王 翥,崔曉志,侯春雷
(哈爾濱工業(yè)大學(xué)(威海)信息與電氣工程學(xué)院,山東 威海 264209)
?
超聲波傳感器接收信號(hào)強(qiáng)度非對(duì)稱性分析及對(duì)策*
王 翥*,崔曉志,侯春雷
(哈爾濱工業(yè)大學(xué)(威海)信息與電氣工程學(xué)院,山東 威海 264209)
針對(duì)采用時(shí)差法測量流速時(shí),超聲波傳感器順、逆兩向接收信號(hào)強(qiáng)度存在的非對(duì)稱性、非均勻性問題,提出了一種改善超聲波傳感器性能的方法。根據(jù)超聲波傳感器的波束角、發(fā)聲傳感器與受聲傳感器的間距,分別計(jì)算出超聲波沿著波束角中心線和外線到達(dá)受聲傳感器表面的時(shí)間,進(jìn)而通過改進(jìn)壓電元件模塊提出一種縮短信號(hào)分別沿著中心線和外線到達(dá)受聲傳感器表面時(shí)間差的超聲波傳感器設(shè)計(jì)方法。理論分析可知,該方法可以有效地改善接收信號(hào)強(qiáng)度非均勻、非對(duì)稱性問題,提高了流量測量精度。
超聲波傳感器;波束角;時(shí)差法;非對(duì)稱性
眾所周知,超聲波流量計(jì)是測量氣體、液體等流體流量的裝置,而超聲波傳感器是超聲波流量計(jì)的關(guān)鍵件之一。采用時(shí)差法測量流體流速時(shí),超聲波在順逆兩向傳輸時(shí),傳播速度與流體速度有疊加,這樣順逆兩向超聲波傳播時(shí)間就存在時(shí)間差,依此可以計(jì)算流體流速[1],進(jìn)而得出流量值。目前,針對(duì)如何提高超聲波傳感器檢測流體流速的精確度問題,國內(nèi)外學(xué)者做了大量研究。文獻(xiàn)[2-3]中分析了超聲波信號(hào)發(fā)送波和回波的非線性和延遲特征,通過優(yōu)化算法使時(shí)間差的測算進(jìn)一步精確化,文獻(xiàn)[4]中通過游標(biāo)卡尺原理放大時(shí)間差的計(jì)算,從而提高了測量的分辨率及精度,文獻(xiàn)[5-7]中分別通過調(diào)整超聲波發(fā)生裝置的安裝位置、鎖相環(huán)跟蹤功能和相控陣列技術(shù)以低噪聲的影響,實(shí)現(xiàn)流速的精確測量,文獻(xiàn)[8-9]中強(qiáng)調(diào)了管道中流速分布非均勻性對(duì)流速測量的影響并通過相應(yīng)的參數(shù)模型提供流速誤差補(bǔ)償,進(jìn)而提高超聲波流量計(jì)的測量精度。但由于超聲波傳播具有指向性,即存在指向角,且在實(shí)際中存在層流與紊流的影響,則超聲波到達(dá)接收面的中心和周邊存在時(shí)間差。因此,便存在受聲傳感器接收信號(hào)強(qiáng)度的非均勻性與非對(duì)稱性問題。
本文提出了一種改進(jìn)方法,在現(xiàn)有傳感器技術(shù)基礎(chǔ)上,將壓電元件分成兩體結(jié)構(gòu),在不影響有效接收信號(hào)強(qiáng)度的前提下,改善了接收信號(hào)的均勻性、對(duì)稱性,提高了信噪比,對(duì)保證超聲波流量計(jì)的測量精確度具有顯著意義。
采用超聲波傳感器基于時(shí)差法測量流速的工作原理如圖1所示。
圖1 超聲波順向傳播
圖1中超聲波發(fā)聲方向與流體流速方向一致(順向),同時(shí)也存在超聲波發(fā)聲方向與流體流速方向不一致(逆向)的狀態(tài),在此不重復(fù)表示。理想狀態(tài)下,設(shè)超聲波傳感器間距為l,超聲波在流體中傳播的波速為c,流體流速為v。超聲波順流方向傳播時(shí),超聲波從發(fā)射側(cè)到達(dá)接收側(cè)的時(shí)間為t1,逆流方向傳播時(shí),超聲波從發(fā)射側(cè)到達(dá)接收側(cè)的時(shí)間為t2,則:
順逆兩向超聲波傳播時(shí)間差:
通過測得時(shí)間差可得到流體流速,進(jìn)而計(jì)算出流體的流量值[10]。
2.1 超聲波波束角
超聲波發(fā)射波束形狀如圖2所示[11]。某一點(diǎn)發(fā)出的速度為c的超聲波以一定指向角θ發(fā)射,超聲波呈圓盤狀向接收側(cè)發(fā)射,且圓盤狀的截面積由小到大。
圖2 實(shí)際波束形狀
2.2 理想狀態(tài)下均勻性與對(duì)稱性分析
理想狀態(tài)是指流體在管道內(nèi)的流速是一致的。設(shè)超聲波沿順流方向傳播時(shí),波在中心線傳播的時(shí)間為t理0+,沿θ方向傳播的時(shí)間為t理θ+,則:
因?yàn)閏?v,所以理想狀態(tài)下超聲波順流方向傳播時(shí),超聲波沿中心線和以一定指向角方向傳播到達(dá)接受面的時(shí)間差t理+為:
(1)
設(shè)超聲波沿逆流方向傳播時(shí),依據(jù)式(1)計(jì)算原理可知,超聲波沿中心線和以一定指向角方向傳播到達(dá)接受面的時(shí)間差t理-為:
(2)
由式(1)、式(2)比較可知:t理+>t理-。
說明超聲波與流速方向一致時(shí),超聲波分別沿中心線與以一定指向角方向傳播到達(dá)接受面的時(shí)間差,大于超聲波與流速方向不一致時(shí),超聲波分別沿中心線與以一定指向角方向傳播到達(dá)接受面的時(shí)間差。也就是說,當(dāng)管道內(nèi)流體流動(dòng)時(shí),接收到的超聲波存在非均勻性和非對(duì)稱性。
圖3 層流與紊流流速分布
2.3 非理想狀態(tài)下均勻性與對(duì)稱性分析
對(duì)于非理想狀態(tài),液體存在粘滯性而具有兩種流動(dòng)形態(tài)。液體質(zhì)點(diǎn)做有條不紊的運(yùn)動(dòng)、彼此不相混摻的形態(tài)稱為層流;液體質(zhì)點(diǎn)做不規(guī)則運(yùn)動(dòng)、互相混摻、軌跡曲折混亂的狀態(tài)稱為紊流。圖3為層流與紊流流速分布比較,vmax為軸心線流速,v表示面流速。兩者之間的關(guān)系為:
層流:v/vmax=0.5
紊流:v/vmax=0.75-0.9(取0.825進(jìn)行簡化計(jì)算)
2.3.1 層流狀態(tài)下均勻性與對(duì)稱性分析
設(shè)超聲波沿順流方向傳播時(shí),依據(jù)式(1)計(jì)算原理可知,超聲波沿中心線和以一定指向角方向傳播到達(dá)接受面的時(shí)間差t層+為:
(3)
設(shè)超聲波沿逆流方向傳播時(shí),依據(jù)式(2)計(jì)算原理可知,超聲波沿中心線和以一定指向角方向傳播到達(dá)接受面的時(shí)間差t層-為:
(4)
式(3)、式(4)比較可知:t層+>t層-。
2.3.2 紊流狀態(tài)下均勻性與對(duì)稱性分析設(shè)超聲波沿順流方向傳播時(shí),依據(jù)式(1)計(jì)算原理可知,超聲波沿中心線和以一定指向角方向傳播到達(dá)接受面的時(shí)間差t紊+為:
(5)
聲波沿逆流方向傳播時(shí),依據(jù)式(2)計(jì)算原理可知,超聲波沿中心線和以一定指向角方向傳播到達(dá)接受面的時(shí)間差t紊-為:
(6)
式(5)、式(6)比較可知:t紊+>t紊-。
由上述分析得知:
t理+>t理-,t層+>t層-,t紊+>t紊-
可見,無論流體流速方向與超聲波傳輸方向是否一致,超聲波到達(dá)接收側(cè)的中心與周邊區(qū)域的時(shí)間都會(huì)存在一個(gè)時(shí)間差。即:因?yàn)榇嬖谥赶蚪铅?所以沿中心線方向的超聲波到達(dá)時(shí)間要短于超聲波到達(dá)周邊區(qū)域的時(shí)間,且順向時(shí)間差大于逆向時(shí)間差。
這樣,就存在以下兩個(gè)問題:①超聲波傳感器接收的能量不夠集中,主要原因是中心部位與周邊部位存在接收信號(hào)強(qiáng)度的差異[12]。同時(shí),存在接收信號(hào)強(qiáng)度的非均勻性,這會(huì)降低接收信號(hào)的信噪比;②順、逆兩向都存在非均勻性,并且順、逆兩向的非均勻性不一致,這就造成了兩個(gè)傳感器接收信號(hào)強(qiáng)度的非對(duì)稱性,直接影響信號(hào)發(fā)生電路與信號(hào)接收電路處理信號(hào)的效果。
以上兩個(gè)問題都影響到流量檢測的精確度。
實(shí)驗(yàn)環(huán)境和條件:室內(nèi)溫度15 ℃~35 ℃,相對(duì)濕度25%~75%,大氣壓86 kPa~106 kPa,流量表口徑為DN20,超聲波傳感器的諧振頻率為1 MHz,傳感器直徑14 mm,厚度2.2 mm,超聲波在水中波速1 500 m/s,傳感器間距62 mm。則:
為了說明問題,本文以極端實(shí)驗(yàn)條件為例,即忽略中間狀態(tài),僅分析最大夾角狀態(tài)。依據(jù)計(jì)算得知:cos7.5°=0.9914。
計(jì)算3種狀態(tài)時(shí)間差。
比較可知:
Δt層+>Δt紊+>Δt理+>Δt理->Δt紊->Δt層-
層流比紊流狀態(tài)下的時(shí)間差更明顯。為便于敘述,采用特征更為明顯的層流來說明接收信號(hào)時(shí)間差、接收信號(hào)強(qiáng)度和流體流速的關(guān)系。圖4是順逆兩向接收信號(hào)強(qiáng)度非對(duì)稱性與非均勻性的說明圖。
圖4 信號(hào)強(qiáng)度說明圖
直線表示接收信號(hào)時(shí)間差與流體流速之間的關(guān)系,曲線表示接收信號(hào)強(qiáng)度與流體流速之間的關(guān)系。直線的物理意義是:最左側(cè)表明超聲波到達(dá)接收面的時(shí)間差最小,最右側(cè)表明超聲波到達(dá)接收面的時(shí)間差最大。曲線的物理意義是:最左側(cè)表明超聲波接收面接收信號(hào)強(qiáng)度最大,最右側(cè)表明超聲波接收面接收信號(hào)強(qiáng)度最小。
從上述分析可知,產(chǎn)生順逆兩向超聲波到達(dá)接收側(cè)傳感器時(shí)間差的主要因素是因?yàn)橹赶蚪铅容^大。
針對(duì)現(xiàn)有技術(shù)的不足之處,本文提出的改進(jìn)方法是:將現(xiàn)有結(jié)構(gòu)的壓電元件分為壓電元件模塊與虛擬壓電元件模塊,壓電元件模塊設(shè)置在外環(huán),虛擬壓電元件模塊設(shè)置在內(nèi)環(huán),虛擬壓電元件不具有壓電效應(yīng)。如圖5所示。
圖5 改進(jìn)后超聲波傳感器
因?yàn)閴弘娫K的內(nèi)外徑之差遠(yuǎn)遠(yuǎn)小于壓電元件外徑,這就將有效接收信號(hào)的角度限制在很小的一個(gè)范圍內(nèi),進(jìn)而減小了順逆兩向超聲波信號(hào)到達(dá)接收側(cè)的時(shí)間差,大大改善了接收信號(hào)的非均勻性、非對(duì)稱性,提高了信噪比。同時(shí),將外環(huán)作為壓電元件模塊,保證了超聲波信號(hào)的接收面積,也就保證了接收信號(hào)的強(qiáng)度。
本文以最大值與最小值之差除以流速作為相對(duì)偏差量來說明該改進(jìn)方法的優(yōu)越性。如表1,在全流速段內(nèi)選擇10個(gè)測量點(diǎn)作為對(duì)比數(shù)據(jù)。
表1線流速與時(shí)間差、信號(hào)強(qiáng)度數(shù)據(jù)對(duì)比表
為便于對(duì)比,本文把流速為零的接收信號(hào)時(shí)間差與接收信號(hào)強(qiáng)度等值依據(jù)表1得對(duì)比曲線,如圖6所示。
圖6 改善前后線流速與時(shí)間差、信號(hào)強(qiáng)度數(shù)據(jù)對(duì)比曲線
由表1和圖6可知。
現(xiàn)有技術(shù)接收信號(hào)時(shí)間差的相對(duì)偏差量:
(611.76-101.56)/356.66≈143%
改善后接收信號(hào)時(shí)間差的相對(duì)偏差量:
(446.93-266.39)/356.66≈51%
現(xiàn)有技術(shù)接收信號(hào)強(qiáng)度的相對(duì)偏差量:
(1252.55-207.93)/356.66≈293%
改善后接收信號(hào)強(qiáng)度的相對(duì)偏差量:
(477.52-284.62)/356.66≈54%
可以看出,改善后接收信號(hào)時(shí)間差的相對(duì)偏差量由143%降低到51%,其均方差由161.34ns降到57.08ns,接收信號(hào)強(qiáng)度的相對(duì)偏差量由293%降低到54%,其均方差由304.96降到60.47。表明,該方法大大改善了接收信號(hào)時(shí)間差與強(qiáng)度的對(duì)稱性和均勻性,流量檢測精確度可得到大幅度的改善。
現(xiàn)有的超聲波傳感器測量液體流量時(shí)存在接收側(cè)超聲波傳感器接收信號(hào)強(qiáng)度非均勻、非對(duì)稱問題,且影響流量測量精度。本文所提出的改進(jìn)方法的有益效果是:將現(xiàn)有技術(shù)的壓電元件分解為壓電元件模塊和虛擬壓電元件模塊,在不影響有效接收信號(hào)強(qiáng)度的前提下,改善了接收信號(hào)的均勻性、對(duì)稱性,提高了信噪比,對(duì)保證超聲波流量計(jì)的精確度具有顯著意義。
[1]李艷.一種新型超聲波流量傳感器[J].儀表技術(shù)與傳感器,2012(7):12-13.
[2]宋壽鵬,闕沛文.超聲信號(hào)的非線性行為及應(yīng)用[J].傳感技術(shù)學(xué)報(bào),2007,20(1):128-131.
[3]徐斌.一種考慮起振延遲的低頻超聲波短距高精度測量校準(zhǔn)方法[J].傳感技術(shù)學(xué)報(bào),2013,26(5):666-669.
[4]劉曉宇,楊江.時(shí)間比例放大技術(shù)在超聲波流量計(jì)中的應(yīng)用[J].傳感技術(shù)學(xué)報(bào),2007,20(2):454-457.
[5]Wang B,Cui Y,Liu W,et al.Study of Transducer Installation Effects on Ultrasonic Flow Metering Using Computational Fluid Dynamics[J].Advanced Materials Research,2013,629:676-681.
[6]Chen Y,Huang Y,Chen X.Acoustic Propagation in Viscous Fluid with Uniform Flow and a Novel Design Methodology for Ultrasonic Flow Meter[J].Ultrasonics,2013,53(2):595-606.
[7]Fukumoto T,Tsukada K,Ihara T,et al.A Study of Phased Array Ultrasonic Velocity Profile Monitor for Flow Rate Measurement[C]//2013 21st International Conference on Nuclear Engineering.American Society of Mechanical Engineers,2013:V006T16A051-V006T16A051.
[8]Iooss B,Lhuillier C,Jeanneau H.Numerical Simulation of Transit-Time Ultrasonic Flowmeters:Uncertainties Due to Flow Profile and Fluid Turbulence[J].Ultrasonics,2002,40(9):1009-1015.
[9]Mandard E,Kouamé D,Battault R,et al.Transit Time Ultrasonic Flowmeter:Velocity Profile Estimation[C]//Ultrasonics Symposium,2005 IEEE.IEEE,2005,2:763-766.
[10]王新峰,熊顯潮,高敏忠.超聲波流量計(jì)測量流體聲速的實(shí)驗(yàn)方法[J].物理學(xué)報(bào),2011,60(11):114303-114303.
[11]中國機(jī)械工程學(xué)會(huì)無損檢測分會(huì)超聲波檢測.超聲波檢測[M].機(jī)械工業(yè)出版社,2005:34-36.
[12]趙愛榮,陳雨,劉麗,等.埋入式壓電陶瓷厚度對(duì)激勵(lì)聲能影響的有限元分析[J].傳感技術(shù)學(xué)報(bào),2014(2):178-183.
Analysis and Countermeasures to the Problem of Ultrasonic Sensor Receives the Ultrasonic Signal Asymmetric*
WANGZhu*,CUIXiaozhi,HOUChunlei
(Harbin Instituteof Technology at Weihai,School of Information and Electrical Engineering,Weihai Shandong 264209,China)
Ultrasonic sensor receives the ultrasonic signal downstream and upstream when measuring the flow rate with the time difference method.However the received signal strength is irregular and asymmetrical.For the problem,a modified method to improve the performance of ultrasonic sensor is presented.According to the beam angle and the spacing of sending-side and receiving-side,the time arriving at the surface of ultrasonic sensor along the center and perimeter is calculated,respectively.Then,there is time difference existing when ultrasonic reaches the surface of the receiving-side sensor along the center and perimeter.To shorten it,this paper proposes a design method of ultrasonic sensor by improving the piezoelectric element structure of ultrasonic sensor.Theoretical analysis shows that the modified method can not only effectively improve the problem of irregularly and asymmetrically received signal strength,but also increase the accuracy of flow measurement.
ultrasonicsensor;beamangle;timedifferencemethod;asymmetrical
王 翥(1963-),男,哈工大(威海)信電學(xué)院教授。研究方向?yàn)闊o線傳感器網(wǎng)絡(luò)及網(wǎng)絡(luò)化測控技術(shù)、傳感器及應(yīng)用技術(shù),wangzhu@hit.edu.cn;
崔曉志(1990-),哈工大(威海)信電學(xué)院碩士研究生。研究方向?yàn)槌暡▊鞲衅骷霸诹髁繖z測中的應(yīng)用技術(shù)。
項(xiàng)目來源:山東省科技發(fā)展計(jì)劃項(xiàng)目(2012GGX10110)
2014-09-29 修改日期:2014-11-07
C:7230
10.3969/j.issn.1004-1699.2015.01.015
TB552
A
1004-1699(2015)01-0081-05