• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuous Flow Left Ventricular Assist Device Therapy: A Focused Review on Optimal Patient Selection and Long-Term Follow-up Using Echocardiography

    2015-05-22 03:33:40JuanVilaroMDAnitaSzadyMDMustafaAhmedMDJacquelineDawsonMDandJuanArandaJrMD

    Juan R. Vilaro, MD, Anita Szady, MD, Mustafa M. Ahmed, MD, Jacqueline Dawson, MD and Juan M. Aranda Jr., MD

    1North Florida/South Georgia Veterans Health System, Cardiology Section, Gainesville, FL, USA

    2University of Florida College of Medicine, Division of Cardiovascular Medicine, Gainesville, FL, USA

    3Western Kentucky Heart and Lung Associates, Division of Cardiology, Scottsville, KY, USA

    Introduction

    Despite widespread awareness and use of scientif i cally proven life-prolonging medical and device-based therapies over the last two decades,heart failure remains a leading cause of morbidity, mortality, and health care expenditure in the United States [1]. Patients who have progressive heart failure syndromes despite receiving standard treatment, including medical therapy and cardiac resynchronization, are being increasingly considered for implantation of continuous-f l ow left ventricular (LV) assist devices (CF-LVADs). CFLVADs are effective in improving survival and quality of life in patients with advanced heart failure, and can be used as destination therapy or as a bridge to heart transplantation [2, 3]. The increasing incidence of CF-LVAD implantation over the last decade mandates an effort from all practicing physicians, not just heart failure specialists,to understand the basic anatomic and physiologic implications of these devices on cardiac structure and function. Echocardiography plays an integral role in the evaluation of patients with advanced heart failure who are being considered for or are mechanically supported by a CF-LVAD. Here we provide a focused clinical review on the use of echocardiography in two main aspects of the evaluation of these patients: (a) optimal patient selection for CF-LVAD support and (b) follow-up assessment of optimal pump function.

    Optimal Patient Selection

    In patients being considered for durable CF-LVAD implantation, the preoperative echocardiogram is a critical part of the evaluation and can be a powerful predictor of short-term and long-term clinical outcomes after implantation. The preoperative echocardiogram should focus on the following:

    · Detailed assessment of right ventricular (RV)and LV size, structure, and function

    · Presence of signif i cant valvular regurgitation,particularly of the aortic and tricuspid valves

    · Presence of intracardiac thrombi

    · Presence of intracardiac shunts

    Left Ventricular Structure and Function

    Patients being considered for CF-LVAD placement almost invariably have severe reduction in their LV systolic function. Consideration of mechanical circulatory support, including CF-LVADs, is not recommended if the LV ejection fraction is greater than 25% [4]. Careful measurement of LV dimensions is also important, as the presence of relatively small LV cavities, specifically smaller than 63 mm, has been independently associated with increased morbidity and mortality after CF-LVAD implantation [5]. This is likely related to excessive LV emptying and exaggerated leftward shift of the interventricular septum due to its close proximity to the inf l ow cannula. This abnormal septal deformation worsens RV function [6], and can also cause direct physical contact of the septum with the inf l ow cannula, termed a suction event. Suction events prevent optimal function of the CF-LVAD as they automatically trigger speed decrements and are frequently associated with ventricular arrhythmias [7]. From a structural and functional standpoint, hearts with a severely reduced LV ejection fraction and moderate to severe degrees of LV dilation are therefore likeliest to benef i t from CF-LVAD support.

    Right Ventricular Structure and Function

    Assessment of RV function is critical in patients being considered for LV assist device (LVAD)implantation. The hemodynamic effects of a CFLVAD on the right ventricle can be divergent. The desired favorable effect is improvement in RV performance following unloading of the left side of the heart and subsequent decongestion of the pulmonary circulation. However, several hemodynamic consequences on the right ventricle following initiation of CF-LVAD support challenge the right side of the heart. Three potentially detrimental effects on right-sided heart function are (1) acute increase in right ventricular preload (which requires an equivalent increase in right-sided cardiac output),(2) leftward septal deformation resulting from LV unloading leading to worsening RV function, and(3) worsening tricuspid regurgitation.

    There are numerous validated echocardiographic measures of RV structure and function [8]. This review will focus on two indices that have been studied in CF-LVAD patients, are reproducible, and are easily obtainable: (a) tricuspid annular plane systolic excursion (TAPSE) and (b) heart rate– corrected duration of tricuspid regurgitation (TRDc).

    TAPSE represents the distance of longitudinal motion of the tricuspid annulus during systole and is a validated index of RV systolic function [8]. It is obtained by M-mode imaging of the lateral tricuspid annulus obtained from an apical four-chamber view. An example is illustrated in Figure 1. TAPSE values below 7.5 mm have high specificity for postoperative right-sided heart failure, and may indicate a need for more aggressive preoperative hemodynamic optimization and/or the need for prolonged inotropic support following CF-LVAD implantation [9].

    Figure 1 Assessment of Right Ventricular Systolic Function by Tricuspid Annular Plane Systolic Excursion (TAPSE) Measurement. The Longitudinal Motion of the Lateral Tricuspid Annulus is 27 mm, Consistent with Normal Right Ventricular Systolic Function (Normal is More Than 16 mm).

    TRDc is a novel index described by Topilsky et al. [5] in a large cohort of CF-LVAD patients from the Mayo Clinic. One calculates it by measuring the duration of the tricuspid regurgitant Doppler jet and dividing it by the square root of the R-R interval. TRDc is a heart rate–adjusted measure of the time to pressure equalization between the right ventricle and the right atrium during systole that integrates right atrial compliance and the severity of tricuspid regurgitation. In this regard, it can predict the hemodynamic impact of an acute volume load increase on the right atrium, an expected result of CF-LVAD implantation. Not surprisingly, it was found on multivariate analysis to have a strong ability to predict rates of RV failure and death following LVAD implantation. Patients with a TRDc of less than 461 ms had an adjusted 2-year mortality odds ratio of 2.3 compared with patients with a TRDc longer than 461 ms. Examples of TRDc that would predict low and high risks of RV failure and death are illustrated in Figure 2.

    Valvular Insuffi ciency

    Accurate assessment of any underlying valvular regurgitation, particularly of the aortic and tricuspid valves, is crucial in the evaluation of patients being considered for CF-LVADs, as it directly impacts decisions to perform additional surgery at the time of implantation.

    Aortic Regurgitation

    There are several validated quantitative and qualitative methods for assessing the severity of aortic insuff i ciency (AI) [10]. Quantitative methods include regurgitant orif i ce and regurgitant volume calculation, which can be done with spectral Doppler imaging or the proximal isovelocity surface area method, and vena contracta or jet width measurement. Qualitative measures include pressure half-time and degree of descending aorta diastolic fl ow reversal. A brief summary of quantitative and qualitative estimates of AI severity is given in Table 1. It is important to remember that in patients with advanced heart failure, LV filling pressures are almost invariably elevated and the pressure halftime method may overestimate the severity of AI signifi cantly [11]. The severity of any preexisting AI will typically worsen to some degree following initiation of CF-LVAD support [12]. Although CFLVAD support is in many cases well tolerated in patients with minimal or mild AI, the presence of moderate AI or worse can result in a physiologically ineffective circuit (left ventricle → inf l ow cannula→ outf l ow cannula → ascending aorta → left ventricle) owing to a large fraction of the blood volume exiting the outf l ow graft regurgitating into the left ventricle [13]. For this reason, any patient with AI of more than mild severity should also undergo concomitant aortic valve closure at the time of LVAD implantation. Repair with a single coaptation stitch at the time of implantation provides effective and durable repair of moderate or severe AI in patients in whom a CF-LVAD has been implanted [14].

    Tricuspid Regurgitation

    A detailed assessment of tricuspid valve structure and function is key in the preoperative assessment of patients being considered for CF-LVAD implantation, particularly when there is any signif i cant degree of tricuspid regurgitation. Similarly to its effects on overall RV function, the hemodynamic effects of CF-LVAD support on tricuspid regurgitation may result in worsening, unchanged, or improved tricuspid regurgitation severity [15, 16].The acute increase in RV end-diastolic volumes following CF-LVAD support can cause functional tricuspid regurgitation to worsen, leading to ineffective forward fl ow and a syndrome of progressive RV failure. The severity of tricuspid regurgitation at the baseline is associated with increased risk of RV failure when it is moderate or worse on the preoperative transthoracic echocardiogram [17].However, there are conf l icting data regarding the benef i ts of tricuspid valve repair at the time of CFLVAD implantation in patients with moderate or severe tricuspid regurgitation, and the decision to perform concomitant tricuspid valve repair is ultimately deferred to the performing surgeon [18–20].Tricuspid regurgitation severity can be graded quantitatively by vena contracta width or tricuspid regurgitant jet area, or qualitatively by evaluation of the Doppler prof i le of the hepatic vein (systolic fl ow reversal implies severe tricuspid regurgitation)[10]. An illustration of severe tricuspid regurgitation by color Doppler imaging as well as hepatic vein systolic fl ow reversal is illustrated in Figure 3.Table 2 brief l y summarizes the parameters of tricuspid regurgitation severity.

    Figure 2 (A) Example of a Patient with a Heart Rate–corrected Tricuspid Regurgitation Duration (TRDc) Conferring a High Risk of Postoperative Right-sided Heart Failure and Death (TRDc = 384 ms). (B) Example of a patient with a TRDc conferring a low risk of right ventricular failure and death (TRDc = 519 ms).

    Table 1 Echocardiographic Parameters Used in Grading the Severity of Aortic Regurgitation.

    Figure 3 (A) Example of severe tricuspid regurgitation by color Doppler imaging. Note the broad-based regurgitant jet reaching the posterior wall of the right atrium. (B) Pulsed-wave Doppler imaging demonstrating hepatic vein systolic fl ow reversal,consistent with severe tricuspid regurgitation.

    Table 2 Echocardiographic Parameters Used in Grading the Severity of Tricuspid Regurgitation.

    Evaluation for Intracardiac Thrombi

    Preoperative identif i cation of intracardiac thrombus, particularly in the LV apex, which is not uncommon with dilated cardiomyopathy and a severely reduced LV ejection fraction, is also an important part of preoperative planning before CFLVAD implantation. Although the presence of an apical thrombus does not contraindicate placement of a CF-LVAD, it requires removal of the thrombus at the time of surgery before insertion of the inf l ow cannula in the LV apex. One study reported that of 100 patients in whom an LVAD has been implanted over 3 years, six had an LV apical thrombus identif i ed preoperatively or intraoperatively.None of them experienced a neurological event,pump thrombosis, or pump malfunction [21]. LV thrombi can be readily detected by transthoracic echocardiography, typically in the apical views. If images are of limited quality, echocardiography contrast agents should be used as they signifi cantly improve the sensitivity, specificity, and accuracy of echocardiography in diagnosing LV thrombus [22].An example is shown in Figure 4.

    Presence of Intracardiac Shunts and Patent Foramen Ovale

    Figure 4 Apical Four-Chamber View Demonstrating Mural Left Ventricular Apical Thrombus in a Patient with Recent Anterior Transmural Myocardial Infarction.

    The echocardiogram before CF-LVAD implantation should include careful inspection for any evidence of intracardiac shunting, including a patent foramen ovale (PFO). A PFO are not uncommon and has a reported prevalence of up to 25% in the general population [23]. Although it is typically noted incidentally and not felt to cause any signif i cant shunting,the acute lowering of left-sided intracardiac pressures resulting from CF-LVAD support can precipitate increased right to left interatrial shunting and clinically important hypoxemia and cyanosis [24].Preoperatively, transthoracic echocardiography can identify atrial level communication with color Doppler imaging of the interatrial septum, or in the apical windows following intravenous administration of agitated saline [25]. The appearance of agitated saline bubbles in the left heart chambers within three beats or less of their appearance in the right side of the heart is typically felt to represent the presence of an intracardiac shunt, most commonly a PFO. It is, however, important to remember that in patients with advanced heart failure and signifi cantly elevated right-and left-sided atrial pressures there may not be a high enough gradient between both atria to cause a detectable shunt. Therefore, in addition to preoperative inspection for shunting, the intraoperative transesophageal echocardiogram should be used to confirm the presence or absence of any shunting,including a PFO that may not have been detected by transthoracic echocardiography. A PFO identif i ed in patients undergoing CF-LVAD implantation should be closed at the time of surgery to eliminate the risk of hypoxemia from right to left shunting.

    Follow-up Echocardiographic Assessment After Continuous-Flow Left Ventricular Assist Device Placement

    After surgical implantation of a CF-LVAD, echocardiography continues to be an essential clinical tool for the ongoing evaluation and follow-up of pump function, native cardiac function, and overall patient care. The key elements of an echocardiogram in the patient supported with a CF-LVAD should focus on the following:

    · Evaluation of adequate LV unloading:

    · Frequency of aortic valve opening

    · LV dimension and interventricular septal morphology

    · Inf l ow and outf l ow cannula velocities

    · Detailed assessment of RV function, including serial assessment over time

    Evaluating Adequate Left Ventricular Unloading in Patients Supported by a Continuous-Flow Left Ventricular Assist Device

    There are multiple features of the echocardiogram that can provide evidence of adequate LV unloading,which is invariably the primary hemodynamic goal of CF-LVAD support. These include the degree and frequency of aortic valve opening, the change in LV dimensions over time, and the cannula velocities.

    Aortic Valve Opening

    Evaluation of aortic valve opening by echocardiography is a simple, reliable way of determining adequate LV unloading in patients following CF-LVAD implantation [26]. In patients with CF-LVAD support, the aortic valve typically should open not every beat, but rather intermittently every two to three beats, or not at all. The frequency of aortic valve opening can be assessed by 2D imaging in the parasternal long-axis and short-axis views, as well as the apical three-chamber view. However, postsurgically image quality is frequently limited, and M-mode imaging through the aortic valve plane can assess the degree of leaf l et opening and excursion more def i nitively (Figure 5). An aortic valve that opens consistently with each systole suggests that the left ventricle is not adequately unloaded and LV pressures remain signifi cantly elevated. Common causes of inadequate LV unloading include uncontrolled hypertension, intravascular hypervolemia,any form of mechanical obstruction in the pump,including thrombus or kinking of the outf l ow graft,and the speed setting being too low. Table 3 summarizes the different clinical features of the most common causes of poor LV unloading.

    Septal Morphology and Ventricular Dimensions

    Figure 5 M-mode Image of the Aortic Valve from Patient with Continuous-f l ow Left Ventricular Assist Device Support.Note the minimal aortic leaf l et excursion indicative of adequate unloading of the left ventricle.

    Table 3 Causes of Poor Left Ventricular Unloading While the Patient has Continuous-f l ow Left Ventricular Assist Device Support.

    Follow-up echocardiographic assessment of LV chamber dimensions, together with the morphology and shape of the interventricular septum, can also provide information regarding the adequacy of LV unloading. Following initiation of CF-LVAD support, LV dimensions typically decrease and slight leftward motion of the interventricular septum is expected, ref l ecting a moderate decrease in LV pressures relative to RV pressures [27]. If, however,there is an interval increase of the LV dimension, or if there is a predominantly rightward motion of the septum, this suggests increased LV pressure relative to RV pressure, and is typically a sign of inadequate LV unloading. The differential is similar to that of an aortic valve that opens constantly, and workup for all of the previously mentioned scenarios should be pursued (Table 3).

    Conversely, if the leftward septal shift is pronounced or associated with a dramatic reduction in LV cavity size, this highly suggests excessive LV decompression by the pump. Common causes of this include the pump speed being too high, signif i -cant recovery of LV systolic function, or any scenario of reduced LV preload, including intravascular hypovolemia or right-sided heart failure. Table 4 summarizes a diagnostic approach to help distinguish between these different scenarios, as well as potential therapeutic options.

    A ramp study should be considered whenever there is clinical evidence of poor LV unloading due to suspected mechanical obstruction [28]. This consists in measuring echocardiographic LV dimensions and the frequency of aortic valve opening while serially increasing the CF-LVAD pump speed. An inability to decrease LV dimensions or reduce the frequency of aortic valve opening despite increasing pump speeds should raise concern for mechanical obstruction in the pump, including pump thrombosis.

    Cannula Velocities

    The echocardiogram in patients supported with CFLVADs should include attempts to measure blood fl ow velocities through the inf l ow cannula and outf l ow graft. However, Doppler measurements of inf l ow and outf l ow velocities are rarely interpretable in centrifugal-f l ow CF-LVADs because of multiple artifacts [29]. In axial-f l ow LVADs, inf l ow velocities are best evaluated in the apical windows,where fl ow is most parallel to the ultrasound beam.Outf l ow graft velocities can be measured in the parasternal long-axis window or the suprasternal window as blood fl ows out of the pump into the ascending aorta. There is no consensus on what the normal range of cannula or graft velocities should be. Ideally, there should be laminar fl ow by color Doppler imaging, with minimal turbulence, which suggests adequate alignment with mitral inf l ow. By spectral Doppler imaging, velocities vary widely depending on the patient and loading conditions,typically ranging between 0.3 and 1.5 m/s [30].Most patients have some degree of phasic variationin velocity over the cardiac cycle, which ref l ects changes in fl ow through the pump due to native ventricular contraction and diastolic mitral inf l ow(Figure 6). Although there is not an establishednormalrange of inf l ow cannula or outf l ow graft velocities, any signif i cant change in these velocities over time warrants further evaluation and should be interpreted in the clinical context of the individual patient.

    Table 4 Causes of Excessive Left Ventricular Decompression.

    Assessment of Right Ventricular Function

    As discussed previously, it is crucial for patients supported by CF-LVADs to have relatively preserved RV function in order to maintain adequate rightsided cardiac output. Syndromes of right-sided heart failure can occur acutely in the early postoperative period or can have a more chronic presentation several years after implantation [31, 32]. Any interval worsening of RV dilation or the previously described indices of RV function support the diagnosis of RV failure after CF-LVAD implantation in the appropriate clinical context. In addition, echocardiography also provides a simple noninvasive way of detecting hemodynamics suggestive of RV decompensation.

    Patients with right-sided heart failure after ventricular assist device (VAD) implantation typically experience a syndrome of RV volume overload as the right side of the heart struggles to match the effective forward fl ow provided by a CF-LVAD.As this progresses, the right ventricle becomes progressively dilated, functional tricuspid regurgitation worsens, and right-sided filling pressures become severely elevated. The echocardiographic estimation of right atrial and RV systolic pressure using the inferior vena cava diameter and tricuspid regurgitant jet velocity are well validated [8]. These methods appear to retain their accuracy in patients following CF-LVAD implantation [33]. Signif i cant dilation of the inferior vena cava with minimal or no inspiratory collapse together with a relatively low tricuspid regurgitant jet velocity (less than 2.5 m/s in the setting of a dilated inferior vena cava) is the echocardiographic correlate of RV failure diagnosed by invasive hemodynamics, and highly suggests post–VAD implantation right-sided heart failure. The onset of RV failure after VAD implantation portends a poor prognosis and increased mortality.Treatment options are limited unless patients are candidates for heart transplantation or biventricular support [31]. Symptomatically, patients benef i t from intravenous diuretics and initiation of inotropes for RV support. If septal morphology and ventricular chamber dimensions suggest excessive LV emptying and severe asymmetric dilation of the right ventricle relative to the left ventricle, a decrease in pump speed can also be helpful. Figure 7 illustrates images from a patient with post–VAD implantation right-sided heart failure.

    Figure 6 Inf l ow Cannula Velocity Measured from an Off-axis Apical Three-chamber View from a Patient with a Normally Functioning Continuous-f l ow Left Ventricular Assist Device.

    Figure 7 Tricuspid Regurgitation Doppler and Inferior Vena Cava M-mode Imaging from a Patient with Severe Right Ventricular Failure Following Continuous-f l ow Left Ventricular Assist Device Placement.

    Conclusion and Take-Home Message

    The incidence of advanced heart failure patients who are potential candidates for mechanical support with CF-LVADs is steadily increasing worldwide. Echocardiography is a simple, noninvasive, yet highly useful diagnostic imaging modality that provides easily interpretable information that is instrumental in the care of patients supported by this relatively complex technology. It is crucial to remember that the utility of echocardiography is best when the images are understood in the clinical context of each individual patient, and decisions should never be made solely on the basis of the results of a single study.

    Conflict of Interest

    The authors declare no conf l ict of interest.

    Funding

    This research received no specific grant from any funding agency in the public, commercial or notfor-profit sectors.

    1. Fonarow GC, Yancy CW,Hernandez AF, Peterson ED,Spertus JA, Heidenreich PA. Potential impact of optimal implementation of evidence-based heart failure therapies on mortality. Am Heart J 2011;161:1024–30.e1023.

    2. Christiansen S, Brose S,Autschbach R. [Surgical therapy of end-stage heart failure]. Herz 2003;28:380–92.

    3. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuousflow device in patients awaiting heart transplantation. N Engl J Med 2007;357:885–96.

    4. Yancy CW, Jessup M, Bozkurt B,Butler J, Casey DE, Drazner MH,et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147–239.

    5. Topilsky Y, Oh JK, Shah DK,Boilson BA, Schirger JA, Kushwaha SS, et al. Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. JACC Cardiovasc Imaging 2011;4:211–22.

    6. Neragi-Miandoab S, Goldstein D,Bello R, Michler R, D’Alessandro D. Right ventricular dysfunction following continuous fl ow left ventricular assist device placement in 51 patients: predicators and outcomes.J Cardiothorac Surg 2012;7:60.

    7. Vollkron M, Voitl P, Ta J,Wieselthaler G, Schima H. Suction events during left ventricular support and ventricular arrhythmias. J Heart Lung Transplant 2007;26:819–25.

    8. Rudski LG, Lai WW, Af i lalo J,Hua L, Handschumacher MD,Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685–713;quiz 786-688.

    9. Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schof i eld RS, Cleeton TS, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 2008;27:1102–7.

    10. Zoghbi WA, Enriquez-Sarano M,Foster E, Grayburn PA, Kraft CD,Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 2003;16:777–802.

    11. Griff i n BP, Flachskampf FA, Siu S, Weyman AE, Thomas JD. The effects of regurgitant orif i ce size,chamber compliance, and systemic vascular resistance on aortic regurgitant velocity slope and pressure half-time. Am Heart J 1991;122:1049–56.

    12. Topilsky Y, Oh JK, Atchison FW,Shah DK, Bichara VM, Schirger JA, et al. Echocardiographic fi ndings in stable outpatients with properly functioning HeartMate II left ventricular assist devices. J Am Soc Echocardiogr 2011;24:157–69.

    13. Gregory SD, Stevens MC, Wu E,Fraser JF, Timms D. In vitro evaluation of aortic insuff i ciency with a rotary left ventricular assist device.Artif Organs 2013;37:802–9.

    14. McKellar SH, Deo S, Daly RC,Durham LA, Joyce LD, Stulak JM,et al. Durability of central aortic valve closure in patients with continuous fl ow left ventricular assist devices. J Thorac Cardiovasc Surg 2014;147:344–8.

    15. Atluri P, Fairman AS, MacArthur JW, Goldstone AB, Cohen JE,Howard JL, et al. Continuous fl ow left ventricular assist device implant signifi cantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg 2013;28:770–5.

    16. Piacentino V, Williams ML, Depp T, Garcia-Huerta K, Blue L, Lodge AJ, et al. Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac Surg 2011;91:1342–6; discussion 1346–7.

    17. Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB,Weng Y, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 2008;27:1275–81.

    18. Piacentino V, Ganapathi AM,Stafford-Smith M, Hsieh MK,Patel CB, Simeone AA, et al. Utility of concomitant tricuspid valve procedures for patients undergoing implantation of a continuous-f l ow left ventricular device. J Thorac Cardiovasc Surg 2012;144:1217–21.

    19. Maltais S, Topi lsky Y,Tchantchaleishvili V, McKellar SH, Durham LA, Joyce LD, et al.Surgical treatment of tricuspid valve insuff i ciency promotes early reverse remodeling in patients with axial-f l ow left ventricular assist devices. J Thorac Cardiovasc Surg 2012;143:1370–6.

    20. Robertson JO, Grau-Sepulveda MV, Okada S, O’Brien SM,Matthew Brennan J, Shah AS, et al.Concomitant tricuspid valve surgery during implantation of continuous-f l ow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant 2014;33:609–17.

    21. Engin C, Yagdi T, Balcioglu O,Erkul S, Baysal B, Oguz E, et al. Left ventricular assist device implantation in heart failure patients with a left ventricular thrombus. Transplant Proc 2013;45:1017–9.

    22. Thanigaraj S, Schechtman KB,Pérez JE. Improved echocardiographic delineation of left ventricular thrombus with the use of intravenous second-generation contrast image enhancement. J Am Soc Echocardiogr 1999;12:1022–6.

    23. Meissner I, Whisnant JP,Khandheria BK, Spittell PC,O’Fallon WM, Pascoe RD, et al.Prevalence of potential risk factors for stroke assessed by transesophageal echocardiography and carotid ultrasonography: the SPARC study.Stroke Prevention: Assessment of Risk in a Community. Mayo Clin Proc 1999;74:862–9.

    24. Srinivas CV, Collins N, Borger MA, Horlick E, Murphy PM.Hypoxemia complicating LVAD insertion: novel application of the Amplatzer PFO occlusion device. J Card Surg 2007;22:156–8.

    25. Marriott K, Manins V, Forshaw A,Wright J, Pascoe R. Detection of right-to-left atrial communication using agitated saline contrast imaging: experience with 1162 patients and recommendations for echocardiography. J Am Soc Echocardiogr 2013;26:96–102.

    26. Estep JD, Stainback RF, Little SH,Torre G, Zoghbi WA. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc Imaging 2010;3:1049–64.

    27. Liao KK, Miller L, Toher C,Ormaza S, Herrington CS, Bittner HB, et al. Timing of transesophageal echocardiography in diagnosing patent foramen ovale in patients supported with left ventricular assist device. Ann Thorac Surg 2003;75:1624–6.

    28. Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M,Latif F, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-f l ow left ventricular assist devices: the Columbia Ramp Study. J Am Coll Cardiol 2012;60:1764–75.

    29. Shah NR, Cevik C, Hernandez A,Gregoric ID, Frazier OH, Stainback RF. Transthoracic echocardiography of the HeartWare left ventricular assist device. J Card Fail 2012;18:745–8.

    30. Topilsky Y, Maltais S, Oh JK,Atchison FW, Perrault LP, Carrier M, et al. Focused review on transthoracic echocardiographic assessment of patients with continuous axial left ventricular assist devices. Cardiol Res Pract 2011;2011:187434.

    31. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-f l ow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 2010;139:1316–24.

    32. Takeda K, Takayama H, Colombo PC, Jorde UP, Yuzefpolskaya M,Fukuhara S, et al. Late right heart failure during support with continuous-f l ow left ventricular assist devices adversely affects posttransplant outcome. J Heart Lung Transplant 2015;34:667–74.

    33. Estep JD, Vivo RP, Krim SR,Cordero-Reyes AM, Elias B,Loebe M, et al. Echocardiographic Evaluation of Hemodynamics in Patients With Systolic Heart Failure Supported by a Continuous-Flow LVAD. J Am Coll Cardiol 2014;64:1231–41.

    国产亚洲av嫩草精品影院| 亚洲国产精品成人综合色| 免费在线观看亚洲国产| 国内少妇人妻偷人精品xxx网站 | 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 国产99白浆流出| 九色成人免费人妻av| 久久人妻av系列| 亚洲七黄色美女视频| 亚洲男人的天堂狠狠| 成年女人永久免费观看视频| а√天堂www在线а√下载| 久久午夜综合久久蜜桃| 黄色视频,在线免费观看| 99精品在免费线老司机午夜| 国产真实乱freesex| 国内揄拍国产精品人妻在线| 后天国语完整版免费观看| 美女免费视频网站| 国内少妇人妻偷人精品xxx网站 | 日本黄大片高清| 国产亚洲精品综合一区在线观看| 91麻豆av在线| 亚洲欧美日韩高清专用| 午夜福利免费观看在线| 小说图片视频综合网站| 国产精品 欧美亚洲| 他把我摸到了高潮在线观看| 最新美女视频免费是黄的| 淫秽高清视频在线观看| av在线蜜桃| 非洲黑人性xxxx精品又粗又长| 亚洲av成人不卡在线观看播放网| 少妇的丰满在线观看| 久久久久久国产a免费观看| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 久久久久久大精品| 日韩免费av在线播放| 桃色一区二区三区在线观看| cao死你这个sao货| 国产精品,欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 老司机福利观看| 免费搜索国产男女视频| 亚洲成人中文字幕在线播放| 好看av亚洲va欧美ⅴa在| 美女高潮的动态| 成在线人永久免费视频| 久久人人精品亚洲av| 中文在线观看免费www的网站| 久久久久久人人人人人| 久久午夜综合久久蜜桃| 欧美色欧美亚洲另类二区| 听说在线观看完整版免费高清| 精品不卡国产一区二区三区| 欧美绝顶高潮抽搐喷水| 精品午夜福利视频在线观看一区| tocl精华| 免费看十八禁软件| 在线视频色国产色| 又紧又爽又黄一区二区| 啦啦啦韩国在线观看视频| av片东京热男人的天堂| 这个男人来自地球电影免费观看| 偷拍熟女少妇极品色| 88av欧美| 日韩精品青青久久久久久| 欧美日韩黄片免| 色综合婷婷激情| 丰满人妻熟妇乱又伦精品不卡| 婷婷丁香在线五月| 国产成人av教育| 黄频高清免费视频| 国产欧美日韩精品亚洲av| 免费无遮挡裸体视频| 久久久久性生活片| 18美女黄网站色大片免费观看| 国产精品爽爽va在线观看网站| 男女下面进入的视频免费午夜| 一区二区三区激情视频| 麻豆一二三区av精品| 校园春色视频在线观看| 香蕉国产在线看| 国产伦人伦偷精品视频| 亚洲精品国产精品久久久不卡| 国产男靠女视频免费网站| 熟妇人妻久久中文字幕3abv| 在线观看免费午夜福利视频| 深夜精品福利| 一级毛片精品| 欧美色欧美亚洲另类二区| 免费人成视频x8x8入口观看| 巨乳人妻的诱惑在线观看| 色老头精品视频在线观看| www.熟女人妻精品国产| 欧美日韩一级在线毛片| 美女cb高潮喷水在线观看 | 精品久久久久久成人av| 黄片大片在线免费观看| 中亚洲国语对白在线视频| 亚洲熟妇熟女久久| 亚洲片人在线观看| 免费看a级黄色片| 美女免费视频网站| 久久人人精品亚洲av| 老司机在亚洲福利影院| 欧美绝顶高潮抽搐喷水| 老司机在亚洲福利影院| 欧美日韩亚洲国产一区二区在线观看| 国产成人aa在线观看| 色综合亚洲欧美另类图片| 日韩人妻高清精品专区| 在线a可以看的网站| 曰老女人黄片| 9191精品国产免费久久| 国产高清视频在线播放一区| 18禁美女被吸乳视频| 欧美一区二区国产精品久久精品| 长腿黑丝高跟| 午夜福利免费观看在线| av国产免费在线观看| 伊人久久大香线蕉亚洲五| 亚洲 欧美 日韩 在线 免费| 国语自产精品视频在线第100页| 亚洲国产精品合色在线| 成人永久免费在线观看视频| 亚洲自偷自拍图片 自拍| 99热精品在线国产| 亚洲在线观看片| 日本三级黄在线观看| 亚洲黑人精品在线| 丰满人妻一区二区三区视频av | 在线观看66精品国产| 久久热在线av| 两人在一起打扑克的视频| 无人区码免费观看不卡| 一个人免费在线观看的高清视频| 亚洲狠狠婷婷综合久久图片| 国产精品,欧美在线| 97碰自拍视频| 亚洲自拍偷在线| 国产成人系列免费观看| 老熟妇仑乱视频hdxx| av中文乱码字幕在线| 无遮挡黄片免费观看| 国产蜜桃级精品一区二区三区| 99re在线观看精品视频| 国产伦精品一区二区三区视频9 | 久久久久久久久中文| 少妇的逼水好多| 日韩欧美在线乱码| 国产亚洲精品av在线| 成人一区二区视频在线观看| 国产亚洲精品综合一区在线观看| 无限看片的www在线观看| 热99re8久久精品国产| 麻豆国产av国片精品| 美女高潮的动态| 午夜福利视频1000在线观看| or卡值多少钱| 欧美日韩中文字幕国产精品一区二区三区| 男女床上黄色一级片免费看| 天堂√8在线中文| 亚洲熟妇熟女久久| 久久精品影院6| 欧美一区二区国产精品久久精品| 女生性感内裤真人,穿戴方法视频| 舔av片在线| 精品国产乱码久久久久久男人| 九九热线精品视视频播放| 精品国产乱码久久久久久男人| 国产精品自产拍在线观看55亚洲| 色综合站精品国产| 国产午夜精品久久久久久| 欧美一区二区国产精品久久精品| 搡老妇女老女人老熟妇| 国产精品 国内视频| 老鸭窝网址在线观看| 亚洲黑人精品在线| 亚洲国产精品成人综合色| 亚洲av熟女| 日韩av在线大香蕉| ponron亚洲| 国产一级毛片七仙女欲春2| 午夜福利在线观看免费完整高清在 | 国产精品,欧美在线| 国产91精品成人一区二区三区| 美女高潮喷水抽搐中文字幕| 色综合亚洲欧美另类图片| 五月玫瑰六月丁香| 成在线人永久免费视频| 中国美女看黄片| 国产成人av教育| 午夜成年电影在线免费观看| 黄色丝袜av网址大全| 婷婷丁香在线五月| 国内久久婷婷六月综合欲色啪| 日韩大尺度精品在线看网址| 欧美最黄视频在线播放免费| 国产伦精品一区二区三区四那| 国产伦一二天堂av在线观看| 亚洲中文日韩欧美视频| 好看av亚洲va欧美ⅴa在| www日本在线高清视频| 亚洲欧美日韩东京热| netflix在线观看网站| 日韩大尺度精品在线看网址| 成人精品一区二区免费| 人人妻人人看人人澡| 国产乱人伦免费视频| 午夜福利高清视频| 亚洲精品一区av在线观看| 午夜免费成人在线视频| 亚洲自拍偷在线| 久久天堂一区二区三区四区| 精品久久久久久,| 我的老师免费观看完整版| 色哟哟哟哟哟哟| 亚洲天堂国产精品一区在线| 色尼玛亚洲综合影院| 国产伦精品一区二区三区四那| 国内精品久久久久精免费| 国产成人欧美在线观看| 很黄的视频免费| 亚洲国产精品久久男人天堂| 91九色精品人成在线观看| www.精华液| 高潮久久久久久久久久久不卡| 可以在线观看毛片的网站| 最新美女视频免费是黄的| 午夜日韩欧美国产| 白带黄色成豆腐渣| 国产野战对白在线观看| 国内揄拍国产精品人妻在线| 国产高清视频在线观看网站| 久久久久久大精品| 免费搜索国产男女视频| 真人一进一出gif抽搐免费| e午夜精品久久久久久久| 色尼玛亚洲综合影院| 国产av麻豆久久久久久久| 99国产精品一区二区三区| 亚洲成人免费电影在线观看| 此物有八面人人有两片| 精品国产三级普通话版| 久久精品国产亚洲av香蕉五月| 久久久久久大精品| 国产精品久久视频播放| 久久草成人影院| 中文字幕最新亚洲高清| 免费看十八禁软件| 免费人成视频x8x8入口观看| 别揉我奶头~嗯~啊~动态视频| 女人被狂操c到高潮| 亚洲在线观看片| 国产毛片a区久久久久| 国产乱人视频| 亚洲国产精品sss在线观看| 女生性感内裤真人,穿戴方法视频| 又大又爽又粗| 亚洲一区高清亚洲精品| 午夜久久久久精精品| 国产伦在线观看视频一区| 久久久久久九九精品二区国产| 一a级毛片在线观看| 香蕉丝袜av| 很黄的视频免费| 一本精品99久久精品77| 日韩欧美在线乱码| 亚洲午夜精品一区,二区,三区| 日韩精品青青久久久久久| 亚洲,欧美精品.| 久久久水蜜桃国产精品网| 好男人在线观看高清免费视频| 久久伊人香网站| 国产亚洲精品综合一区在线观看| 久久久久久人人人人人| 草草在线视频免费看| 91在线精品国自产拍蜜月 | 亚洲精品中文字幕一二三四区| 亚洲av成人精品一区久久| 成人三级黄色视频| 久久久久九九精品影院| 真人做人爱边吃奶动态| 欧美+亚洲+日韩+国产| 丰满人妻一区二区三区视频av | 老汉色∧v一级毛片| 日本五十路高清| 国产三级黄色录像| 国产亚洲精品久久久com| 色视频www国产| 淫妇啪啪啪对白视频| 成年版毛片免费区| 美女免费视频网站| 精品国产乱码久久久久久男人| 国产成人av教育| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点| 日韩欧美 国产精品| 日韩 欧美 亚洲 中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 久久性视频一级片| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 亚洲av成人不卡在线观看播放网| 一二三四社区在线视频社区8| 性色avwww在线观看| 又爽又黄无遮挡网站| 亚洲国产欧美网| 老熟妇仑乱视频hdxx| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放| 99久久综合精品五月天人人| 99国产精品99久久久久| 麻豆久久精品国产亚洲av| 嫩草影视91久久| www.999成人在线观看| 精品久久久久久久末码| 高清在线国产一区| 黄色日韩在线| 亚洲乱码一区二区免费版| 国产私拍福利视频在线观看| 一夜夜www| 老司机午夜福利在线观看视频| 好看av亚洲va欧美ⅴa在| 又粗又爽又猛毛片免费看| 天天添夜夜摸| 精品欧美国产一区二区三| 中文字幕最新亚洲高清| 国产伦一二天堂av在线观看| 999久久久国产精品视频| 亚洲av免费在线观看| 免费人成视频x8x8入口观看| 99热这里只有精品一区 | 久久久久精品国产欧美久久久| 欧美黄色淫秽网站| 亚洲在线观看片| 精品一区二区三区视频在线观看免费| 欧美黄色片欧美黄色片| 久久九九热精品免费| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 巨乳人妻的诱惑在线观看| 天天添夜夜摸| av女优亚洲男人天堂 | 最新中文字幕久久久久 | 欧美丝袜亚洲另类 | 99久久成人亚洲精品观看| 成人永久免费在线观看视频| 中文亚洲av片在线观看爽| 国产高清视频在线观看网站| 久久久色成人| 人妻丰满熟妇av一区二区三区| 国产精品综合久久久久久久免费| 嫩草影院精品99| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 午夜影院日韩av| 国模一区二区三区四区视频 | 欧美av亚洲av综合av国产av| 综合色av麻豆| 日韩有码中文字幕| 亚洲 欧美一区二区三区| 大型黄色视频在线免费观看| 久久精品影院6| 国产亚洲精品久久久com| 制服人妻中文乱码| 在线观看66精品国产| 一二三四社区在线视频社区8| 欧美色视频一区免费| 99精品在免费线老司机午夜| 亚洲一区二区三区色噜噜| 免费av毛片视频| 美女cb高潮喷水在线观看 | 国产一区二区在线观看日韩 | 亚洲成人精品中文字幕电影| 制服丝袜大香蕉在线| 成人三级做爰电影| 国语自产精品视频在线第100页| 日本五十路高清| 日本a在线网址| 色尼玛亚洲综合影院| 亚洲人成网站在线播放欧美日韩| 精品国产三级普通话版| 性色avwww在线观看| 精品国产乱子伦一区二区三区| 在线观看66精品国产| 亚洲激情在线av| 1024手机看黄色片| 看片在线看免费视频| 很黄的视频免费| 国产欧美日韩一区二区精品| 日韩高清综合在线| 久久人妻av系列| 午夜福利高清视频| 久久精品aⅴ一区二区三区四区| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 三级国产精品欧美在线观看 | 偷拍熟女少妇极品色| 欧美中文日本在线观看视频| 欧美日韩国产亚洲二区| 在线观看一区二区三区| 国产精华一区二区三区| 亚洲av中文字字幕乱码综合| 成人国产一区最新在线观看| 观看美女的网站| 九色国产91popny在线| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 91老司机精品| av中文乱码字幕在线| 一个人免费在线观看电影 | 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 久久久久精品国产欧美久久久| 在线观看66精品国产| 国产精品av视频在线免费观看| cao死你这个sao货| 久久久久久久久免费视频了| 午夜免费成人在线视频| www.www免费av| 天堂av国产一区二区熟女人妻| 美女大奶头视频| 欧美xxxx黑人xx丫x性爽| 亚洲 欧美一区二区三区| 美女大奶头视频| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 中国美女看黄片| 一区二区三区国产精品乱码| 国产不卡一卡二| 久久久色成人| 亚洲午夜理论影院| 国产野战对白在线观看| 69av精品久久久久久| 亚洲av中文字字幕乱码综合| 欧美在线黄色| 一本久久中文字幕| 一本综合久久免费| 久久久久久久久久黄片| x7x7x7水蜜桃| 国产一级毛片七仙女欲春2| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| www.自偷自拍.com| 亚洲五月天丁香| 国产精品野战在线观看| av欧美777| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 国产精品,欧美在线| 首页视频小说图片口味搜索| 亚洲精品在线美女| 中文字幕熟女人妻在线| 久久伊人香网站| 国产爱豆传媒在线观看| 制服丝袜大香蕉在线| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 叶爱在线成人免费视频播放| 精品久久久久久久久久久久久| 亚洲精品一区av在线观看| 黄频高清免费视频| 中文字幕久久专区| 欧美在线黄色| 热99re8久久精品国产| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 伦理电影免费视频| av中文乱码字幕在线| 国产亚洲av嫩草精品影院| 老熟妇乱子伦视频在线观看| 精品久久久久久久毛片微露脸| av黄色大香蕉| 亚洲av成人不卡在线观看播放网| 久久精品91无色码中文字幕| 国产成+人综合+亚洲专区| www.999成人在线观看| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 噜噜噜噜噜久久久久久91| 国产激情久久老熟女| 国产高清视频在线播放一区| 男女视频在线观看网站免费| netflix在线观看网站| 亚洲av成人av| 又爽又黄无遮挡网站| 国产99白浆流出| 18美女黄网站色大片免费观看| 国产精品99久久久久久久久| 国产精品,欧美在线| 久久草成人影院| 亚洲专区中文字幕在线| 在线观看午夜福利视频| 亚洲无线观看免费| 中文字幕人妻丝袜一区二区| 蜜桃久久精品国产亚洲av| 波多野结衣高清无吗| 夜夜爽天天搞| 亚洲 欧美一区二区三区| 久久久成人免费电影| 欧美色视频一区免费| 精品不卡国产一区二区三区| 国产午夜精品久久久久久| 色av中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 午夜免费成人在线视频| 久久性视频一级片| 婷婷亚洲欧美| 久久中文字幕一级| 亚洲av中文字字幕乱码综合| 中文字幕人妻丝袜一区二区| 精品久久久久久久久久久久久| 亚洲国产看品久久| 成人鲁丝片一二三区免费| 国产又色又爽无遮挡免费看| 午夜精品久久久久久毛片777| 日本熟妇午夜| 国产精品精品国产色婷婷| 国产1区2区3区精品| 亚洲熟妇中文字幕五十中出| 国产人伦9x9x在线观看| 搡老岳熟女国产| e午夜精品久久久久久久| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看 | 国产午夜精品久久久久久| 国产激情久久老熟女| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 亚洲人成网站在线播放欧美日韩| 亚洲黑人精品在线| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 精品国内亚洲2022精品成人| 最新中文字幕久久久久 | 日韩欧美在线乱码| 哪里可以看免费的av片| 日日夜夜操网爽| 久久久成人免费电影| 欧美日韩一级在线毛片| 亚洲国产高清在线一区二区三| 午夜福利在线观看吧| h日本视频在线播放| 欧美在线一区亚洲| 国产精品99久久久久久久久| 国产亚洲欧美在线一区二区| 国产激情久久老熟女| 在线观看一区二区三区| 国产视频内射| 国产三级在线视频| 国产视频内射| 亚洲精品在线观看二区| 精品熟女少妇八av免费久了| 日本成人三级电影网站| a级毛片在线看网站| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 91九色精品人成在线观看| or卡值多少钱| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 国产av一区在线观看免费| 中文字幕人成人乱码亚洲影| www国产在线视频色| 精华霜和精华液先用哪个| 久久久国产成人精品二区| av中文乱码字幕在线| 精品一区二区三区四区五区乱码| 日韩人妻高清精品专区| 欧美色视频一区免费| 黄色 视频免费看| 最近在线观看免费完整版| 悠悠久久av| 18禁黄网站禁片午夜丰满| 97碰自拍视频| 99热6这里只有精品| 不卡一级毛片| 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 免费观看的影片在线观看| 日本黄大片高清| 在线观看日韩欧美| 国产爱豆传媒在线观看| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 少妇丰满av| 久久久久精品国产欧美久久久| 亚洲,欧美精品.| 免费在线观看日本一区| 久久久国产精品麻豆| 一本综合久久免费| 亚洲精品中文字幕一二三四区| 日韩国内少妇激情av| 偷拍熟女少妇极品色| 国产免费男女视频| 天天躁日日操中文字幕| 黑人巨大精品欧美一区二区mp4| 高清毛片免费观看视频网站| 亚洲成人久久性| 操出白浆在线播放| 日本与韩国留学比较| 人妻久久中文字幕网| 一进一出好大好爽视频|