• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    污染控制—燃料電池的使能技術(shù)

    2018-12-05 07:02:56
    汽車文摘 2018年12期
    關(guān)鍵詞:冷卻劑主題詞陰極

    主題詞:燃料電池系統(tǒng) 裂化 污染物 陰極空氣過濾器 離子交換過濾器 冷卻劑粒子過濾器

    1 INTRODUCTION

    Climate change is one of the major threats to mankind.To reach the target of maximum 1.5°C temperature rise compared to pre-industrial levels set by the COP21 Conference in Paris[1],emissions from transport,accounting for 23%of the total CO2emissions[2],have to be drastically reduced.

    FuelCellElectric Vehicles(FCEV)offeran alternative to BEV for local zero-emission transport.The energy for electric driving is generated on-board by the catalytic reaction of hydrogen and oxygen from ambient air in a cold combustion reaction,yielding only water as the reaction product.

    As BEV′s driving range depends on the capacity and consequently in battery pack weight,their application for higher duty applications is limited.Fuel cell technology offers an alternative for transport with high daily driving ranges in combination with high vehicle weight[3],as shown in Figure 1.

    To improve the LT PEM fuel cell stack′s durability,degradation rates must be significantly reduced to reach the expected lifetime.The following chapterswill highlight solutions to this challenge.

    2 CLEAN CATHODE AIR

    2.1 Prior State-of-The-Art

    Laboratory Investigation

    Figure 1:Favorable applications of fuel cell technology in transport[3]

    Gaseous contaminations in the cathode air have a negative impact on the durability of LT PEM fuel cell systems,e.g.through poisoning of the platinum catalyst or damaging the membrane.The sensitivity of the stack will increase as platinum loading must be reduced to achieve necessary cost savings.In a publically funded project[4],the main sources for degradation were investigated systematically.Gases containing S-and N-atoms like SO2and NOxturned out to be especially critical for the system performance.Particles,e.g.salt crystals,also have a negative impact and have to be separated.The presence of ammonia at concentration levels even below 1 ppm poisons the electrodes of the cell which in turn affects the cell voltage as well[5].

    Poisoning the cathode with different gases showed that the pollutants cause a significant loss of performance,which can be irreversible without active regeneration.Further investigations showed that the critical concentration level can be as low as 100 ppb.Besides the harmful gases,a negative effect of ions,originating from salt particles like sodium chloride,negatively affect the cell voltage as well(Figure 2).The risk of such a contamination is especially high in coastal areas[6].

    Figure 2:Laboratory tests of effect from contamination on fuel cell voltage[6]

    Proof of Concept:Protection of stationary Fuel Cells against Real-Life Contamination

    Current research focusses on the transfer of the findings from laboratory tests to real-life environments.The positive effect of adsorptive filter elements on fuel cell degradation was proven in a field trial.In long-term test runs with cyclic NO load,the degradation rate after run-in was cut by almost 50%-from 60μV/h to 32μV/h[7].In a stationary fuel cell system containing two shortstacks,one stack was run without a filter element while a cathode air filter protected the other stack.Both started at the same cell voltage and were operated at 65°C and 400 mA/cm2.As shown in Figure 3,the degradation of the unprotected cell was more severe[4].In addition,it was demonstrated through continuous gas measurements that NOxhas a direct influence on the cell voltage under reallife conditions. The detected peaks in pollutant concentration directly lead to a partly reversible voltage drop of the fuel cell voltage.At the end of the test,a voltage difference of 70 mV was observed,equalling approximately 2.2%of the initial voltage,already after 650 hours of operation.The reaction of the filterprotected stack was much less pronounced which proved the functionality of the adsorptive cathode air filter.

    Figure 3:Filter performance under real-life conditions[4]

    The negative effect of NO on stack voltage is associated with molecular adsorption to the platinum catalyst.As NO binds at the same coordination sites as O2,NO adsorption is slowing down the oxygen reduction reaction.To reverse the negative effect,regeneration strategies can be employed.Tests reveal that a complete regeneration will only take place after several hours of regeneration,and the air has to be free of any NOx.In addition,reduction of NO can create NH4+which in turn is harmful for the Ionomer as it irreversibly occupies active sites for proton transport[7].

    2.2 New Insights Into Real-Life Effects On Fuel Cell Durability:ALASKA

    The ALASKA Project:Targets and Approach

    To investigate the effect of real-life contamination on fuel cell durability in mobile applications,the funded projectALASKA(“Auswertungvon Luftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotive Brennstoffzellen”, support code 03ET6036A)was initiated with the project partners Zentrum fürBrennstoffzellenTechnik (ZBT)GmbH,Forschungszentrum Jülich GmbH,Daimler AG,and MANN+HUMMEL Innenraumfilter GmbH&Co.KG.Oneoftheproject′stargetswasto continue the development of adsorbents against gases poisoning the fuel cell and to gain a better understanding of the necessary capacity and lifetime,with a special focus on the effect of peak concentrations.To gain the necessary data with high precision,a truck equipped with several analysers for the designated harmful gases operated as a mobile lab,measuring the concentration of the harmful substances with high spatiotemporal resolution.

    Figure 4:MOBILAB vehicle[8]

    A test lap to gather the required data was defined,containing all relevant types of roads,and also a representative height profile.The lap′s length was about 93 km,the road profile is depicted in Figure 5.

    Figure 5:Test lap for measurements of airborne contaminants[8]

    After a statistically relevant number of measurements,the typical concentration levels of the target gases were related to the different types of roads.The results of the measurements supported the knowledge-based development of the cathode air filter(Figure 6).Furthermore,the highly sensitive test equipment was being used to investigate the behaviour of the adsorbent under real-life condition to achieve additional performance improvements.

    Figure 6:Real-life NOXpollution levels on different road types(adapted from[9])Material Development:Activated Carbon

    The contaminants′profiles collected in the ALASKA project showed the need to develop specific adsorbents with tailored selectivity(Figure 7).

    Figure 7:Adsorption profiles of modified activated carbons for different target gases

    Activated carbons have proven to be a superior adsorbent choice.Since activated carbons mostly possess non-polar groups on their surfaces,impregnation is important for adsorbing polar gases such as NH3or NOx[10].

    Media Development

    Adsorbent materials

    Bulk measurements(Figure 7)of different activated carbon types show that different treatments are beneficial for some characteristic groups,but lead to a performance drop for other substances.Additionally the separation efficiency for some gases can be lower if other,more strongly bonding molecules,are present in gas mixtures.As protection against a broad range of harmful substances is required,further research led to the development of multilayer media containing these tailored adsorbents in different layers(Figure 8).Special care has to be taken of the rightsequence of layers for fulladsorption performance.Very selective adsorbent should be placed on the upstream side so that the pollutants do not block the binding sites of the less specific ones.

    Figure 8:Multilayer design for gas mixtures

    By selection of the most specific activated carbons and mixing them in the right proportion,the performance range of the adsorption media can be optimized.If the systemsareoperated in areaswith ahigh sulfur concentrations,e.g.areas with geysers or volcanoes,the share of catalytic activated carbon should be higher.For regions with high NH3levels,media with a higher content of the activated carbon with an acid impregnation yield higher capacity.Through this,multilayer media can be easily tailored for specific requirements.

    Figure 9:Breakthrough and capacity measurements of tailored filter media

    Figure 9 shows the adsorption performance of such media compositions.By using a higher share of the acidimpregnated carbon,the NH3adsorption capacity is enhanced.

    Underreal-life operating conditions,the gas concentrations will not be constant,but fluctuating.To analyse the adsorption performance,several filter media samples were tested on-road as part of the ALASKA project (Figure 10),showing excellent separation efficiency even at low concentration levels[11].

    Figure 10:Filter sample NH3separation efficiency under real-life driving conditions

    Particle filter media

    Salt particles can drain the cell voltage as well.HEPA mediaaccording to EN1822 show particle separation efficiencies of 99.95%at the most penetrating particle size.Therefore,such media protect the cathode againstsodium chloride particles very well.The disadvantage is a potentially fast media clogging,which requires a pre filter in dusty environments.To avoid an extended demand of mounting space,a double layer bellow was developed[11],as shown in Figure 11.

    Here,a HEPA media layer is pleated together with a media having a lower efficiency and a higher dust holding capacity.In this structure it is possible to generate a secure protection against fine particles as well as a sufficient dust holding capacity in a minimum mounting space.

    Figure 11:Double layer bellow

    Filter Element Designs

    Laminated media offer the advantage of adsorbent′s immobilization,so negative influence from movement or vibrations of the system can be avoided.Furthermore,the pressure drop can be optimized in relation to the performance density ofthe activated carbon with different design concepts(Figure 12).The trade-off between the performance characteristics (separation efficiency,capacity and pressure loss)on filter element level requires to find the best compromise between packaging constraints and adsorption performance.

    Figure 12:Typical air flow/pressure loss profiles for different element designs

    A standard pleated filter brings the benefit of a high filtration surface which leads to a lower media velocity and a low pressure drop,especially important for high volume flows,e.g.in FCEV.The open structure of a pleated filter results in a lower performance density.Alternatively,a stacked filter can be applied to gain a higher utilization of the available mounting space.The higher amount of activated carbon in the same volume brings more capacity and a longer contact time with the adsorbent.The higher carbon and performance density leads to a higher pressure loss of the filter element.

    For the automotive application investigated in the ALASKA project,a combination of stacked adsorbent layers(Figure 13)with pleated filter media turned out to be the best design option[11].

    Figure 13:ALASKA filter element

    The projectresultsclearly show thatharmful contamination levels of airborne contamination are easily exceeded in selected environments,and that cathode air filters with adsorbent stages are efficient means to reduce degradation rates of LT PEM stacks.

    3 CLEANFUELCELLCOOLANT

    3.1 Removal of Ions:Ion Exchanger Filter

    Scientific background

    To remove the heat generated by the fuel cell stack,liquid cooling with water-glycol mixtures is often used.It is crucial to keep the liquid at a very low electric conductivity to avoid electric shorts in the fuel cell stack.During operation,ions can enter the liquid e.g.from metal surfaces of coolant loop components,additives from plastics,and corrosive effects,leading to an increase in electric conductivity.Furthermore,the reactive ions will further propagate corrosion in the cooling circuit,acting as catalysts.Deposits containing different metal ions(Cr,Mn,Fe,Ni and Ca)indicate a degradation of the material′ssurfaceswhich can harm the fuelcell additionally.H2O2can be formed in the fuel cell(Figure 14)and even if the membrane is resistant against it under normal conditions,the presence of metal ions together with H2O2will catalyze the chemical degradation of the membrane.Additionally,almost all cations(except Li+)can replace the protons in the sulfonic acid functions of the membrane,which leads to a decreased protonic conductivity and therefore a performance drop[12].

    Figure 14:(l.)Vents corroded in De-Ionized(DI)water(r.)deposits of metal ions[12]

    To keep the conductivity low and to protect the coolant loop from accelerated corrosion,ion exchange technology must be applied.

    Ion Exchange Filters for Automotive Applications:Material and Product Design

    A mixture of strongly acidic and basic resins was developed which maintains its high volumetric capacity even at elevated temperatures,enabling the use in automotive applications.Strongly basic ion exchange resins often show a loss of capacity caused by thermal degradation of the anion-binding groups.This effect is attributed to the“Hofmann Degradation” which eliminatesone methylgroup from the quaternary functional group,yielding a tertiary amine,or even eliminates the whole amine block.Both mechanisms require the presence of OH--anions.For thermal aging tests,the resins where immersed in a water/ethylene glycol mixture and stored for three weeks at 90°C.The samples′remaining ion exchange capacity were measured and compared to the initial values,showing the degree of temperature- induced degradation.Monodisperse styrene-divinylbenzene copolymer(PSDVB) resins with sulfonic acid and quaternary ammonium functions combined good volume-based capacity with a very low degradation after the aging procedure.

    To achieve full utilization of the resin mix,an innovative grid structure was developed.The internal lattice structure directs the coolant flow in a way that all resin is used efficiently(Figure 15).In addition,the internal matrix structure keeps the resin beads slightly apart,thus lowering the pressure loss in operation.The internal structure also prevents resin de-mixing caused by vibration in fuel cell systems(Figure 16).

    Figure 15:Homogenous flow field at ion exchange filter inlet

    Proof of Concept:Breakthrough Curves

    As the levels of initial ionic contamination and dragin rates are often not available,typical contamination levels, main contaminants and time- dependent concentration levels were defined,based on literature research,for proof-of-concept testing.The fulfilment of the separation task was proven by breakthrough measurements.The increase in electric conductivity indicates that the resins′capacities are fully spent,and that a filter change is required.

    Figure 16:Typical ion exchange filter breakthrough curve

    The qualification of the service interval depends on the unique application and is done together with the customer,based on the concrete operation requirements.

    3.2 Removal of Particles:Coolant Particle Filter

    Problem Description

    In addition to ions,the fuel cell coolant can be contaminated by particles.Potential sources for these particles can be the internal surfaces of piping and other components if the parts are not manufactured,stored and assembled in special environments,e.g.in clean rooms.These primary particles can lead to the formation of secondary particles,thus increasing the particle load.Hard particles can lead to several problems,e.g.blocking of narrow coolant channels through agglomeration and inducing wear inside the coolant pump.Both factors can lead to a reduction in cooling efficiency.In contrast to ion exchange filters which are typically installed in a bypass loop,coolant particle filters are placed in the coolant fullflow.This makes it necessary to choose product designs with very low pressure loss at high volume flow.In addition,the material selection for all components is strictly limited to materials which are compatible with the coolant to avoid degradation and leaching of additives which would increase the electric conductivity.

    Coolant Particle Filters:Material and Product Design

    Often simple meshes are used to hold back particles.These have the disadvantage that large splinters can easily passthrough iforiented in flow direction,perpendicular to the mesh(Figure 17).3D fibre structures overcome this concept′s drawback.

    Figure 17:MULTIGRADE media for coolant particle filters

    Media with high porosity are applied for low pressure drop.As these have a low thickness,an additional supporting grid must be applied downstream to stabilize the filterpleatsunderhigh volume flow conditions.

    ThroughComputationalFluidDynamics(CFD)analysis,a pressure-drop optimized filter design was developed,as shown in Figure 18.

    Figure 18:CFD simulation and product design for coolant particle filters

    4 SUMMARY

    Efficient contaminant removal from cathode air and coolant is required to pave the way to robust and durable,yet affordable fuel cell systems.With ever lower catalyst concentration,the need for a highly efficient protection will increase if the expected system lifetime shall be achieved.Special emphasis will remain on the separation of NH3as it does not only block the catalyst,but also damages the ionomer/membrane material[13].In Selective Catalytic Reduction (SCR)exhaustaftertreatment devices,ammonia slip can occur if an excess of AdBlue/urea solution is sprayed into the system,which will challenge the stack lifetime even more as these systems are expected to strongly penetrate the market.Research on the sensitivity of a LT PEM fuel cell against airborne contamination under real-life automotive conditions led to the knowledge-based development of adsorbents and media for cathode air filters,tailored to effective protection.

    To enable the efficient heat removal from the fuel cell stack,the required cleanliness level of the coolant has to be maintained.To protect the fuel cell system from corrosion and electric shorts,ion exchange resins have been developed to keep the electric conductivity and ion contamination in the liquid cooling circuit low.Innovative product features enhance the performance and resin utilization.In addition to ion removal,a coolant particle filter was developed to prevent wear in the coolant pump and blocking of narrow coolant channels.

    ABBREVATIONS

    ALASKA AuswertungvonLuftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotiv-Brennstoffzellen

    BEV Battery Electric Vehicle

    CFD Computational Fluid Dynamics

    CHP Combined Heat and Power

    DI De-Ionized

    FCEV Fuel Cell Electric Vehicle

    HEPA High Efficiency ParticulateAir filter

    LT PEM Low Temperature Proton Exchange Membrane

    PS-DVB Styrene-Divinylbenzene copolymer

    SCR Selective Catalytic Reduction

    Author Introduction of Dr.Michael Harenbrock

    Dr.Michael Harenbrock joined MANN+HUMMEL GmbH,a global leader in Filtration,in 1998.He works on fuel cell and battery projects since 2010.In his current position as Principal Expert Electric Mobility,he strategically identifies the need for new filtration solutions for Electric Mobility including Fuel Cell systems through technology and marketscouting,and coordinates all innovation- related activities globally.Networking and collaboration in industry organizations are essential parts of his work as well as presentations in international conferences.

    Contact at michael.harenbrock@mann-hummel.com

    猜你喜歡
    冷卻劑主題詞陰極
    核電站主冷卻劑泵可取出部件一體化吊裝檢修工藝探索
    Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    反應(yīng)堆冷卻劑pH對核電廠安全運(yùn)行影響研究
    中國核電(2017年1期)2017-05-17 06:10:13
    冷卻劑泄漏監(jiān)測系統(tǒng)在核電廠的應(yīng)用
    中國核電(2017年1期)2017-05-17 06:10:05
    冷卻劑管道取樣管焊縫裂紋分析
    焊接(2015年8期)2015-07-18 10:59:14
    IT-SOFCs陰極材料Sm0.8La0.2Ba1-xSrxFe2O5+δ的制備與表征
    微生物燃料電池空氣陰極的研究進(jìn)展
    我校學(xué)報(bào)第32卷第5期(2014年10月)平均每篇有3.04個(gè)21世紀(jì)的Ei主題詞
    我校學(xué)報(bào)第32卷第6期(2014年12月)平均每篇有3.00個(gè)21世紀(jì)的Ei主題詞
    亚洲天堂国产精品一区在线| 成人综合一区亚洲| 国产精品无大码| 亚洲最大成人中文| 国产视频内射| 一夜夜www| 久久精品综合一区二区三区| 黄片无遮挡物在线观看| 久久精品国产亚洲av涩爱| 在线免费观看不下载黄p国产| 亚洲高清免费不卡视频| 国国产精品蜜臀av免费| 日本免费一区二区三区高清不卡| av福利片在线观看| 少妇的逼水好多| 晚上一个人看的免费电影| 国内精品宾馆在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品人妻久久久影院| 美女大奶头视频| 午夜福利在线观看免费完整高清在| 国产成人一区二区在线| av线在线观看网站| 亚洲成人久久爱视频| 岛国在线免费视频观看| 一级二级三级毛片免费看| 国产视频首页在线观看| 亚洲av电影在线观看一区二区三区 | 久久精品久久久久久久性| 蜜桃亚洲精品一区二区三区| 久久久久性生活片| 久久精品国产亚洲av天美| 午夜激情福利司机影院| 秋霞在线观看毛片| 成人亚洲精品av一区二区| 国产高清三级在线| 亚洲美女搞黄在线观看| 亚洲久久久久久中文字幕| 直男gayav资源| 免费黄网站久久成人精品| 日本一本二区三区精品| 直男gayav资源| 久久这里有精品视频免费| 国产亚洲精品av在线| 国产伦一二天堂av在线观看| 国内精品一区二区在线观看| 午夜免费男女啪啪视频观看| 国产精品.久久久| 麻豆久久精品国产亚洲av| 久久热精品热| 日韩一本色道免费dvd| av在线观看视频网站免费| 欧美日本亚洲视频在线播放| 国内少妇人妻偷人精品xxx网站| av在线观看视频网站免费| 日本与韩国留学比较| 久久精品久久久久久噜噜老黄 | 国产精品美女特级片免费视频播放器| 成人av在线播放网站| 99热6这里只有精品| 青春草国产在线视频| 成人性生交大片免费视频hd| 欧美丝袜亚洲另类| 精品99又大又爽又粗少妇毛片| 中文字幕免费在线视频6| 极品教师在线视频| 久久久久久久久久久丰满| 亚洲精品一区蜜桃| 男女那种视频在线观看| 在线播放无遮挡| 亚洲在久久综合| 国内精品美女久久久久久| 日日啪夜夜撸| 国产精品久久久久久精品电影| 我的女老师完整版在线观看| 国产av不卡久久| www.色视频.com| 国产亚洲午夜精品一区二区久久 | 成人综合一区亚洲| 日韩三级伦理在线观看| av播播在线观看一区| 汤姆久久久久久久影院中文字幕 | 亚洲国产成人一精品久久久| 国产人妻一区二区三区在| 国产黄片视频在线免费观看| 欧美性猛交╳xxx乱大交人| 在线观看一区二区三区| 日韩人妻高清精品专区| 亚洲成人中文字幕在线播放| 男女下面进入的视频免费午夜| 午夜日本视频在线| 日本-黄色视频高清免费观看| 黄色配什么色好看| 久久久欧美国产精品| 观看免费一级毛片| 别揉我奶头 嗯啊视频| 韩国高清视频一区二区三区| 乱系列少妇在线播放| 亚洲国产最新在线播放| 国产精品日韩av在线免费观看| 亚洲精品乱久久久久久| 在线观看一区二区三区| 亚洲精品久久久久久婷婷小说 | 看非洲黑人一级黄片| 国产av在哪里看| 久久久久久九九精品二区国产| 人妻夜夜爽99麻豆av| 国产毛片a区久久久久| 波多野结衣巨乳人妻| 亚洲在线观看片| 老女人水多毛片| 高清毛片免费看| 老司机福利观看| 啦啦啦啦在线视频资源| 麻豆精品久久久久久蜜桃| 中文乱码字字幕精品一区二区三区 | 日本黄色视频三级网站网址| 日韩国内少妇激情av| 免费人成在线观看视频色| 男女那种视频在线观看| 国产在线一区二区三区精 | 波多野结衣巨乳人妻| 久久久精品大字幕| av在线老鸭窝| 国产av一区在线观看免费| 高清毛片免费看| av在线老鸭窝| 啦啦啦观看免费观看视频高清| 欧美一级a爱片免费观看看| 中文在线观看免费www的网站| 欧美成人午夜免费资源| 男女那种视频在线观看| 国产成人精品一,二区| 欧美97在线视频| 老女人水多毛片| 亚洲人成网站高清观看| 国产一区有黄有色的免费视频 | 最近中文字幕高清免费大全6| 久久综合国产亚洲精品| 一个人免费在线观看电影| 国产精品女同一区二区软件| 成人漫画全彩无遮挡| 一个人免费在线观看电影| 一级毛片久久久久久久久女| 免费大片18禁| 我要看日韩黄色一级片| 色综合站精品国产| 97在线视频观看| 亚洲av电影在线观看一区二区三区 | av卡一久久| 国产成人a∨麻豆精品| 亚洲精品影视一区二区三区av| 美女xxoo啪啪120秒动态图| 最近中文字幕高清免费大全6| 狠狠狠狠99中文字幕| av在线播放精品| 卡戴珊不雅视频在线播放| 亚洲五月天丁香| 美女cb高潮喷水在线观看| 国产精品嫩草影院av在线观看| 久99久视频精品免费| 国产精品久久久久久久久免| 国产综合懂色| 中文字幕av在线有码专区| 免费看光身美女| 成人亚洲欧美一区二区av| 麻豆久久精品国产亚洲av| 国产 一区精品| 亚洲综合色惰| 中文精品一卡2卡3卡4更新| 国产亚洲最大av| 国产精品美女特级片免费视频播放器| 国产视频内射| 国产男人的电影天堂91| 国产在视频线精品| 又黄又爽又刺激的免费视频.| 永久免费av网站大全| 日本午夜av视频| 我要搜黄色片| 一级av片app| 看十八女毛片水多多多| 国产精品国产三级专区第一集| 国产精品精品国产色婷婷| 日韩一区二区三区影片| 亚洲不卡免费看| 国内精品一区二区在线观看| 日韩精品有码人妻一区| 亚洲婷婷狠狠爱综合网| 精品99又大又爽又粗少妇毛片| 国产精品.久久久| 三级经典国产精品| a级毛色黄片| 国产片特级美女逼逼视频| 91久久精品国产一区二区成人| 免费电影在线观看免费观看| 免费观看a级毛片全部| 精品一区二区三区人妻视频| 成年版毛片免费区| 久久久久久久久久黄片| 性色avwww在线观看| 午夜激情福利司机影院| 少妇熟女欧美另类| 欧美另类亚洲清纯唯美| 级片在线观看| 欧美潮喷喷水| 日韩国内少妇激情av| 国产av码专区亚洲av| 汤姆久久久久久久影院中文字幕 | 中文在线观看免费www的网站| 黄色欧美视频在线观看| 色5月婷婷丁香| 看十八女毛片水多多多| 久久精品人妻少妇| 日本午夜av视频| 免费电影在线观看免费观看| 欧美一区二区国产精品久久精品| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 禁无遮挡网站| 成年免费大片在线观看| 在线播放国产精品三级| 久久久久久久久久成人| 在线观看66精品国产| 亚洲精品,欧美精品| 高清日韩中文字幕在线| 男女国产视频网站| 日韩av在线大香蕉| 乱系列少妇在线播放| 国产精品久久久久久久久免| 国产探花在线观看一区二区| 日本熟妇午夜| 大话2 男鬼变身卡| 亚洲精品成人久久久久久| 久久久久久久久大av| 国产精品女同一区二区软件| 亚洲综合精品二区| 日本黄色片子视频| 日本一本二区三区精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久久电影| 亚洲激情五月婷婷啪啪| 久久99热这里只有精品18| 成年女人永久免费观看视频| 亚洲高清免费不卡视频| 乱系列少妇在线播放| 亚洲人成网站在线播| 精品久久久久久久人妻蜜臀av| 伦理电影大哥的女人| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| 欧美性猛交╳xxx乱大交人| 亚洲va在线va天堂va国产| 能在线免费观看的黄片| 如何舔出高潮| 亚洲在线自拍视频| 久久久久免费精品人妻一区二区| 国产av码专区亚洲av| 久久99蜜桃精品久久| 七月丁香在线播放| 亚洲av电影在线观看一区二区三区 | 激情 狠狠 欧美| 国语对白做爰xxxⅹ性视频网站| 亚洲最大成人av| 床上黄色一级片| 日本爱情动作片www.在线观看| 亚洲欧美日韩高清专用| 国产精品久久电影中文字幕| 国产伦精品一区二区三区四那| 网址你懂的国产日韩在线| 汤姆久久久久久久影院中文字幕 | 日本熟妇午夜| 久久久午夜欧美精品| 天堂√8在线中文| 国产精品久久久久久av不卡| 国产在视频线精品| 欧美zozozo另类| 少妇裸体淫交视频免费看高清| 午夜精品在线福利| 亚洲久久久久久中文字幕| 欧美潮喷喷水| av在线蜜桃| 久久久久久久久大av| 一个人免费在线观看电影| 精品人妻熟女av久视频| 午夜精品国产一区二区电影 | 国内精品美女久久久久久| 久久99热这里只有精品18| 男女边吃奶边做爰视频| 亚洲aⅴ乱码一区二区在线播放| 熟女人妻精品中文字幕| 国产又黄又爽又无遮挡在线| 国内精品一区二区在线观看| 男人舔奶头视频| 国产精品一区二区三区四区久久| 六月丁香七月| 干丝袜人妻中文字幕| 国产伦精品一区二区三区四那| av天堂中文字幕网| 国产真实伦视频高清在线观看| 免费不卡的大黄色大毛片视频在线观看 | 在线观看av片永久免费下载| 免费电影在线观看免费观看| 国产免费视频播放在线视频 | 亚洲四区av| 99久久人妻综合| 日韩,欧美,国产一区二区三区 | 久久久久九九精品影院| 女人被狂操c到高潮| 国产伦理片在线播放av一区| 边亲边吃奶的免费视频| 日韩大片免费观看网站 | 亚洲精品456在线播放app| 国产成人午夜福利电影在线观看| 麻豆久久精品国产亚洲av| 国产精品一及| 亚洲aⅴ乱码一区二区在线播放| 麻豆av噜噜一区二区三区| 国产激情偷乱视频一区二区| 三级男女做爰猛烈吃奶摸视频| 婷婷色综合大香蕉| 观看美女的网站| 99热这里只有是精品在线观看| 久久久欧美国产精品| 国产高潮美女av| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 精品久久久久久久久久久久久| 国产精品一区二区在线观看99 | 午夜免费男女啪啪视频观看| 国产成人精品久久久久久| 久久久成人免费电影| 观看美女的网站| 婷婷色av中文字幕| 日日摸夜夜添夜夜添av毛片| 成人毛片60女人毛片免费| 最近最新中文字幕免费大全7| 亚洲精品影视一区二区三区av| 晚上一个人看的免费电影| 国产伦一二天堂av在线观看| 边亲边吃奶的免费视频| 天堂√8在线中文| 男人和女人高潮做爰伦理| 久久精品国产鲁丝片午夜精品| 少妇高潮的动态图| 欧美日韩精品成人综合77777| 搡老妇女老女人老熟妇| 久久精品久久久久久久性| 麻豆一二三区av精品| 天天躁夜夜躁狠狠久久av| 99在线人妻在线中文字幕| 99久久精品国产国产毛片| 晚上一个人看的免费电影| 国产成人一区二区在线| 又粗又爽又猛毛片免费看| 亚洲国产欧美在线一区| 午夜老司机福利剧场| 亚洲国产精品久久男人天堂| 成人高潮视频无遮挡免费网站| 日本免费一区二区三区高清不卡| 国产成人91sexporn| 搡老妇女老女人老熟妇| 久久久久性生活片| 国产在线男女| 日本-黄色视频高清免费观看| 日本wwww免费看| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| 国产又色又爽无遮挡免| 日本免费在线观看一区| 亚洲av.av天堂| 性插视频无遮挡在线免费观看| 亚洲天堂国产精品一区在线| 国产精品.久久久| 亚洲成人中文字幕在线播放| 久久久精品94久久精品| 水蜜桃什么品种好| 久久人妻av系列| 搞女人的毛片| 亚洲精品,欧美精品| 欧美一区二区国产精品久久精品| 亚洲欧美日韩高清专用| 国产日韩欧美在线精品| 中文亚洲av片在线观看爽| 国产成人免费观看mmmm| 久久午夜福利片| 国产久久久一区二区三区| 高清视频免费观看一区二区 | 大香蕉久久网| 亚洲欧美成人综合另类久久久 | 国产69精品久久久久777片| 久久亚洲国产成人精品v| 国产精品福利在线免费观看| 色吧在线观看| 18禁裸乳无遮挡免费网站照片| 中文乱码字字幕精品一区二区三区 | 免费搜索国产男女视频| 少妇猛男粗大的猛烈进出视频 | 大又大粗又爽又黄少妇毛片口| 寂寞人妻少妇视频99o| 婷婷色麻豆天堂久久 | 国产精品一区www在线观看| 欧美成人免费av一区二区三区| 又爽又黄a免费视频| 伦精品一区二区三区| 亚洲在久久综合| 国产免费男女视频| 国产成人免费观看mmmm| 国语对白做爰xxxⅹ性视频网站| 久久久国产成人免费| 欧美丝袜亚洲另类| 女的被弄到高潮叫床怎么办| 一级毛片aaaaaa免费看小| 99久久九九国产精品国产免费| av播播在线观看一区| 一级二级三级毛片免费看| av女优亚洲男人天堂| 精品久久久久久成人av| 精品国内亚洲2022精品成人| 午夜福利网站1000一区二区三区| 精品一区二区免费观看| 久久午夜福利片| 内地一区二区视频在线| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 高清午夜精品一区二区三区| 国产精品,欧美在线| 69人妻影院| 日韩欧美国产在线观看| 三级国产精品欧美在线观看| 国产精品人妻久久久影院| 亚洲五月天丁香| 国产激情偷乱视频一区二区| 日本黄大片高清| 少妇的逼好多水| 乱系列少妇在线播放| 日本熟妇午夜| 久久久久久久久久黄片| 日韩 亚洲 欧美在线| 中国美白少妇内射xxxbb| 男的添女的下面高潮视频| av在线天堂中文字幕| 亚洲在线观看片| 日本与韩国留学比较| 丰满少妇做爰视频| 在线播放无遮挡| av播播在线观看一区| 搡老妇女老女人老熟妇| 天堂网av新在线| 亚洲精品亚洲一区二区| 丰满乱子伦码专区| 午夜福利成人在线免费观看| 中文字幕av在线有码专区| 边亲边吃奶的免费视频| 亚洲伊人久久精品综合 | 久久久欧美国产精品| 国产一区二区三区av在线| 国产成人a∨麻豆精品| 国产在视频线在精品| 亚洲电影在线观看av| 丰满少妇做爰视频| 三级经典国产精品| 两个人视频免费观看高清| 国产伦理片在线播放av一区| 色吧在线观看| 熟女人妻精品中文字幕| 亚洲国产日韩欧美精品在线观看| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 少妇熟女欧美另类| 村上凉子中文字幕在线| 人妻系列 视频| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 日本黄大片高清| 国产亚洲av嫩草精品影院| av.在线天堂| 午夜免费激情av| 大香蕉久久网| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花 | 小蜜桃在线观看免费完整版高清| 一级毛片久久久久久久久女| 亚洲在久久综合| 深爱激情五月婷婷| 精品久久久久久久人妻蜜臀av| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 国产单亲对白刺激| 波野结衣二区三区在线| 九九热线精品视视频播放| 国产乱来视频区| 波野结衣二区三区在线| 床上黄色一级片| 十八禁国产超污无遮挡网站| 少妇的逼好多水| 国产欧美日韩精品一区二区| 久久精品影院6| 在线播放无遮挡| 偷拍熟女少妇极品色| 国产精品野战在线观看| 偷拍熟女少妇极品色| av在线亚洲专区| 亚洲av熟女| 国内精品一区二区在线观看| 欧美激情在线99| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品成人久久久久久| 九九爱精品视频在线观看| av又黄又爽大尺度在线免费看 | 久久国产乱子免费精品| av黄色大香蕉| 高清日韩中文字幕在线| 亚洲av中文字字幕乱码综合| 狂野欧美激情性xxxx在线观看| 99久久九九国产精品国产免费| 色播亚洲综合网| 国产精品综合久久久久久久免费| 成人av在线播放网站| 国产真实伦视频高清在线观看| 欧美3d第一页| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 久久精品国产自在天天线| 一级爰片在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精华霜和精华液先用哪个| 午夜久久久久精精品| 久久欧美精品欧美久久欧美| 少妇熟女欧美另类| 亚洲国产精品sss在线观看| 国产一级毛片在线| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 日本爱情动作片www.在线观看| 国产成人一区二区在线| 国产高清视频在线观看网站| 大又大粗又爽又黄少妇毛片口| 国国产精品蜜臀av免费| 欧美日韩国产亚洲二区| 免费看美女性在线毛片视频| 97超碰精品成人国产| 国产亚洲最大av| 国产色爽女视频免费观看| 中文精品一卡2卡3卡4更新| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 内地一区二区视频在线| 九色成人免费人妻av| 99久久精品一区二区三区| 国产亚洲最大av| 欧美最新免费一区二区三区| 18禁裸乳无遮挡免费网站照片| 日韩av不卡免费在线播放| a级毛色黄片| 热99在线观看视频| 最近最新中文字幕大全电影3| 在线观看一区二区三区| 久久久久久久国产电影| 精品午夜福利在线看| 国产在视频线在精品| 成人特级av手机在线观看| 久久久久久久久久久免费av| 久久精品影院6| 亚洲最大成人中文| 欧美激情在线99| 九九在线视频观看精品| 少妇熟女欧美另类| 欧美bdsm另类| a级一级毛片免费在线观看| av在线播放精品| 国产探花极品一区二区| 老司机影院成人| 男的添女的下面高潮视频| 中文字幕免费在线视频6| 最新中文字幕久久久久| 天堂网av新在线| 国产高清有码在线观看视频| 老司机影院毛片| 99在线视频只有这里精品首页| 亚洲精品aⅴ在线观看| 麻豆乱淫一区二区| 美女黄网站色视频| 麻豆一二三区av精品| 性插视频无遮挡在线免费观看| 国产av码专区亚洲av| 干丝袜人妻中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 国产精品精品国产色婷婷| 老司机影院毛片| 亚洲高清免费不卡视频| 国产三级中文精品| 一区二区三区免费毛片| 男女啪啪激烈高潮av片| 建设人人有责人人尽责人人享有的 | 久久久久国产网址| 国产精品一区www在线观看| 久久99精品国语久久久| 乱码一卡2卡4卡精品| 九九热线精品视视频播放| 人体艺术视频欧美日本| 成人性生交大片免费视频hd| 最新中文字幕久久久久| 欧美97在线视频| av视频在线观看入口| 国产精品久久久久久久电影| 亚洲人与动物交配视频| www日本黄色视频网| av黄色大香蕉| 视频中文字幕在线观看| 国产精品一区二区在线观看99 | 亚洲怡红院男人天堂| 人人妻人人看人人澡| 嫩草影院新地址| 亚洲成av人片在线播放无| 亚洲av熟女|