elementsuch that

    with c1,c2>0.

    For everywe set

    Admissible StressesIn elasto-plasticity,the deviatoric part of the stress σ is assumed to be restricted by the yield condition.For heterogeneous materials,this means that,at a.e.x∈?,there exists a convex compact setthe set of admissible stresses,such that σD(x)∈ K(x).

    We say that the multimap x ? K(x)is continuous on ? if it satisfies the lower semicontinuity condition

    ?ε>0,?Uxopen s.t.x∈ Uxand K(x)? K(y)+εB(0,1)for every y∈ Ux,

    together with the upper semi-continuity condition

    ?ε>0,?Uxopen s.t.x∈ Uxand K(y)?K(x)+εB(0,1)for every y∈ Ux.

    In that case,we further assume that the sets K(x)cannot be too small or too large,i.e.,there exist c3,c4>0 such that

    In the present setting,the heterogeneity is the result of the assembly of two distinct phases with associated sets of admissible stresses K1and K2with

    Then,the multimap x ? K(x)is not a priori defined on the interface Γ,nor on S′.We define it on ΓS as

    where ν(x)is the associated normal to Γ ,and[·]τdenotes the orthogonal projection to the hyperplane tangent to Γ at x.Notice that K(x)is a cylinder inOn S ∪ S′,we define K(x)arbitrarily as B(0,c3).

    Henceforth,we refer to this case as the pure two-phase case.

    The Dissipation PotentialThe Legendre transform of IK(x)yields the dissipation potentialgiven,for every x∈ ? ∪ Γdand everyby

    It is easily seen that,in the continuous as well as the pure two-phase cases,the map ξ 7→H(x,ξ)is convex and positively one-homogeneous,while H is Borel.

    In the pure two-phase case,note that,for x∈ΓS,H reads as

    if ξ=a⊥ ν(x),and

    Above and throughout the rest of this paper,

    Finally,

    Remark 2.2In the two-phase case,we can decide that the admissible stress set on the interface is not as described through(2.7),but rather it is associated with some compact convex set K3containing 0.Then,mimicking(2.7),we define

    on Γ S and complete the definition of K by B(0,c3)on S ∪ S′.

    The resulting dissipation potential H,defined on ΓS as

    and

    can then be seen to enjoy the same properties as in the pure two-phase case,provided that

    We call this latter setting the two-phase+interface case.

    For every admissible plastic strain p∈P,we define the dissipation functional as

    wheredenotes the Radon-Nikodym derivative of p with respect to its variation|p|.

    If t 7→ p(t)is a map fromwe also define,for every[a,b]? [0,T],

    to be the total dissipation over the time interval[a,b].

    Body and Traction ForcesFor simplicity,we do not consider any kind of force loads in this study.Adding those would only render the argument less legible.The results would be identical,provided that suitable safe loads conditions are satisfied(see[3,Section 2.2]).

    Prescribed Boundary DisplacementsThe boundary displacement w on Γdfor the time interval[0,T]is given by the trace on Γdof some

    In what follows,the energetic formulation of the quasi-static evolution is detailed in the footstep of[3]:The two ingredients of such evolutions are a stability statement at each time,together with an energy conservation statement that relates the total energy of the system to the work of the loads applied to that system.

    Definition 2.3(Energetic Quasi-static Evolution)The mapping

    is an energetic quasi-static evolution relative to w iff the following conditions hold for every t∈[0,T]:

    (a)Global stability:For every(v,η,q)∈ A(w(t)),

    (b)Energy equality:and

    where σ(t):=Ce(t).

    The following result was proved in[9,Theorem 3.14]for the continuous setting,or[5,Theorem 2.7]for the pure two-phase setting;note that,in either case,more general domains are admissible than those considered here.

    Theorem 2.1(Existence of Quasi-static Evolutions)Suppose that ? is a C2-geometrically admissible multi-phase domain.Assume that(2.4)and(2.10)are satisfied,and let(u0,e0,p0)∈A(w(0))satisfy the global stability condition(2.11).Finally,assume that the multi-map x?K(x)either is continuous,or corresponds to a pure two-phase case.

    Then there exists a quasi-static evolution{t 7→ (u(t),e(t),p(t)),t∈ [0,T]}relative to the boundary displacement w such that(u(0),e(0),p(0))=(u0,e0,p0).Finally the Cauchy stress

    is uniquely determined by the initial conditions.

    Remark 2.3The following regularity property holds true(see[3,Theorem 5.2]and[5,Proposition 2.11]):

    withAlso,the total dissipation D(0,t;p)is absolutely continuous.

    The extent to which the aforementioned energetic quasi-static evolutions are also classical evolutions is described in detail in e.g.[5,Section 3].For our purpose,it suffices to note that the following result holds.

    Remark 2.4Any quasi-static evolution in the sense of Definition 2.3 satisfies the balance equations

    and the admissibility constraint in the phases

    3 A Model with a Vanishing Interfacial Layer

    In this section,we wish to view the two-phase behavior as the limit of a smoothly varying multi-map x ? Kε(x)as the smoothing parameter ε tends to 0.To this effect,we consider the following two continuously increasing multi-maps:

    where

    Remark 3.1For example,one could take Ki(τ)= τK1+(1? τ)K3.

    We then consider

    and define

    The associated elasto-plastic model may be viewed as a two-phase model with a continuous transition to a smaller admissible set of stresses,namely K3,near the interface Γ.

    Since the associated multi-map x ? Kε(x)is obviously continuous and satisfies(2.5),Theorem 2.1 applies and delivers an energetic quasi-static evolution

    with associated dissipation potential Hε(x,ξ):=sup{τ·ξ:τ∈ Kε(x)}and associated total dissipation Dε(0,t;pε).Remark that,for i=1,2,

    whereas,since the maps Ki(τ)are increasing,

    Further,for the sake of simplicity,we assume that

    so that the initial minimizing state of the ε-problem is always(0,0,0).

    Define

    and the associated dissipation potential

    We also define,with obvious definitions,the dissipation potential H and the total dissipation D.

    In the context of Remark 2.2,the definitions above correspond to a two-phase+interface case.We propose to prove the following theorem.

    Theorem 3.1(An Evolution for the Two-Phase+Interface Case)Assume that ? is a C2-geometrically admissible multi-phase domain and that assumptions(2.4),(2.10),(3.1)–(3.7)are satisfied.Also assume the admissibility of????Γd(see Definition 2.1).

    There exists a subsequence of{ε}(that we do not relabel)and a quasi-static evolution t 7→(u(t),e(t),p(t))relative to w in the sense of Definition 2.3 with

    and H defined through(3.9)such that

    for every t∈[0,T].Finally,for every t∈[0,T],

    Remark 3.2The above theorem implies in particular the existence of a quasi-static evolution for the dissipation potential associated to K(x).The ensuing evolution is different from that obtained in the absence of the vanishing interface characterized by the admissible set K3.Indeed the latter would correspond to an identical K(x)except on ΓS where it would be given through(2.7)whereas it is given here through(2.8).See further remarks in that direction in Section 4 below.

    Proof Step 1(Bounds)The energy equality immediately implies that,for some C>0 and every t∈[0,T],

    Let ?′? RNbe open bounded such that ? ∪ Γd= ? ∩ ?′.We extend(uε(t),eε(t),pε(t))to?′by setting

    Clearly

    By a generalized version of Helly’s theorem(see[7,Theorem 3.2]),there exists a subsequence,not relabeled,such that,for every t∈[0,T],

    for someFor every t∈ [0,T],there exists a further subsequence{εt}such that

    and,appealing to Korn’s inequality in BD,

    for some u(t) ∈ BD(?′)with

    Clearly u(t)=w(t),e(t)=Ew(t)and p(t)=0 on ?′ ?,so that we deduce

    By restricting(u(t),e(t))to ? and p(t)to ? ∪ Γd,we get

    with

    Step 2(Stresses)Set t∈[0,T].Since

    we deduce,using the balance equations in Remark 2.4,that

    Concerning the stress constraint,the stress constraint in Remark 2.4 implies that

    Since ?ε≡ 1 if dist(x,Γ)≥ ε,for ε small enough,the previous constraint reduces to

    on any A???i.Since Kiis convex and closed,we conclude that

    Now,on Γ S,by the definition of Kε,so that,in particular,

    for some constant C>0.But,as detailed earlier in Subsection 1.2,since ΓS is a C2-hypersurface,is uniquely defined as the distributionon Γ S.That distribution converges to σD(t)ν? (σD(t)ν ·ν)ν on Γ S.But the latter is precisely[σD(t)ν]τ.

    Because of the bound(3.12),we conclude that

    Since the weak-? limits of sequences of elements with values in[K3ν]τremain there in view of the convex and closed character of that set,we finally obtain that

    Step 3(Global Stability)Set t∈[0,T].In view of(3.11)and(3.13),an argument identical to that of[5,Proposition 3.9]would demonstrate that,for every(v,η,q)∈ A(0),

    Thanks to the admissibility of????Γd,we can compute the masses and we obtain,in view of(2.2)(with f≡g≡0),

    The previous inequality immediately implies global stability by convexity of the quadratic form Q(e).In particular,as demonstrated in[5,Remark 2.6],(u(t),e(t))is uniquely determined by p(t),so that the convergences in(3.10)hold without passing to a t-dependent subsequence.

    Step 4(Lower Semi-continuity of the Dissipations)We argue at fixed t∈[0,T].Set

    where,for i=1,2,

    We can assume that,up to a(t-dependent)subsequence,

    for i=1,3.Clearly,

    with supp(pi)? ?i∪Γ ∪∪S′and supp(p3)? Γ,so that,in particular,

    Further,according to[5,Lemma 5.1],for i=1,2,

    where ν is the normal to Γ pointing towards ?2, λiis a finite positive measure supported on Γ S and aiis a Borel function on Γ S with ai⊥ ν λi-a.e.on Γ S.

    Now,as far asis concerned,we have

    whereandare the traces of uεon Γ coming from ?2and ?1,respectively.Sinceis a bounded measure on Γ,we immediately conclude that,for some C>0,

    so that,up to a subsequence that will not be relabeled,

    where b is the Borel Radon-Nikodym derivative of η with respect to its variation measure|η|.Since x 7→ ν(x)is continuous on Γ S,we deduce that

    Recalling(3.17)–(3.18)and taking into account that p does not charge sets of HN?1-measure 0 while HN?1(S)=0,we conclude that,in particular,

    where ζ:= λ1+ λ2+|η|and c is a suitable Borel function on Γ.

    Fix η >0.In view of(3.5)–(3.6),a direct application of Reshetnyak’s lower-semi-continuity theorem(see,e.g.,[2,Theorem 2.38])yields,for i=1,2,

    Letting η0 in the previous inequality and recalling(3.17)permit us to conclude that,for i=1,2,

    Further,a second application of Reshetnyak’s lower-semi-continuity theorem and(3.18)imply that

    Collecting(3.20)–(3.21),we obtain

    The sub-additive character of H3,(3.16)and(3.19)finally imply that

    which establishes that

    Step 5(Energy Equality)For every t∈[0,T],using(3.22),we get

    Above,the last equality is obtained by dominated convergence and the last inequality is a consequence of the global stability of(u(t),e(t),p(t))∈A(w(t))proved in Step 3(see the end of the proof of[5,Theorem 2.7,after the equation(2.29)]).

    We conclude that the energy equality holds,so that t 7→(u(t),e(t),p(t))is a quasi-static evolution for the two-phase+interface case according to Definition 2.3 and Remark 2.2.Moreover,the previous inequalities entail that

    from which we infer

    Thus in particular,

    which concludes the proof.

    4 Remarks

    In this last section,we put forth various short remarks concerning the evolution obtained in Theorem 3.1.

    Interfacial Stress AdmissibilityIn the course of proving Theorem 3.1,we established(see(3.13))that

    Flow RuleAny solution of the quasi-static evolution given in Theorem 3.1 satisfies a flow rule as detailed in the following.

    Theorem 4.1(Flow Rule) Consider a C2-geometrically admissible multi-phase domain.Also assume the admissibility of????Γd(see Definition 2.1).For a.e.t∈ [0,T],

    Moroever,

    where˙u1(t)and˙u2(t)are the traces on Γ of the restrictions of˙u(t)to ?1and ?2,respectively,assuming that ν points from ?1to ?2,and wheredenotes the normal cone – a cone of vectors – to[K3ν(x)]τat a vector ζ⊥ ν(x).

    Finally,there exists[σD(t)ν]τsuch that,for HN?1-a.e.

    The proof will not be given here.It follows verbatim from that of[5,Propositions 3.9,3.11,Theorem 3.13].

    Note that,in the pure two-phase case,the interfacial flow rule is different.In lieu of(4.2),one has,according to[5,Theorem 3.13],

    So the interfacial effect due to the presence of the vanishing layer is felt in the admissibility rule(4.1),as well as in the flow rule(4.2).

    Uniqueness of the StressIt can be established(see,e.g.,[5,Remark 2.6])that the Cauchy stress

    is uniquely determined by the initial conditions.Consequently,any quasi-static evolution for the two-phase+interface case will be such that

    whereas the balance equations(see Remark 2.4)and the stress admissibility constraints on each phase only permit us to assert a priori that

    DissipationIn order to secure the lower semi-continuity of the dissipations in the fourth step of the proof of Theorem 3.1,we had to assume that K3? K1∩K2,so that,correspondingly,H3(ξ) ≤ Hi(ξ),i=1,2.Barring this,the limit process fails.

    A direct proof of the existence of an energetic quasi-static evolution for a two-phase+interface evolution could be produced in the spirit of that of[5,Theorem 2.7].The main hurdle,that is,the lower semi-continuous character of the dissipation H defined in(3.9),would become impossible to prove whenever K3is not a subset of K1∩K2.

    Although,as stated above,one can prove directly the existence of an energetic quasi-static evolution for a two-phase+interface evolution,two results cannot be achieved through such a direct proof:The interfacial stress condition(4.1)and the interfacial flow rule(4.2).The approximation process devised in Section 3 is instrumental in deriving(4.1)from which(4.2)can then be obtained as in the proof of Theorem 4.1.

    So,any elasto-plastic model for a two-phase+interface model will have a dissipation on the interface Γ which is less than that of the pure two-phase case,and correspondingly,a set of admissible stresses on the interface that is smaller than K1∩K2.Thus,the pure two-phase case can be seen as the maximally dissipative interfacial model compatible with the bulk dissipations.

    [1]Ambrosio,L.,Coscia,A.and Dal Maso,G.,Fine properties of functions with bounded deformations,Arch.Rat.Mech.Anal.,139,1997,201–238.

    [2]Ambrosio,L.,Fusco,N.and Pallara,D.,Functions of Bounded Variation and Free Discontinuity Problems,Oxford University Press,Oxford,2000.

    [3]Dal Maso,G.,DeSimone,A.and Mora,M.G.,Quasistatic evolution problems for linearly elastic-perfectly plastic materials,Arch.Ration.Mech.Anal.,180(2),2006,237–291.

    [4]Evans,L.C.and Gariepy,R.F.,Measure theory and fine properties of functions,CRC Press,Boca Raton,FL,1992.

    [5]Francfort,G.A.and Giacomini,A.,Small-strain heterogeneous elastoplasticity revisited,Comm.Pure Appl.Math.,65(9),2012,1185–1241.

    [6]Kohn,R.V.and Temam,R.,Dual spaces of stresses and strains,with applications to Hencky plasticity,Appl.Math.Optim.,10(1),1983,1–35.

    [7]Mainik,A.and Mielke,A.,Existence results for energetic models for rate-independent systems,Calc.Var.Partial Differential Equations,22(1),2005,73–99.

    [8]Mielke,A.,Evolution of rate-independent systems,Evolutionary Equations.Vol.II,Handb.Diff er.Equ.,Dafermos,A.and Feireisl,E.(eds.),Elsevier,North-Holland,Amsterdam,2005,461–559.

    [9]Solombrino,F.,Quasistatic evolution problems for nonhomogeneous elastic plastic materials,J.Convex Anal.,16(1),1979,89–119.

    [10]Suquet,P.M.,Un espace fonctionnel pour les équations de la plasticité,Ann.Fac.Sci.Toulouse Math.(5),1(1),1979,77–87.

    [11]Suquet,P.M.,Sur les équations de la plasticité:existence et régularité des solutions,J.Mécanique,20(1),1981,3–39.

    [12]Temam,R.,Problèmes mathématiques en plasticité,Méthodes Mathématiques de l’Informatique[Mathematical Methods of Information Science],Vol.12,Gauthier-Villars,Montrouge,1983.

    12—13女人毛片做爰片一| 亚洲成av人片免费观看| 免费看日本二区| 国产精品电影一区二区三区| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 在线a可以看的网站| 无遮挡黄片免费观看| 成年女人永久免费观看视频| 精品一区二区三区视频在线 | 国产高清激情床上av| 日本免费a在线| 国产美女午夜福利| 国内久久婷婷六月综合欲色啪| 久久久国产成人精品二区| 深夜精品福利| 国产精品久久久久久亚洲av鲁大| 亚洲精品在线观看二区| 久久久久久国产a免费观看| 好男人在线观看高清免费视频| 级片在线观看| 精品国产超薄肉色丝袜足j| 精品国产美女av久久久久小说| 久久久久久久精品吃奶| 特大巨黑吊av在线直播| 熟妇人妻久久中文字幕3abv| 欧美在线黄色| 99久久无色码亚洲精品果冻| 久久伊人香网站| 又黄又爽又免费观看的视频| 搡女人真爽免费视频火全软件 | 亚洲久久久久久中文字幕| 国产伦一二天堂av在线观看| www日本黄色视频网| 男女之事视频高清在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲av成人精品一区久久| 成年版毛片免费区| 男女做爰动态图高潮gif福利片| 欧美zozozo另类| 中出人妻视频一区二区| 成年版毛片免费区| 搡女人真爽免费视频火全软件 | 欧美日本视频| 美女免费视频网站| 成人特级av手机在线观看| 亚洲av电影在线进入| 久久精品国产亚洲av涩爱 | 亚洲黑人精品在线| 午夜福利在线观看吧| 精品一区二区三区视频在线 | 精品久久久久久,| 国产高清激情床上av| 国产私拍福利视频在线观看| 有码 亚洲区| 18禁美女被吸乳视频| 老鸭窝网址在线观看| 俺也久久电影网| 美女高潮的动态| 国产又黄又爽又无遮挡在线| 啦啦啦韩国在线观看视频| 黄片大片在线免费观看| 两人在一起打扑克的视频| 国产亚洲精品久久久com| 亚洲人成网站在线播| av专区在线播放| 国产黄片美女视频| 不卡一级毛片| 国产一区在线观看成人免费| 亚洲av日韩精品久久久久久密| 男人的好看免费观看在线视频| 免费在线观看亚洲国产| 最近在线观看免费完整版| 欧美一级毛片孕妇| 黄色丝袜av网址大全| 日日摸夜夜添夜夜添小说| 色综合婷婷激情| 少妇高潮的动态图| 午夜福利在线观看免费完整高清在 | 丰满人妻一区二区三区视频av | 国产中年淑女户外野战色| 人妻久久中文字幕网| 亚洲最大成人中文| 亚洲,欧美精品.| 亚洲av免费高清在线观看| 可以在线观看毛片的网站| 国产爱豆传媒在线观看| 观看美女的网站| 狂野欧美激情性xxxx| 亚洲国产精品合色在线| 99热只有精品国产| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 香蕉av资源在线| 黄片大片在线免费观看| 国产亚洲精品综合一区在线观看| 国产成人系列免费观看| 亚洲五月天丁香| 精品人妻一区二区三区麻豆 | 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| 久久久久久大精品| 国产单亲对白刺激| 在线天堂最新版资源| 美女高潮喷水抽搐中文字幕| 国产视频内射| 在线观看66精品国产| 99热只有精品国产| 欧美黄色淫秽网站| 欧美日韩综合久久久久久 | 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 18美女黄网站色大片免费观看| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 深夜精品福利| 亚洲精品456在线播放app | 国产激情偷乱视频一区二区| 麻豆成人av在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品456在线播放app | 夜夜看夜夜爽夜夜摸| 午夜免费成人在线视频| 亚洲熟妇中文字幕五十中出| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 欧美极品一区二区三区四区| 淫妇啪啪啪对白视频| 久久精品亚洲精品国产色婷小说| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 国产精品女同一区二区软件 | 精品久久久久久,| 国产成年人精品一区二区| 波多野结衣高清作品| 色在线成人网| 国产一区二区亚洲精品在线观看| 免费电影在线观看免费观看| 一个人观看的视频www高清免费观看| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 婷婷亚洲欧美| 亚洲欧美日韩无卡精品| 国产精品免费一区二区三区在线| 国产欧美日韩一区二区三| 亚洲精品美女久久久久99蜜臀| 亚洲五月天丁香| 成人18禁在线播放| 久久精品国产综合久久久| 动漫黄色视频在线观看| 亚洲精品美女久久久久99蜜臀| 国产亚洲av嫩草精品影院| 中文字幕人妻熟人妻熟丝袜美 | av国产免费在线观看| 欧美一区二区国产精品久久精品| 国模一区二区三区四区视频| 美女高潮的动态| a级一级毛片免费在线观看| 老司机在亚洲福利影院| 人人妻人人澡欧美一区二区| АⅤ资源中文在线天堂| 老鸭窝网址在线观看| 校园春色视频在线观看| 国产精品99久久久久久久久| 此物有八面人人有两片| 亚洲av成人av| 18禁裸乳无遮挡免费网站照片| 少妇的丰满在线观看| 9191精品国产免费久久| 丁香欧美五月| www.www免费av| 成人欧美大片| 久久亚洲精品不卡| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 午夜a级毛片| 久久久色成人| 内射极品少妇av片p| 久久精品国产清高在天天线| 成人鲁丝片一二三区免费| 国产老妇女一区| 麻豆国产97在线/欧美| 亚洲第一欧美日韩一区二区三区| 亚洲专区国产一区二区| 噜噜噜噜噜久久久久久91| 法律面前人人平等表现在哪些方面| 成人特级黄色片久久久久久久| 亚洲狠狠婷婷综合久久图片| 黑人欧美特级aaaaaa片| 一a级毛片在线观看| 成年人黄色毛片网站| 欧美日本视频| 老汉色av国产亚洲站长工具| 欧美中文综合在线视频| 日韩欧美 国产精品| 亚洲av第一区精品v没综合| 国产 一区 欧美 日韩| 日本免费一区二区三区高清不卡| 欧美成人a在线观看| 看片在线看免费视频| av欧美777| 久9热在线精品视频| 一本综合久久免费| 亚洲国产欧洲综合997久久,| 亚洲av电影不卡..在线观看| 国产av在哪里看| 一个人观看的视频www高清免费观看| 成人欧美大片| 精品乱码久久久久久99久播| 午夜福利成人在线免费观看| 欧美又色又爽又黄视频| 俺也久久电影网| 国产熟女xx| 久久99热这里只有精品18| 成人性生交大片免费视频hd| 在线a可以看的网站| 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看 | 国产乱人伦免费视频| 国产精品三级大全| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 最新在线观看一区二区三区| 精品一区二区三区人妻视频| 久久天躁狠狠躁夜夜2o2o| 天堂av国产一区二区熟女人妻| 男女做爰动态图高潮gif福利片| 中文字幕精品亚洲无线码一区| 小说图片视频综合网站| 亚洲av熟女| 窝窝影院91人妻| 男人舔女人下体高潮全视频| 欧美丝袜亚洲另类 | 精品福利观看| 乱人视频在线观看| 国产激情偷乱视频一区二区| 亚洲18禁久久av| 色综合欧美亚洲国产小说| av天堂在线播放| 中国美女看黄片| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 国产不卡一卡二| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 综合色av麻豆| 99精品在免费线老司机午夜| 97超视频在线观看视频| 国产久久久一区二区三区| av中文乱码字幕在线| 亚洲av免费高清在线观看| 手机成人av网站| 一二三四社区在线视频社区8| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| 免费在线观看亚洲国产| 大型黄色视频在线免费观看| 午夜精品在线福利| 日本成人三级电影网站| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 国产69精品久久久久777片| 成人av一区二区三区在线看| 国产亚洲av嫩草精品影院| 国产精品一区二区三区四区免费观看 | 校园春色视频在线观看| av天堂在线播放| 真人一进一出gif抽搐免费| 国产毛片a区久久久久| 琪琪午夜伦伦电影理论片6080| 国产av一区在线观看免费| 精品久久久久久,| 一进一出抽搐动态| 成人av一区二区三区在线看| 国产精品嫩草影院av在线观看 | www.熟女人妻精品国产| 3wmmmm亚洲av在线观看| 欧美3d第一页| 99国产极品粉嫩在线观看| 好男人在线观看高清免费视频| av福利片在线观看| 欧美黑人巨大hd| 一本综合久久免费| 欧美性感艳星| 韩国av一区二区三区四区| 日本精品一区二区三区蜜桃| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 国产精品亚洲av一区麻豆| 久久久久久九九精品二区国产| 日日干狠狠操夜夜爽| 在线播放无遮挡| 少妇的逼好多水| 日韩欧美国产在线观看| 久久精品国产亚洲av香蕉五月| 欧美色欧美亚洲另类二区| 老熟妇仑乱视频hdxx| a在线观看视频网站| 亚洲色图av天堂| 叶爱在线成人免费视频播放| 免费av观看视频| www.999成人在线观看| 日韩欧美国产在线观看| 高清日韩中文字幕在线| 午夜福利成人在线免费观看| 一a级毛片在线观看| 欧美丝袜亚洲另类 | 国产99白浆流出| 欧美黑人巨大hd| 欧美精品啪啪一区二区三区| 两个人视频免费观看高清| 一本综合久久免费| 综合色av麻豆| 在线播放无遮挡| 国产精品日韩av在线免费观看| 人妻丰满熟妇av一区二区三区| 亚洲激情在线av| 国产久久久一区二区三区| 国产真人三级小视频在线观看| 国产视频内射| 此物有八面人人有两片| 免费在线观看亚洲国产| 久久精品人妻少妇| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| 国产精品久久久久久人妻精品电影| 日韩欧美在线乱码| 亚洲av电影在线进入| 波多野结衣巨乳人妻| 国产一区二区在线av高清观看| 真实男女啪啪啪动态图| 中文字幕人妻丝袜一区二区| 亚洲在线观看片| 国产成年人精品一区二区| 国产综合懂色| 88av欧美| 欧美最黄视频在线播放免费| 国产一区二区亚洲精品在线观看| 午夜免费男女啪啪视频观看 | 757午夜福利合集在线观看| 国产伦人伦偷精品视频| 亚洲最大成人中文| 亚洲黑人精品在线| 一级黄色大片毛片| 国产精华一区二区三区| 在线天堂最新版资源| 午夜老司机福利剧场| 日本成人三级电影网站| 国产精华一区二区三区| 日本黄色视频三级网站网址| 禁无遮挡网站| 色哟哟哟哟哟哟| 日韩亚洲欧美综合| 欧美一区二区精品小视频在线| 亚洲国产色片| 97碰自拍视频| 美女高潮的动态| 亚洲自拍偷在线| 成人鲁丝片一二三区免费| 久久国产乱子伦精品免费另类| 国产97色在线日韩免费| av国产免费在线观看| 婷婷丁香在线五月| 久久这里只有精品中国| 黄色丝袜av网址大全| 精品国产美女av久久久久小说| 尤物成人国产欧美一区二区三区| 岛国视频午夜一区免费看| 精品久久久久久久久久免费视频| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频| 国产精品三级大全| 中文字幕av在线有码专区| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 男女之事视频高清在线观看| h日本视频在线播放| 久久精品91无色码中文字幕| 九九在线视频观看精品| 国产欧美日韩一区二区精品| 97碰自拍视频| 狂野欧美激情性xxxx| 亚洲精品成人久久久久久| 精品午夜福利视频在线观看一区| 九九久久精品国产亚洲av麻豆| 国产久久久一区二区三区| 日韩欧美一区二区三区在线观看| 观看免费一级毛片| 床上黄色一级片| 日日夜夜操网爽| 国产精品三级大全| 香蕉久久夜色| 久久久久久久精品吃奶| 国产视频一区二区在线看| 美女cb高潮喷水在线观看| 欧美三级亚洲精品| 操出白浆在线播放| 村上凉子中文字幕在线| 中出人妻视频一区二区| 久久久成人免费电影| 最近最新中文字幕大全电影3| 日本精品一区二区三区蜜桃| 一区二区三区国产精品乱码| 国产伦人伦偷精品视频| av福利片在线观看| 亚洲最大成人手机在线| 男人舔奶头视频| 美女高潮的动态| 国产真人三级小视频在线观看| 国产成人啪精品午夜网站| 久久婷婷人人爽人人干人人爱| 国产av一区在线观看免费| 久久久久久久久久黄片| 亚洲av中文字字幕乱码综合| 日韩欧美免费精品| 国产精品98久久久久久宅男小说| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 中文字幕精品亚洲无线码一区| 天美传媒精品一区二区| 老司机在亚洲福利影院| 欧美乱妇无乱码| 在线观看av片永久免费下载| 国产69精品久久久久777片| 午夜福利欧美成人| 最近最新中文字幕大全电影3| 长腿黑丝高跟| 国产亚洲精品一区二区www| 69人妻影院| 一个人看的www免费观看视频| 黄片大片在线免费观看| 好男人电影高清在线观看| aaaaa片日本免费| 丁香欧美五月| 精品日产1卡2卡| 色综合亚洲欧美另类图片| 午夜精品一区二区三区免费看| 两性午夜刺激爽爽歪歪视频在线观看| 动漫黄色视频在线观看| 女警被强在线播放| 18禁黄网站禁片免费观看直播| 日本在线视频免费播放| 五月玫瑰六月丁香| 午夜免费男女啪啪视频观看 | 一本综合久久免费| 最近最新免费中文字幕在线| 国产高潮美女av| e午夜精品久久久久久久| av国产免费在线观看| 国产在视频线在精品| 少妇的逼好多水| 欧美乱码精品一区二区三区| 亚洲五月天丁香| 身体一侧抽搐| 色视频www国产| 午夜a级毛片| 精品久久久久久久久久免费视频| 久久久精品欧美日韩精品| 欧美日韩瑟瑟在线播放| 嫁个100分男人电影在线观看| 我的老师免费观看完整版| 非洲黑人性xxxx精品又粗又长| www日本黄色视频网| 国产综合懂色| 久久久精品欧美日韩精品| 老熟妇乱子伦视频在线观看| 1024手机看黄色片| 亚洲国产精品sss在线观看| 久久久久精品国产欧美久久久| 亚洲av成人av| 内射极品少妇av片p| 亚洲精品久久国产高清桃花| ponron亚洲| 国产精品久久久久久久久免 | 久久久久久久午夜电影| 日韩精品中文字幕看吧| 好男人在线观看高清免费视频| 国产男靠女视频免费网站| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费一区二区三区在线| 国产激情欧美一区二区| 亚洲av美国av| 成年女人毛片免费观看观看9| 日日夜夜操网爽| 国产高清视频在线观看网站| svipshipincom国产片| 国产av在哪里看| 黄色片一级片一级黄色片| 国产一级毛片七仙女欲春2| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 中文字幕熟女人妻在线| 国产激情欧美一区二区| 精品乱码久久久久久99久播| 在线播放国产精品三级| 3wmmmm亚洲av在线观看| 国产v大片淫在线免费观看| 午夜福利18| aaaaa片日本免费| 99国产极品粉嫩在线观看| 国产中年淑女户外野战色| 国产高潮美女av| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 中国美女看黄片| 手机成人av网站| 欧美zozozo另类| 免费无遮挡裸体视频| 丝袜美腿在线中文| 国产毛片a区久久久久| 免费人成视频x8x8入口观看| 亚洲色图av天堂| 夜夜爽天天搞| 亚洲国产精品合色在线| 久久久久久久精品吃奶| h日本视频在线播放| 精品一区二区三区视频在线 | 又爽又黄无遮挡网站| 99热只有精品国产| 欧美乱色亚洲激情| 一本一本综合久久| 国产真人三级小视频在线观看| 怎么达到女性高潮| 亚洲欧美日韩卡通动漫| 国产高清视频在线播放一区| 精品久久久久久成人av| 久久久久久久午夜电影| 一级黄色大片毛片| e午夜精品久久久久久久| 国产精品,欧美在线| 欧美日韩国产亚洲二区| 亚洲最大成人手机在线| 美女免费视频网站| 国产欧美日韩精品一区二区| 男女视频在线观看网站免费| 伊人久久大香线蕉亚洲五| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| 白带黄色成豆腐渣| 在线免费观看不下载黄p国产 | 美女免费视频网站| 99精品在免费线老司机午夜| 母亲3免费完整高清在线观看| 日韩精品青青久久久久久| 级片在线观看| 免费观看人在逋| 1000部很黄的大片| 内地一区二区视频在线| 亚洲av电影在线进入| 中文亚洲av片在线观看爽| 桃色一区二区三区在线观看| 国产高清视频在线观看网站| 日韩精品中文字幕看吧| 狂野欧美白嫩少妇大欣赏| 99久久精品热视频| 99久久99久久久精品蜜桃| 久久久久九九精品影院| 少妇人妻一区二区三区视频| 免费观看精品视频网站| 天天躁日日操中文字幕| 女人高潮潮喷娇喘18禁视频| 亚洲av成人精品一区久久| 成人午夜高清在线视频| 国内少妇人妻偷人精品xxx网站| 国产精品永久免费网站| 国产精品女同一区二区软件 | 国产视频一区二区在线看| 亚洲一区高清亚洲精品| 国产精品一区二区三区四区久久| 亚洲国产精品合色在线| 少妇人妻精品综合一区二区 | 中文字幕熟女人妻在线| 欧美三级亚洲精品| 欧美极品一区二区三区四区| 午夜福利免费观看在线| 全区人妻精品视频| 亚洲欧美激情综合另类| 国产精品一区二区三区四区久久| 老熟妇乱子伦视频在线观看| aaaaa片日本免费| 波多野结衣高清作品| 国产黄片美女视频| xxxwww97欧美| 天堂√8在线中文| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 中文字幕人妻丝袜一区二区| 欧美日韩精品网址| 国产97色在线日韩免费| 哪里可以看免费的av片| 麻豆成人av在线观看| 成年免费大片在线观看| 少妇的逼好多水| 麻豆成人av在线观看| 蜜桃亚洲精品一区二区三区| 亚洲精品粉嫩美女一区| 在线观看66精品国产| 亚洲精品456在线播放app | 免费电影在线观看免费观看| 免费看光身美女| 精品无人区乱码1区二区| 男女床上黄色一级片免费看| 国产精品99久久99久久久不卡|