顧翠伶 王寧 梁艷艷
摘 要:本文對1990-2014年我國人口時間序列進行分析,建立GM(1,1)模型,對未來人口數(shù)進行分析,為相關(guān)政策的制定提供依據(jù)。
關(guān)鍵詞:GM(1,1)模型;預(yù)測;殘差檢驗;后驗差檢驗;關(guān)聯(lián)度檢驗
人口預(yù)測在政治、經(jīng)濟、環(huán)境、教育、醫(yī)療衛(wèi)生、農(nóng)業(yè)生產(chǎn)等方面都有非常重要的應(yīng)用。人口時間序列預(yù)測是根據(jù)一個歷史的序列觀測值,找出符合人口變化規(guī)律的函數(shù),根據(jù)這個函數(shù)將歷史觀測值作為輸入值,預(yù)測出未來的人口值。本文對1990-2014年我國人口時間序列進行分析,建立GM(1,1)模型,對未來人口數(shù)進行分析,為相關(guān)政策的制定提供依據(jù)。
1 GM(1,1)模型原理
灰色預(yù)測法是一種對不確定性因素的系統(tǒng)進行預(yù)測的方法[1],就是對在一定范圍內(nèi)變化的、與時間有關(guān)的灰色過程進行預(yù)測?;疑珪r間序列預(yù)測是灰色預(yù)測的一種,灰色系統(tǒng)常用的數(shù)據(jù)處理有兩種方式,累加和累減兩種。
累加是將原始序列通過累加得到生成列。記原始時間序列為:
則一次累加生成列為:
同理可做m次累加,有:
累減是累加的逆運算,累減可將累加生成列還原為非生成列,在建模中獲得增量信息。一次累減的公式為:
設(shè)時間序列X(0)有n個觀察值,X(0)={X(0)(1),X(0)(2),…,X(0)(n)}通過累加生成新序列X(1)={X(1)(1),X(1)(2),…,X(1)(n)},則GM(1,1)模型相應(yīng)的微分方程為:
求解微分方程即可得到預(yù)測模型為:
2 GM(1,1)模型的檢驗
灰色預(yù)測檢驗一般包括殘差檢驗、關(guān)聯(lián)度檢驗和后驗差檢驗。
2.1 殘差檢驗。按照預(yù)測模型計算,并將累減生成,然后計算原始序列與\1-297\96-x2.jpg>的絕對誤差序列及相對誤差序列。
2.2 關(guān)聯(lián)度檢驗。根據(jù)關(guān)聯(lián)度的計算方法,計算出\1-297\96-x2.jpg>與原始序列\1-297\96-x2.jpg>的關(guān)聯(lián)系數(shù),然后計算出關(guān)聯(lián)度,根據(jù)經(jīng)驗,當(dāng)ρ=0.5時,關(guān)聯(lián)度大于0.6便滿意了。
2.3 后驗差檢驗
計算原始序列的標準差:
計算絕對誤差序列的標準差:
計算方差比:
計算小誤差概率:
表1 ?GM(1,1)模型精度檢驗等級參照表
[\&指標名稱\&精度等級\&相對誤差\&關(guān)聯(lián)度\&方差比\&小誤差概率\&1優(yōu)
2良好
3合格
4不合格\&0.05
0.10
0.20
0.30\&>0.80
>0.70
>0.60
>0.50\&≤0.35
≤0.50
≤0.65
≥0.65\&≥0.95
≥0.80
≥0.70
<0.0\&]
3 GM(1,1)模型在我國人口序列預(yù)測中的應(yīng)用
這里利用1990-2014年河南省GDP時間序列作為已知序列,建立GM(1,1)模型對未來值進行預(yù)測。對原始序列進行累加,得到一次累加生成序列X(1)。通過累加生成序列X(1)建立GM(1,1)模型,利用MATLAB軟件進行最小二乘求解,可以得到:
因而灰色預(yù)測微分方程為:
化簡即可得到預(yù)測模型為:
計算擬合值
下面對該模型的預(yù)測精度進行檢驗。實踐中可以計算得到絕對誤差序列為:
Δ(0)={0,0.3344,0.2735,0.2144,0.1619,0.1102,0.0621,0.0246,
0.0014,0.0201,0.0356,0.0358,0.0348,0.0333,0.0167,0.0189,0.0067,0.0624,0.0183,0.2553,0.1424,0.0748,0.0913,0.1041}
相對誤差序列為:
A={0,0.0285,0.0231,0.0179,0.0133,0.0090,0.0050,0.0020,0.0010,
0.0016,0.0028,0.0028,0.0027,0.0026,0.0013,0.0106,0.0055,0.0067,0.0076}
相對誤差都小于0.05,預(yù)測精度很高。
計算關(guān)聯(lián)度:
min{Δi0}={0,0.3344,0.2735,0.2144,0.1619,0.1102,0.0621,0.0246,
0.0014,0.0201,0.0356,0.0358,0.0348,0.0333,0.0167,0.0189,0.0067,
0.0624,0.0183,0.2553,0.1424,0.0748,0.0913,0.1041}=0
max{Δi0}={0,0.3344,0.2735,0.2144,0.1619,0.1102,0.0621,0.0246,
0.0014,0.0201,0.0356,0.0358,0.0348,0.0333,0.0167,0.0189,0.0067,
0.0624,0.0183,0.2553,0.1424,0.0748,0.0913,0.1041}=0.3344
關(guān)聯(lián)系數(shù)為:
由關(guān)聯(lián)系數(shù)計算相關(guān)系數(shù)為:
計算原始序列
所有的ei都小于S0,故P=1,C<0.35,
模型
模型經(jīng)過檢驗后可以用于預(yù)測,預(yù)測公式為:
對未來6年的數(shù)值進行預(yù)測,結(jié)果見表2所示。由預(yù)測結(jié)果知未來幾年我國人口將保持持續(xù)增長。
表2 ?利用GM(1,1)模型對序列未來值進行預(yù)測
[年份\&2015\&2016\&2017\&2018\&2019\&2020\&預(yù)測值\&13.8667\&13.9515\&14.0369\&14.1227\&14.2092\&14.2961\&]
參考文獻:
[1]徐國祥.統(tǒng)計預(yù)測和決策[M].上海:上海財經(jīng)大學(xué)出版社,2014.