• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Structure of a Ladder-like Co-crystal CuICl with 3,5-Dipropyl-4-amino-1,2,4-triazole①

    2015-05-11 02:37:32YANJuanZhiLULiPing
    結構化學 2015年3期

    YAN Juan-Zhi LU Li-Ping

    SU Fenga ZHU Miao-Lia②

    a (Institute of Molecular Science, Shanxi University, Taiyuan 030006, China)

    b (Taiyuan University, Taiyuan 030001, China)

    1 INTRODUCTION

    Copper complexes and clusters are of great interest for their intriguing architectures and potential applications[1]. Particular attention has been paid to the photochemical and photophysical pro- perties of copper(I)complexes in light of the d10electronic configuration with diversified luminescent behavior[2-4]. The univalent and closed-shell Cu(I)ions are a soft Lewis acid and can readily coordinate with halides, pseudohalides and N-containing li- gands as a result of the soft-soft bonding pre- ference[5]. Many species, such as rhomboid dimers, cubane tetramers,four- or six-membered rings, and zigzag-like or staircase chains, can be further connected by neutral nitrogen-containing ligands or hydrogen interactions to give diversiform structures[6,7]. Some in situ generated Cu(I)X source routes have been developed as new approaches to synthesize copper(I)halide based complexes including halide substitution, copper oxidation and copper reduction routes. The reduction of cupric salts has proven to be the most promising approach for in situ generation of Cu(I)X sources[6]. Hydrogen phosphonate, H3PO3, a moderate-intensity reducing agent, is unstable. In the acid condition, Cu2+ions can be reduced to Cu+in the presence of H3PO3, based on the potentials:

    1,2,4-Triazole and its derivatives are very interesting five-membered N-heterocycle aromatic ligands,which can bridge metal ions with μ-1,2, μ-2,4or μ-1,2,4binding modes[8,9]. The μ-1,2bridging mode is the coordination mode usually found for many triazoles,in which the N4-position is substituted[10]. The size and shape of substituent groups on the triazolate ring are crucial for the structures of metal triazolate frameworks. Under hydrothermal (solvothermal)conditions, a large number of mononuclear, polynuclear, and multi-dimensional coordination polymers of Cu(I)and 1,2,4-triazolates with interesting optical properties have been prepared and characterized[11], which involves in situ generated 1,2,4-tirazolates by cycloaddition of organic nitriles with ammonia in the presence of divalent copper[4,12].Moreover, the ligands 4-amino-1,2,4-triazole derivatives seem to be unstable under hydro(solvo)thermal conditions at high temperature. Thus, different approaches, such as the reductive deaminization reactions[13]and direct synthesized organic/inorganic hybrid complexes incorporating copper halides with 4-aminotriazole as organic linkers[14], have already been observed in the synthesis of copper(I)-halide with 1,2,4-triazolate compounds. In this study,compound 1 was received by employing divalent copper, H3PO3, and 3,5-dipropyl-4-amino-1,2,4-triazole under mild reaction conditions and its IR,single-crystal X-ray diffraction, elemental analysis and luminescent property have been investigated.

    2 EXPERIMENTAL

    2. 1 Materials and measurements

    All reagents were purchased commercially and used without further purification. Ligand dpatrz was synthesized according to the literature[15]. Elemental analysis (C, H, and N)was obtained on an Elementar Vario EL III analyzer. The FT-IR spectrum was recorded from KBr pellets in the range of 4000~400 cm-1on a Brukep Tensor 27 spectrometer.UV-Vis spectra (in H2O)were recorded on a CARY 50 Bio UV-visible spectrophotometer. Luminescence spectra were recorded on a CARY Eclipse(Varian, USA)fluorescence spectrophotometer at room temperature.

    2. 2 Synthesis of [Cu2(dpatrz)2Cl2](1)

    CuCl2·2H2O (0.17 g, 1 mmol)was added to a stirred solution of dpatrz (0.168 g, 2 mmol)in 20 mL of water. H3PO3(0.164 g, 2 mmol)in water (2 mL)was slowly dropwise added. The reacting solution was stirred for 6 h, and then filtered to remove the insoluble substance. The filtrate was left in air to evaporate. Light green bar crystals were obtained after 14 days (yield: 45%). Anal. Calcd. (%)for C16H32N8Cl2Cu2(Mr= 534.48): C, 35.96; H, 6.0; N,20.97. Found (%): C, 35.72; H, 6.06; N, 21.05. IR(KBr cm-1): 3261(s), 3190(m), 2968(s), 2897(m),1630(m), 1543(s), 1373(w), 1221(w), 1089(w),956(m), 902(w), 750(w), 536(w).

    2. 3 Crystal structure determination

    Crystallographic data of compound 1 were collected at 298 K on an imaging plate type diffractometer(Rigaku RAXIS-RAPID)with graphite-monochromated Mo-Kα radiation (λ = 0.71069 ?). The crystal with suitable size (0.22mm × 0.13mm × 0.12mm)was selected for data collection. The structure was solved by direct methods with the program package[16]. After all non-H atoms were refined anisotropically, hydrogen atoms attached to C and N atoms were added theoretically and treated as riding on the concerned atoms. The final cycle of fullmatrix least-squares refinement was based on the observed reflections and variable parameters. For compound 1, a total of 10245 reflections were obtained in the range of 2.97<θ<25.05° with 4197 unique ones (Rint= 0.0434), of which 3162 were observed (I > 2σ(I)). The final R = 0.0445, wR =0.116 (w = 1/[σ2(Fo2)+ (0.0412P)2+ 1.4284P],where P = (Fo2+ 2Fc2)/3), (Δρ)max= 0.52, (Δρ)min=–0.33 e/?3, (Δ/σ)max= 0.001 and S = 1.050. The selected bond lengths, bond angles and H-bonds for 1 are listed in Tables 1 and 2, respectively.

    Table 1. Selected Bond Distances (?)and Bond Angles (o)for Compound 1

    Table 2. Hydrogen Bond Geometry (?, °)of Compound 1

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure of compound 1

    Compound 1 consists of two independent molecules and has two chemically identical entities with different conformations, namely, cis- and trans-side chain complexes relative to the triazole ring (Fig. 1,A for trans-[Cu(I)(μ2-dpatrz)2Cu(I)Cl2]and B for cis-[Cu(I)(μ2-dpatrz)2Cu(I)Cl2]). There are two halves of molecules in the asymmetric unit and each molecule shows a dimeric structure with an inversion center. The complete molecule contains two univalent copper ions, two dpatz ligands and two chlorine anions. Both Cu ions adopt slightly distorted trigonal geometries via two nitrogen atoms from two symmetry-related dpatrz ligands and one chlorine atom. In molecules A and B (Fig. 1 and Table 2), the bond lengths of Cu–N and Cu–Cl are similar and located in the ranges of 1.968(3)~1.976(4)? for Cu–N and 2.203(1)~2.214(1)? for Cu–Cl, respectively. The angles around Cu ions are close to 120° (for A 118.3(1), 120.2(1)and 121.4(1)°;for B 117.0(1), 119.0(1)and 123.4(1)°), which indicates a distorted trigonal-planar geometry in Cu ion environment. The values of bond lengths and bond angles agree with those of [Cu2Cl2(admtz)2]and [Cu2Br2(admtz)2][14]. The contact of Cu··Cu with 3.428(1)? in molecule B is slightly longer than that in molecule A with 3.415(1)?.

    The difference between molecules A and B is that the propyl side chains are in trans-position relative to the triazole ring mean planes (N(1)/N(2)/N(3)/C(5)/C(9))for A with the distances from plane of 1.420(5)for C(7A)and –1.472(6)? for C(11A)and cis- for B with the values of 1.198(5)for C(7B)and 1.295(7)? for C(11B). The angles of propyl chain C(7)(C(11))in both entities have slight changes (Table 2). In each dimeric structure, the dpatrz ligands adopt a μ1,2-bridging mode to bridge two Cu(I)ions. The chlorine ions slightly deviate from the plane of the dimer formed by two Cu ions and two hydrazines with the distances of 0.127(1)for A and –0.640(1)? for B. As shown in Fig. 2 and Table 3, the weak interactions play an important role in stabilizing the structure of 1. In molecules A(B),hydrogen bonding interactions N(4A)··Cl(1A)iv(3.343(4)?)(N(4B)··Cl(1B)v= 3.393(5)?, symmetry codes: iv –x+1, –y+2, –z+2; v x+1, y, z))form chains C(7)and rings R22(14)[17]on the first graphset level. These chains and rings assemble the molecules A(B)forming one-dimensional stair-step chains (Fig. 2)running parallel to the [01–1]direction. Furthermore, chains B are built by C–H··π(C(7B)··Cg(1)i(3.766(6)?, Cg(1)ifor a centre of N(1B)/N(2B)/N(3B)/C(5B)/C(9B), symmetry code: i–x+2, –y+2, –z+2)(Fig. 2B)interactions with centrosymmetric R22(14)motifs. Thus, weak C–H··π interactions make the distance of N–H··Cl in tape B much shorter than that in tape A.

    Fig. 1. ORTEP view with 30% probability level of 1 (A for trans-[Cu(I)(μ2-dpatrz)2Cu(I)Cl2]and B for cis-[Cu(I)(μ2-dpatrz)2Cu(I)-Cl2]). Open dashed line is for N–H··Cl hydrogen bond.Symmetry codes: (i)–x+2, –y+2, –z+2; (ii)–x+1, –y+2, –z+1

    Fig. 2. Perspective view of the 2D network in 1. Tape A: stair-step assembly built from N–H··Cl hydrogen bonds;Tape B: N–H··Cl hydrogen bonds and C–H··π weak interactions. Uninvolved hydrogen atoms are omitted for clarity. Cg(1)for centre of N(1B)/N(2B)/C(5B)/N(3B)/C(1B). Blue, N; gray, C; cyan, Cu and green, Cl

    Between molecules A and B, the intermolecular hydrogen bonding interactions N(4A)··Cl(1B)(3.273(4)?)and N(4B)··Cl(1A)iii(3.374(5)?,symmetry code: iii x, –y+3/2, z–1/2)form layers with chains C22(17)and rings R34(18)second graphset level. These chains and rings extend stair-step tapes to build two-dimensional networks along the[031]direction (Fig. 2). Ladder-like packing of crystal 1 is stabilized by rings R34(18)and weak C–H··Cl(C(10B)··Cl(1A)iii)(3.741(5)?, symmetry code: iii x, –y+3/2, z–1/2)hydrogen bonds parallel to the [01–2]direction. Although C··Cl and C··π interactions are very weak in comparison to the N··Cl hydrogen bonding interactions, they still contribute to stabilizing the three-dimensional network of 1.

    3. 2 Bond valence expression and UV-Vis absorption

    In the prescription of compound 1 synthesis, we employed chemicals CuCl2·2H2O, but the trigonal planar geometries of Cu(I)cations were observed.Here, we have carried on the calculation based on the BVS model[18]to assign the oxidation states of copper ions in 1. In this method, the empirical expressions below are employed.

    Based on the similar bond distances of molecules A and B, only the oxidation state of copper centers of molecule A is calculated. Taking the initial R0value of 1.525 ? for Cu(I)–N and 1.858 ? for Cu(I)–Cl, R0value of 1.751 ? for Cu(II)–N and 2.000 ? for Cu(II)–Cl[19], when following Eqs. (3)and (4), the BVS values for copper ions come out to be 0.97 and 1.66, respectively. Thus, oxidation state of +1 is assigned to copper cation in the solid phase of 1. The exclusivity of Cu(I)phases may reflect the stabilization of Cu(I)oxidation state through π-backbonding to the aromatic amine ligand[20]. Redox reaction of compound 1 synthesis is shown below:

    The presence of monovalent copper in 1 is further supported by the UV-Vis absorption spectra of 1 in H2O. Cu(II)complexes generally exhibit a broad and very weak copper-centered d-d transition band in the region of 500~1000 nm, related to the coordination environment of central Cu(II)[21]. As described in Fig. 3, the characteristic of Cu(II)d-d transition is being strengthened as time goes on, indicating there are monovalent copper cations in this complex going with an oxidating process under air O2. The features of absorption spectra of ligand dpatrz and compound 1 are similar with absorption bands at 260 nm,which may be attributed to the π-π* transition of the coordinated dpatrz ligand[22].

    Fig. 3. UV-Vis spectra of the ligand (dpatrz)and compound 1 in H2O. The inset is for the transformation of UV-Vis spectra of 1 in H2O along 90 minutes ([I]= 2.0 × 1.0-3 M and 3 minutes spacing interval)

    Fig. 4. Solid-state photoluminescence spectra of ligand and compound 1 at room temperature

    3. 3 Photoluminescence property

    The fluorescence properties of free ligand and compound 1 have been studied at room temperature in the solid state. As given in Fig. 4, the free dpatrz ligand and complexes display a similar shoulder peak at ca. 423 nm with 237 and 253 nm excitation,respectively. The emissions are neither metal-toligand charge transfer nor ligand-to-metal charge transfer in nature and probably can be assigned to the intraligand fluorescent π-π* emission[14,23].

    4 CONCLUSION

    One new Cu(I)Cl compound with dpatrz containing two co-crystallized centrosymmetric isomers has been constructed successfully. The Cu(I)centers are coordinated in triangle geometries and the hydrogen-bond networks are constructed from infinite 2D layers formed by N–H··Cl hydrogen bonds between 1D ladder-like chains assembled by N–H··Cl hydrogen bonds and C–H··π weak interactions. Bond valence sum (BVS)and UV-Vis absorption spectra support the existence of Cu(I).Compound 1 exhibits extensive green blue phosphorescence in the solid state at room temperature.

    (1)Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Photochemistry and Photophysics of Coordination Compounds I. Springer 2007, 69?115.

    (2)Ford, P. C.; Cariati, E.; Bourassa, J. Photoluminescence properties of multinuclear copper(I)compounds. Chem. Rev. 1999, 99, 3625?3647.

    (3)Zhang, J. P.; Lin, Y. Y.; Huang, X. C.; Chen, X. M. Copper(I)1,2,4-triazolates and related complexes: studies of the solvothermal ligand reactions,network topologies, and photoluminescence properties. J. Am. Chem. Soc. 2005, 127, 5495?5506.

    (4)Li, C. H.; Li, W.; Li, Y. L.; Kuang, Y. F. Hydrothermal synthesis, crystal structure, spectrum and electrochemical analysis of the copper(II)coordination polymer. Chin. J. Struc. Chem. 2012, 31, 1373?1377.

    (5)Graham, P. M.; Pike, R. D.; Sabat, M.; Bailey, R. D.; Pennington, W. T. Coordination polymers of copper(I)halides. Inorg. Chem. 2000, 39, 5121?5132.

    (6)Peng, R.; Li, M.; Li, D. Copper(I)halides: a versatile family in coordination chemistry and crystal engineering. Coord. Chem. Rev. 2010, 254, 1?18.(7)Willett, R. D.; Pon, G.; Nagy, C. Crystal chemistry of the 4,4?-dimethyl-2,2?-bipyridine/copper bromide system. Inorg. Chem. 2001, 40, 4342?4352.(8)Yan, J. Z.; Zhu, M L.; Dong, Y. F.; Gao, Z. Q. Properties of Zn(II)/Cd(II)complexes with 4-amino-3,5-propyl-1,2,4-triazole ligand.Chin. J. Struc. Chem. 2014, 33, 1207?1214.

    (9)Ma, Q.; Zhu, M. L.; Lu, L. P.; Feng, S. S.; Yan, J. Z. Trinuclear-based coordination compounds of Mn(II)and Co(II)with 4-amino-3,5-dimethyl-1,2,4-triazole and azide and thiocyanate anions: synthesis, structure and magnetic properties. Inorg.Chim. Acta 2011, 370, 102?107.

    (10)Haasnoot, J. G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord. Chem.Rev. 2000, 200-202, 131?185.

    (11)Li, B. Y.; Peng, Y.; Li, G. H.; Hua, J.; Yu, Y.; Jin, D.; Shi, Z.; Feng, S. H. Design and construction of coordination polymers by 4-amino-3,5-bis(n-pyridyl)-1,2,4-triazole (n = 2, 3, 4)isomers in a copper(I)halide system: diverse structures tuned by isomeric and anion effects. Cryst. Growth & Des. 2010, 10, 2192?2201.

    (12)Zhang, J. P.; Zheng, S. L.; Huang, X. C.; Chen, X. M. Two unprecedented 3-connected three-dimensional networks of copper(I)triazolates: In situ formation of ligands by cycloaddition of nitriles and ammonia. Angew Chem. Int. Ed. Engl. 2004, 43, 206?209.

    (13)Zhao, Z. G.; Yu, R. M.; Wu, X. Y.; Zhang, Q. S.; Xie, Y. M.; Wang, F.; Ng, S. W.; Lu, C. Z. One-pot synthesis of two new copper(I)coordination polymers: in situ formation of different ligands from 4-aminotriazole. CrystEngComm. 2009, 11, 2494?2499.

    (14)Zhu, A. X.; Xu, Q. Q.; Liu, F. Y.; Li, Z.; Qi, X. L. Syntheses, crystal structures and luminescent properties of copper(I)-halide complexes constructed by 4-amino-3,5-dimethyl-1,2,4-triazole. Inorg. Chim. Acta 2011, 370, 333?339.

    (15)Herbst, R. M.; Garrison, J. A. Studies on the formation of 4-aminotriazole derivatives from acyl hydrazides. J. Org. Chem. 1953, 18, 872?877.

    (16)Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, A64, 112?122.

    (17)Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. L. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem.Int. Ed. Engl. 1995, 34, 1555?1573.

    (18)Brown, I. D. Recent developments in the methods and applications of the bond valence model. Chem. Rev. 2009, 109, 6858?6919.

    (19)Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press 2002.

    (20)Chesnut, D. J.; Kusnetzow, A.; Birge, R.; Zubieta, J. Ligand influences on copper cyanide solid-state architecture: flattened and fused “slinky”,corrugated sheet, and ribbon motifs in the copper-cyanide-triazolate-organoamine family. Inorg. Chem. 1999, 38, 5484?5494.

    (21)Sun, Y.; Hou, Y. J.; Zhou, Q. X.; Lei, W. H.; Chen, J. R.; Wang, X. S.; Zhang, B. W. Dinuclear Cu(II)hypocrellin B complexes with enhanced photonuclease activity. Inorg. Chem. 2010, 49, 10108?10116.

    (22)Feng, S. S.; Lv, H. G.; Li, Z. P.; Feng, G. Q.; Lu, L. P.; Zhu, M. L. The first example of rhombic dodecahedral CuBr clusters in a novel mixedvalence Cu(I,II)-benzimidazole complex. CrystEngComm. 2012, 14, 98?102.

    (23)Ouellette, W.; Prosvirin, A. V.; Chieffo, V.; Dunbar, K. R.; Hudson, B.; Zubieta, J. Solid-state coordination chemistry of the Cu/triazolate/X system(X = F-, Cl-, Br-, I-, OH-, and SO42-). Inorg. Chem. 2006, 45, 9346?9366.

    精品人妻视频免费看| 99riav亚洲国产免费| 99热这里只有是精品在线观看 | 999久久久精品免费观看国产| 97人妻精品一区二区三区麻豆| 亚洲18禁久久av| 99久久无色码亚洲精品果冻| 性欧美人与动物交配| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 午夜a级毛片| 成人特级av手机在线观看| 成年人黄色毛片网站| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看| 久久久久亚洲av毛片大全| 国产国拍精品亚洲av在线观看| 久久久久国内视频| 中文在线观看免费www的网站| 欧美激情久久久久久爽电影| 18禁黄网站禁片免费观看直播| 国产一区二区三区在线臀色熟女| 一级黄片播放器| 美女被艹到高潮喷水动态| 麻豆成人av在线观看| 精品久久久久久,| 亚洲国产精品999在线| 亚洲,欧美精品.| 99久久精品一区二区三区| 亚洲人成伊人成综合网2020| 丰满的人妻完整版| aaaaa片日本免费| 丰满乱子伦码专区| 日韩欧美精品v在线| 国产男靠女视频免费网站| 老熟妇仑乱视频hdxx| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久精品国产欧美久久久| 色视频www国产| 嫩草影院入口| 少妇的逼好多水| 最好的美女福利视频网| 一进一出抽搐gif免费好疼| 久久香蕉精品热| 精品99又大又爽又粗少妇毛片 | 我要搜黄色片| 国产精品久久久久久人妻精品电影| 精品午夜福利在线看| 国产成年人精品一区二区| 在线观看一区二区三区| 欧美+亚洲+日韩+国产| 日韩成人在线观看一区二区三区| 久久国产精品影院| 亚洲国产高清在线一区二区三| 久久久久免费精品人妻一区二区| 国产探花极品一区二区| 又爽又黄a免费视频| 男人狂女人下面高潮的视频| 国产欧美日韩一区二区精品| 国产精品久久久久久人妻精品电影| 成人午夜高清在线视频| 免费大片18禁| 一区福利在线观看| 国产主播在线观看一区二区| 欧美精品啪啪一区二区三区| 亚洲一区二区三区不卡视频| 成人美女网站在线观看视频| 51国产日韩欧美| 狠狠狠狠99中文字幕| 亚洲美女视频黄频| 99在线人妻在线中文字幕| 哪里可以看免费的av片| 精华霜和精华液先用哪个| 999久久久精品免费观看国产| 麻豆久久精品国产亚洲av| 国产野战对白在线观看| 免费看美女性在线毛片视频| 欧美成人免费av一区二区三区| 熟妇人妻久久中文字幕3abv| 色噜噜av男人的天堂激情| 成年女人永久免费观看视频| 精品无人区乱码1区二区| 国产在线男女| 亚洲真实伦在线观看| 久久精品国产清高在天天线| 久久精品久久久久久噜噜老黄 | 日韩欧美国产在线观看| 窝窝影院91人妻| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区 | 1000部很黄的大片| 神马国产精品三级电影在线观看| 国产主播在线观看一区二区| 色综合站精品国产| 嫩草影院新地址| 国产淫片久久久久久久久 | av福利片在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲美女视频黄频| 亚洲无线在线观看| 国产成人影院久久av| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 国产精品一区二区三区四区免费观看 | 毛片女人毛片| 成人亚洲精品av一区二区| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 给我免费播放毛片高清在线观看| av黄色大香蕉| av天堂中文字幕网| 日本 av在线| 啪啪无遮挡十八禁网站| 中出人妻视频一区二区| 韩国av一区二区三区四区| 好男人电影高清在线观看| 国产欧美日韩精品亚洲av| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片 | 国内精品美女久久久久久| 男女床上黄色一级片免费看| 最后的刺客免费高清国语| 日本三级黄在线观看| 婷婷亚洲欧美| 色噜噜av男人的天堂激情| 亚洲av第一区精品v没综合| 亚洲国产色片| 亚洲第一电影网av| 国产探花极品一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲18禁久久av| 欧美激情在线99| 国产视频内射| 成人美女网站在线观看视频| 免费无遮挡裸体视频| 亚洲精品亚洲一区二区| 久久这里只有精品中国| 黄色视频,在线免费观看| 在现免费观看毛片| 老司机福利观看| 在线观看舔阴道视频| 中文亚洲av片在线观看爽| 精品人妻视频免费看| 久久精品国产亚洲av香蕉五月| 国产国拍精品亚洲av在线观看| 91久久精品国产一区二区成人| 欧美色视频一区免费| 欧美色欧美亚洲另类二区| 亚洲av不卡在线观看| 天堂影院成人在线观看| 天堂网av新在线| 国产亚洲精品综合一区在线观看| 成人高潮视频无遮挡免费网站| 欧美最新免费一区二区三区 | 99久久久亚洲精品蜜臀av| 有码 亚洲区| 日本撒尿小便嘘嘘汇集6| 一本综合久久免费| 黄片小视频在线播放| 国产真实乱freesex| 欧美日本视频| 国产精品一及| 日本黄色片子视频| 日韩中文字幕欧美一区二区| 欧美性猛交╳xxx乱大交人| 亚洲第一欧美日韩一区二区三区| 久久精品91蜜桃| 色哟哟·www| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 国产一区二区三区在线臀色熟女| 国产大屁股一区二区在线视频| 人妻夜夜爽99麻豆av| 久久久精品欧美日韩精品| 亚洲久久久久久中文字幕| 午夜福利在线观看免费完整高清在 | 精品日产1卡2卡| 国产精品亚洲一级av第二区| 乱人视频在线观看| 国产成人a区在线观看| 日韩精品青青久久久久久| 亚洲av成人不卡在线观看播放网| 亚洲狠狠婷婷综合久久图片| 人妻久久中文字幕网| 久久香蕉精品热| 国产精品爽爽va在线观看网站| 色av中文字幕| 此物有八面人人有两片| 国模一区二区三区四区视频| 99久久99久久久精品蜜桃| 国产精品av视频在线免费观看| 禁无遮挡网站| 亚洲最大成人中文| 90打野战视频偷拍视频| 乱码一卡2卡4卡精品| 国语自产精品视频在线第100页| 国产三级中文精品| 无遮挡黄片免费观看| 色吧在线观看| 哪里可以看免费的av片| 日韩高清综合在线| 99热这里只有精品一区| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| 美女高潮喷水抽搐中文字幕| 99国产综合亚洲精品| 久久性视频一级片| 色尼玛亚洲综合影院| 看十八女毛片水多多多| 无遮挡黄片免费观看| or卡值多少钱| 国产淫片久久久久久久久 | 好看av亚洲va欧美ⅴa在| 精品一区二区三区视频在线观看免费| 色哟哟哟哟哟哟| 精品国产三级普通话版| 美女 人体艺术 gogo| 少妇高潮的动态图| 九九热线精品视视频播放| 精品99又大又爽又粗少妇毛片 | 午夜福利18| 亚洲七黄色美女视频| 国产美女午夜福利| 变态另类成人亚洲欧美熟女| 久久久久久久久久黄片| 热99re8久久精品国产| 国产精品一区二区三区四区免费观看 | 日本黄色视频三级网站网址| 黄色视频,在线免费观看| 亚洲不卡免费看| 久久久久久九九精品二区国产| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 亚洲自拍偷在线| 俺也久久电影网| 中文资源天堂在线| 国产亚洲欧美在线一区二区| 国产精品永久免费网站| 内射极品少妇av片p| 午夜福利高清视频| 在线观看av片永久免费下载| 婷婷色综合大香蕉| 国产精品自产拍在线观看55亚洲| 亚洲人与动物交配视频| 国产av麻豆久久久久久久| 悠悠久久av| 精品久久国产蜜桃| 99久久精品国产亚洲精品| 欧美乱色亚洲激情| 99久久精品热视频| 天天躁日日操中文字幕| 亚洲欧美精品综合久久99| 成人高潮视频无遮挡免费网站| 日韩欧美精品v在线| 91在线精品国自产拍蜜月| 美女 人体艺术 gogo| av专区在线播放| 嫩草影视91久久| 国产一区二区激情短视频| 很黄的视频免费| 国产免费男女视频| 久久亚洲精品不卡| 国模一区二区三区四区视频| 又黄又爽又刺激的免费视频.| 国产高潮美女av| 欧美一区二区国产精品久久精品| 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 深夜a级毛片| 精品久久久久久久末码| 乱码一卡2卡4卡精品| 国内少妇人妻偷人精品xxx网站| 国内毛片毛片毛片毛片毛片| 欧美极品一区二区三区四区| 国产精品98久久久久久宅男小说| 美女黄网站色视频| 日韩亚洲欧美综合| 精品99又大又爽又粗少妇毛片 | 国内精品久久久久精免费| 成人特级黄色片久久久久久久| 我的女老师完整版在线观看| 久久久久国内视频| 午夜精品一区二区三区免费看| 午夜福利高清视频| 一夜夜www| 丰满人妻熟妇乱又伦精品不卡| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 中出人妻视频一区二区| 亚洲av二区三区四区| 热99在线观看视频| 噜噜噜噜噜久久久久久91| 国产精品亚洲av一区麻豆| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 在现免费观看毛片| 永久网站在线| 欧美成人a在线观看| 日韩国内少妇激情av| 国产精品爽爽va在线观看网站| 国产色婷婷99| 亚洲,欧美精品.| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 人人妻人人澡欧美一区二区| 97超级碰碰碰精品色视频在线观看| 国内精品美女久久久久久| 久久久久国内视频| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 国产免费男女视频| 露出奶头的视频| 可以在线观看毛片的网站| 国产精品,欧美在线| 内地一区二区视频在线| 色噜噜av男人的天堂激情| 国产中年淑女户外野战色| 搞女人的毛片| 国产男靠女视频免费网站| 观看美女的网站| 一个人免费在线观看电影| 首页视频小说图片口味搜索| 亚洲人成网站在线播放欧美日韩| 精品一区二区免费观看| 简卡轻食公司| 色综合婷婷激情| 国产伦精品一区二区三区视频9| 久久久国产成人免费| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看| 色视频www国产| 亚洲色图av天堂| 久久中文看片网| 久99久视频精品免费| 91狼人影院| 3wmmmm亚洲av在线观看| 久久亚洲真实| 国产精品不卡视频一区二区 | netflix在线观看网站| 99在线人妻在线中文字幕| 淫妇啪啪啪对白视频| 欧美午夜高清在线| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 日韩中字成人| 一卡2卡三卡四卡精品乱码亚洲| 搡老岳熟女国产| 免费看日本二区| 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器| 国产三级中文精品| 国产日本99.免费观看| 91字幕亚洲| 日韩 亚洲 欧美在线| av在线蜜桃| 青草久久国产| 身体一侧抽搐| 国产精品美女特级片免费视频播放器| 久久欧美精品欧美久久欧美| 麻豆av噜噜一区二区三区| 国产精品影院久久| 首页视频小说图片口味搜索| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 国内揄拍国产精品人妻在线| 级片在线观看| www日本黄色视频网| 欧美色视频一区免费| 九色国产91popny在线| 日韩欧美 国产精品| 日本a在线网址| 中文字幕久久专区| 久久这里只有精品中国| 欧美乱妇无乱码| 中文字幕高清在线视频| 美女高潮喷水抽搐中文字幕| 亚洲精品乱码久久久v下载方式| 午夜福利在线在线| 久久久久九九精品影院| 搞女人的毛片| 长腿黑丝高跟| 如何舔出高潮| 永久网站在线| 99久久无色码亚洲精品果冻| 一本综合久久免费| 亚洲av日韩精品久久久久久密| 亚洲美女搞黄在线观看 | 精品人妻一区二区三区麻豆 | 可以在线观看的亚洲视频| 亚洲色图av天堂| 亚洲无线在线观看| 尤物成人国产欧美一区二区三区| 中文亚洲av片在线观看爽| 精品久久久久久久久av| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 亚洲av美国av| 在线免费观看不下载黄p国产 | 国产精品一区二区性色av| 午夜福利在线观看吧| 老女人水多毛片| 亚洲成人久久性| 一级毛片久久久久久久久女| 麻豆av噜噜一区二区三区| 波野结衣二区三区在线| 国产精品一区二区三区四区久久| 国产精品美女特级片免费视频播放器| 欧美+日韩+精品| 国产高清激情床上av| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 97碰自拍视频| 亚洲国产精品成人综合色| 乱码一卡2卡4卡精品| 久久热精品热| 免费看美女性在线毛片视频| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 如何舔出高潮| 亚洲中文字幕日韩| 亚洲av电影在线进入| 一级av片app| 日本黄色视频三级网站网址| 听说在线观看完整版免费高清| 亚洲精品456在线播放app | 亚洲av五月六月丁香网| 久久久久久久久久黄片| 亚洲人成伊人成综合网2020| 白带黄色成豆腐渣| 精品午夜福利在线看| 亚洲精品456在线播放app | 看十八女毛片水多多多| 少妇的逼好多水| 婷婷丁香在线五月| 午夜两性在线视频| 舔av片在线| 高清在线国产一区| ponron亚洲| 日本a在线网址| 男女那种视频在线观看| 亚洲精品在线观看二区| 免费搜索国产男女视频| 国产av麻豆久久久久久久| eeuss影院久久| 精品久久久久久久久久免费视频| 91久久精品电影网| 岛国在线免费视频观看| 级片在线观看| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 在线播放国产精品三级| 午夜福利在线在线| 午夜福利视频1000在线观看| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看| 久久精品久久久久久噜噜老黄 | 午夜福利在线观看免费完整高清在 | 久久久成人免费电影| 国产精品伦人一区二区| 精品人妻1区二区| 精品人妻熟女av久视频| 亚洲中文字幕一区二区三区有码在线看| 久久亚洲真实| 在线十欧美十亚洲十日本专区| 乱人视频在线观看| 午夜视频国产福利| 哪里可以看免费的av片| 亚洲美女搞黄在线观看 | 成人鲁丝片一二三区免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美日韩卡通动漫| 中文字幕av在线有码专区| 九九热线精品视视频播放| 国产亚洲精品综合一区在线观看| 最近视频中文字幕2019在线8| 99热这里只有精品一区| 国产爱豆传媒在线观看| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看| 宅男免费午夜| 成人鲁丝片一二三区免费| 女同久久另类99精品国产91| 舔av片在线| 久久久精品大字幕| 3wmmmm亚洲av在线观看| 欧美xxxx性猛交bbbb| 国产亚洲精品久久久久久毛片| 听说在线观看完整版免费高清| 国产aⅴ精品一区二区三区波| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 久久久久久久久中文| 亚洲精品色激情综合| 人妻久久中文字幕网| 波多野结衣高清无吗| 欧美成狂野欧美在线观看| 国内精品一区二区在线观看| 综合色av麻豆| 日本在线视频免费播放| 在线天堂最新版资源| 欧美日韩乱码在线| 男女那种视频在线观看| 两个人的视频大全免费| 一区二区三区四区激情视频 | 亚洲午夜理论影院| 日本精品一区二区三区蜜桃| 亚洲久久久久久中文字幕| 婷婷精品国产亚洲av在线| 好男人在线观看高清免费视频| 国产精品98久久久久久宅男小说| 欧美性猛交╳xxx乱大交人| 脱女人内裤的视频| 最新中文字幕久久久久| 精品无人区乱码1区二区| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 国产精品乱码一区二三区的特点| 亚洲av日韩精品久久久久久密| 久久久精品大字幕| 色综合亚洲欧美另类图片| 色综合欧美亚洲国产小说| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 国产亚洲精品久久久久久毛片| 久久久久久久精品吃奶| 欧美激情国产日韩精品一区| 国产亚洲欧美在线一区二区| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 国产精品久久久久久久久免 | 亚洲国产欧美人成| 亚洲欧美日韩高清在线视频| 黄色女人牲交| 内地一区二区视频在线| 一级a爱片免费观看的视频| 老司机午夜十八禁免费视频| 一进一出抽搐gif免费好疼| 亚洲成av人片免费观看| av天堂中文字幕网| 成人午夜高清在线视频| 欧美+日韩+精品| 黄色视频,在线免费观看| 赤兔流量卡办理| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄 | 黄色女人牲交| 蜜桃久久精品国产亚洲av| 亚洲国产精品999在线| 99热这里只有是精品在线观看 | 十八禁人妻一区二区| 免费av不卡在线播放| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 色综合婷婷激情| 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 乱人视频在线观看| 757午夜福利合集在线观看| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播放欧美日韩| 男人和女人高潮做爰伦理| 大型黄色视频在线免费观看| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 校园春色视频在线观看| 91麻豆精品激情在线观看国产| 久久久精品大字幕| 欧美性猛交黑人性爽| 老司机深夜福利视频在线观看| 91在线精品国自产拍蜜月| 成人国产综合亚洲| 欧美成人a在线观看| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 国产精品影院久久| 久久精品国产99精品国产亚洲性色| 欧美bdsm另类| 国产成人a区在线观看| 哪里可以看免费的av片| 怎么达到女性高潮| 国产av不卡久久| 成人欧美大片| 国产精品三级大全| 色综合婷婷激情| 免费大片18禁| 欧美日韩瑟瑟在线播放| 久久久久久久精品吃奶| 网址你懂的国产日韩在线| 久久亚洲真实| 欧美日韩综合久久久久久 | 色综合亚洲欧美另类图片| 乱码一卡2卡4卡精品| 亚洲18禁久久av| 国产激情偷乱视频一区二区| 国产三级黄色录像| 在线播放无遮挡| 少妇裸体淫交视频免费看高清| 国产成+人综合+亚洲专区| 久久久久久久精品吃奶| 亚洲av二区三区四区| 国产精华一区二区三区| 一进一出抽搐gif免费好疼| 午夜激情欧美在线|