彭羅根,趙會民,張劍鋒
創(chuàng)傷性失血性休克淺低溫動物模型的建立
彭羅根,趙會民,張劍鋒
目的 建立一種簡單穩(wěn)定的創(chuàng)傷性失血性休克淺低溫動物模型。 方法 新西蘭兔20只隨機分為模型組和對照組,每組10只。模型組以頸動脈放血并股骨骨折法建立創(chuàng)傷性失血性休克(traumatic hemorrhagic shock,T/HS)模型,對照組實施假手術(shù)。兩組均經(jīng)歷麻醉,輔以冷液體及外加冰塊等誘導(dǎo)低溫過程,分別檢測休克前(t0)、休克30 min后(t1)、低溫2 h(t2)及復(fù)溫2 h(t3)的血常規(guī),記錄體溫(temperature,T)、心率(heart rate,HR)、休克指數(shù)(shock index,SI)、平均動脈壓(mean arterial pressure,MAP)、血紅蛋白(hemoglobin,HGB)及呼吸(respiration,R)等相關(guān)生理指標,觀察兩組成活率。結(jié)果 兩組動物創(chuàng)傷早期(4 h)的存活率100%。與對照組相比,模型組尿量明顯減少(t=3.3,P<0.05)。在t1時間點,模型組MAP(t=22.0,P<0.01)、HGB(t=4.0,P<0.01)水平明顯低于對照組;而R(t=2.9,P<0.01)、HR(t=2.1,P<0.05)及SI(t=4.0,P<0.01)水平則顯著高于對照組。在t2時間點,模型組MAP(t=4.5,P<0.01)、HGB(t=6.4,P<0.01)仍舊顯著低于對照組,差異有統(tǒng)計學(xué)意義。在t3時間點,模型組HGB(t=9.8,P<0.01)顯著低于對照組,差異有統(tǒng)計學(xué)意義。t2時間點與t1時間點相比:模型組MAP(t=20.0,P<0.01)顯著升高,對照組HGB(t=19.0,P<0.01)顯著升高,差異有統(tǒng)計學(xué)意義。對照組MAP、HR、R、SI水平在各時間點均無明顯變化(P>0.05)。結(jié)論 成功建立兔創(chuàng)傷性失血性休克淺低溫模型,為創(chuàng)傷性失血性休克早期淺低溫研究提供了動物模型。
創(chuàng)傷性失血性休克;淺低溫;動物模型
隨著社會進步,人類面臨的災(zāi)害已從自然災(zāi)害(如地震、洪水、泥石流等)向人為災(zāi)難(如交通事故、恐怖襲擊等)發(fā)展。復(fù)雜外傷或合并創(chuàng)傷性失血性休克是事發(fā)現(xiàn)場早期最常見的死亡原因。而低體溫、酸中毒及凝血功能障礙被認為是嚴重創(chuàng)傷致死的重要危險因素,常規(guī)救治主張對T/HS患者進行保暖復(fù)溫,然而低溫復(fù)蘇在卒中患者器官損傷抑制的益處顯而易見,近年來國內(nèi)外學(xué)者試圖探討低溫對創(chuàng)傷性休克患者早期復(fù)蘇的利弊[1-3]。因此,筆者試圖建立一種簡單的T/HS淺低溫模型,為T/HS淺低溫研究提供實驗動物支持。
1.1 材料 健康成年新西蘭兔20只(動物許可證號:scxk桂2009-0002),體重(2.5±0.4)kg,SPF級,雌雄不限,按隨機數(shù)字表法分為模型組(10例)和對照組(10例)。
1.2 創(chuàng)傷性休克動物模型制備及低溫復(fù)溫方法 實驗前適應(yīng)性喂養(yǎng)1周,術(shù)前禁食12 h,禁水4 h。實驗組操作方法參照Capnoe和Park等[2,4]的研究,略有改進,具體是:(1)建立頸外靜脈通路作為麻醉用藥及補液通路;以20%烏拉坦(5 ml/kg)靜脈麻醉,切開右大腿皮膚,分離肌群,暴露并鉗斷股骨(以無菌紗塊保護創(chuàng)面且便于稱重記錄失血量);分離左側(cè)頸動脈并置入以枸櫞酸鈉抗凝的動脈留置管,外接三通閥以供放血并記錄失血量及記錄心率、血壓,在15 min內(nèi)將MAP降至45 mmHg(1 mmHg=0.133 kPa),放血速率2 ml/(kg·min),本組平均失血量為(38±5.0)ml;低血壓穩(wěn)定持續(xù)30 min視為創(chuàng)傷性休克模型成功。(2)以20℃乳酸林格氏液和羥乙基淀粉40氯化鈉注射液(體積比2∶1)的液體補液維持MAP在目標血壓45 mmHg。(3)輔以乙醇冰水擦浴降溫,中心體溫(膀胱)(34±0.5)℃維持2 h,以電熱毯、紅外線照射緩慢復(fù)溫2 h。對照組僅進行假手術(shù)(皮膚切開,不放血不輸液,同樣經(jīng)歷低溫復(fù)溫過程)。
1.3 采集與指標測定 記錄動物存活率及總失血量(注射器采血和紗塊稱重法并用,為頸動脈失血量和骨折創(chuàng)傷失血量之和)、尿量和補液量;分別于術(shù)前(t0)、術(shù)后30 min(t1)、降溫2 h(t2)及復(fù)溫2 h(t3)采集血樣本,優(yōu)利特全自動血細胞分析儀(3010型)檢測血常規(guī);泰盟(BL-420S)生物機能試驗系統(tǒng)實時監(jiān)測MAP、收縮壓(systolic blood pressure,SBP)、R、HR等相關(guān)數(shù)據(jù);計算SI(脈搏與收縮壓的比值);自動電子體溫計每30 s記錄膀胱溫度(T)。實驗完畢常規(guī)處死尸檢。
2.1 模型組與對照組MAP、HGB、SI、HR、R在不同時間點的比較 實驗前模型組與對照組比較,MAP、HGB、HR、R及SI差異均無統(tǒng)計學(xué)意義(P>0.05)。在t1時間點,模型組MAP(t=22.0,P<0.01)、HGB(t=4.0,P<0.01)顯著低于對照組,差異有統(tǒng)計學(xué)意義;模型組HR(t=2.1,P<0.05)、R(t=2.9,P<0.01)及SI(t=4.0,P<0.01)顯著高于對照組,差異有統(tǒng)計學(xué)意義。在t2時間點,模型組MAP(t=4.5,P<0.01)、HGB(t=6.4,P<0.01)仍舊顯著低于對照組,差異有統(tǒng)計學(xué)意義。在t3時間點,模型組HGB(t=9.8,P<0.01)顯著低于對照組,差異有統(tǒng)計學(xué)意義。t2時間點與t1時間點相比:模型組MAP(t=20.0,P<0.01)顯著升高,對照組HGB(t=19.0,P<0.01)顯著升高。對照組MAP、HR、R、SI水平在各時間點均無變化(P>0.05)。見表1。
時間MAP(mmHg)模型組對照組HGB(g/L)模型組對照組HR(次/min)模型組對照組R(次/min)模型組對照組SI(次/minmmHg)模型組對照組t095±392±6114±13125±10347±53327±5251±1047±103.1±0.43.0±0.6t145±6①88±597±11①117±12398±82①334±4663±13①46±104.5±0.9①3.1±0.5t275±8①②86±578±17①113±14②343±73325±4448±1042±93.5±1.03.2±0.6t384±688±474±23①117±9 362±66331±4851±1445±83.6±0.73.2±0.6
注:模型組為頸動脈放血并股骨骨折建立創(chuàng)傷性失血性休克模型,對照組為假手術(shù)組。①與對照組同時間點比,P<0.05 ;②與同組t1比,P<0.05
2.2 模型組與對照組尿量及補液量比較 記錄創(chuàng)傷性休克動物模型制備及低溫復(fù)溫過程兩組動物的補液量及尿量得出,模型組與對照組4 h內(nèi)的補液量分別為(73±10)ml、(18±7)ml,兩組比較差異有統(tǒng)計學(xué)意義(t=14.0,P<0.01);模型組與對照組4 h內(nèi)的尿量分別為(12±6)ml、(21±8)ml,兩組比較差異有統(tǒng)計學(xué)意義(t=3.3,P<0.01)。
目前,低溫療法已被用于心臟驟停、創(chuàng)傷、出血性休克等,其保護作用也得到廣泛認可[4,5]。最近美國匹茲堡大學(xué)把低溫療法應(yīng)用到嚴重T/HS患者中,為后續(xù)搶救性治療贏得時間,對T/HS低溫治療價值有了新認識。本實驗采用開放性長骨骨折及控制性失血,輔以冷液體和物理降溫成功復(fù)制了T/HS淺低溫模型。模型組處于重度休克(SI=4.5),經(jīng)歷淺低溫后,休克程度(SI=3.5)明顯減輕,且平均動脈壓較休克時顯著上升,可能與淺低溫對T/HS的保護作用有關(guān)。本方法構(gòu)建的模型具有相對穩(wěn)定性、實用性和合理性,為臨床研究T/HS早期(4 h)一線、院前期基礎(chǔ)救治研究及低溫抗休克等提供了多方面的參考依據(jù),也為T/HS的救護贏得了時間。
近年來,國外研究表明低溫可提高失血性休克動物早期存活率,延長救治“黃金時間”,對于失血性休克后全身炎性反應(yīng)也有一定抑制作用[6]。若溫度繼續(xù)低于34 ℃,死亡率隨溫度的降低而明顯增加[7]。另外,快速誘導(dǎo)低溫對心臟驟停、創(chuàng)傷、出血性休克等的保護作用已得到廣泛認可[4,5]。傳統(tǒng)方法使用冰毯、醇浴等物理降溫很難迅速降低至目標體溫,反而在降溫過程中增加機體耗氧等。另外有學(xué)者用“冬眠合劑”加冰毯也能成功快速誘導(dǎo)低溫,但不良反應(yīng)也不可避免,如引起血壓下降、抑制體溫及呼吸中樞等[8]。本實驗以快速輸注低溫液體(乳酸林格氏液和羥乙基淀粉40氯化鈉注射液體積比2∶1)總量少于2倍失血量,降溫至目標溫度,輔以乙醇擦浴大血管冰塊降溫維持中心體溫(膀胱)目標溫度。本實驗?zāi)繕藴囟葹?4 ℃,輸注液體溫度為20 ℃,復(fù)溫以電熱毯、紅外線照射緩慢復(fù)溫,能較好地控制溫度。文獻[9,10]報道,限制性液體復(fù)蘇能夠降低重度失血性休克早期的死亡率,小劑量補液較快速大量補液更有利于抑制酸中毒進展及高鉀血癥。
相比于傳統(tǒng)的創(chuàng)傷性休克模型常用方法,如①拍擊肢體法、②轉(zhuǎn)筒法、③鈍器沖擊腹部臟器致創(chuàng)傷(肝、脾、腎等)等[11],本實驗采用開放性長骨骨折及控制性失血制作T/HS淺低溫模型,較好地量化了創(chuàng)傷和休克程度[12-15]。前期預(yù)實驗MAP按Park等[16]方法降至40 mmHg左右,再予以創(chuàng)傷和低溫后,在不輸液時動物死亡率非常高(3/4),給予輸液后勉強能維持在40 mmHg,但輸液量較多(多于失血量的4倍),這很大程度影響了內(nèi)環(huán)境。若MAP在45 mmHg左右,同樣的操作后不需干預(yù)也能維持平穩(wěn)血壓,又能有典型的休克體征。本實驗主要觀察創(chuàng)傷性失血性休克早期(4 h)淺低溫的病理生理變化及救治,更長時間的研究和后續(xù)治療有待于進一步研究。
[1] Huang C H,Chiang C Y,Pen R H,etal. Hypothermia treatment preserves mitochondrial integrity and viability of cardiomyocytes after ischaemic reperfusion injury[J].Injury,2014-10-31.[Epub ahead of print]
[2] Capone A C, Safar P, Stezoski W,etal. Improved outcome with fluid restriction in treatment of uncontrolled hemorrhagic shock[J]. Am Coll Surg,1995,180(1):49-56.
[3] Murphy L D,Green R S. A case of commotio cordis treated with therapeutic hypothermia[J].J Emerg Med,2014,46(5):149-153.
[4] Park K H, Lee K H, Kim H,etal. Effect of hypothermia on coagulatory function and survival in Sprague-Dawley rats exposed to uncontrolled haemorrhagic shock[J].Injury,2013,44(1):91-96.
[5] Bemard S A, Gray T W, Buist M D,etal. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia[J]. N Engl J Med,2002,346(8):557-563.
[6] Klenter R, Rollwagen F M, Prueckner S,etal. Effects of mild hypothermia on survival and serum cytokines in uncontrolled hemorrhagic shock in rats[J]. Shock,2002,17(6):521-526.
[7] Iwamoto S, Takasu A, Sakamoto T,etal. Therapeutic mild hypothermia: effects on coagulopathy and survival in a rat hemorrhagic shock model[J]. Trauma,2010,68(3):669-675.
[8] 郝艷玲,衷鳳剛,楊 龍,等. 冬眠合劑對小鼠缺氧耐受力的影響[J]. 齊齊哈爾醫(yī)學(xué)院學(xué)報,2011,32(10):1540-1541.
[9] 杜鵬飛,朱海彬,趙會民.不同補液強度對重度失血性休克早期血清乳酸及鉀的影響[J]. 中華急救醫(yī)學(xué),2013,33(5):462-464.
[10] Subeq Y M, Hsu B G, Lin N T,etal. Hypothermia caused by slow and limited-volume fluid resuscitation decreases organ damage by hemorrhagic shock[J]. Cytokine, 2012,60(1):68-75.
[11] 胡同增,張自云. 實驗外科學(xué)[M].2版. 北京:人民衛(wèi)生出版社,2000:287-296.
[12] Shan Y J, Xiao D H, Jian A W,etal. Therapeutic mild hypothermia improves early outcomes in rabbits subjected to traumatic uncontrolled hemorrhagic shock[J].J Surg Res,2013,179(1):145-152.
[13] Soller B, Zou F, Dale Prince M,etal. 2014 Military Supplement: Comparison of Noninvasive pH and Blood Lactate as Predictors of Mortality in a Swine Hemorrhagic Shock with Restricted Volume Resuscitation Model[J]. Shock,2014,42(1):44-51.
[14] Frohlich M, Hildebrand F, Weuster M,etal. Induced hypothermia reduces the hepatic inflammatory response in a swine multiple trauma model[J]. J Trauma Acute Care Surg,2014,76(6):1425-1432.
[15] Stern S, Rice J, Philbin N,etal. Resuscitation with the hemoglobin-based oxygen carrier, HBOC-201,in a swine model of severe uncontrolled hemorrhagic and traumatic brain injury[J]. Shock,2009,31(1):64-79.
[16] Park K H, Lee K H, Kim H,etal. Effect of hypothermia on coagulatory function and survival in Sprague-Dawley rats exposed to uncontrolled haemorrhagic shock[J]. Injury, 2013,44(1):91-96.
(2014-12-02收稿 2014-01-07修回)
(責(zé)任編輯 張亞麗)
Establishment of hypothermia animal model of traumatic haemorrhagic shock
PENGLuogen,ZHAOHuimin,andZHANGJianfeng.
DepartmentofEmergencyMedicine,ThefirstAffiliatedHospital,GuangxiMedicalUniversity,GuangxiZhuangAutonomousRegion,Nanning530021,China
ZHAOHuimin,E-maill:hmzhao2006@163.com
Objective To establish animal model of hypothermia of traumatic hemorrhagic shock. Methods 20 rabbits were randomly divided into control group and model group, 10 cases each. Carotid artery bloodletting and femoral fracture were applied to model group to establish traumatic hemorrhagic shock(T/HS) model, while sham operation was used in control group. Both of them experienced anesthesia and low temperature process induced by cold liquid and ice. Then the routine blood, temperature (T), heart rate (HR), shock index (SI), mean arterial pressure (MAP), hemoglobin (HGB), respiration(R)and related physiological indexes were recorded at different time including before shock(t0), 30 minutes after shock(t1), 2 hours after hypothermia(t2) and 2 hours after resuscitation(t3), and survival rates of two groups were also observed. Results Survival rates in both groups were 100%. Compared with control group, urine volume of model group was significantly decreased(t=3.3,P<0.05). 30 minutes after shock, in model group, the level of MAP(t=22.0,P<0.01) and HGB(t=4.0,P<0.01) were significantly lower, while R(t=2.9,P<0.01), HR(t=2.1,P<0.05), and SI(t=4.0,P<0.01) were significantly higher than that of control group. 2 hours after hypothermia, the level of MAP(t=4.5,P<0.01)and HGB(t=6.4,P<0.01) of model group were still lower than those of control group. 2 hours after resuscitation, the level of HGB(t=9.8,P<0.01) of model group were lower than those of control group. The level of MAP(t=20.0,P<0.01) in model group and HGB(t=19.0,P<0.01) in control group 2 hours after hypothermia were increased significantly than that 30 minutes after shock. The level of MAP, HR, R and SI of control group didn’t change significantly in all of the time points. Conclusions The rabbit T/HS model was established by this way successfully, and provide an animal model of hypothermia with T/HS for further researching.
traumatic hemorrhagic shock; hypothermia; animal model
10.13919/j.issn.2095-6274.2015.01.004
廣西青年基金項目(NO.桂科青0832040)
彭羅根,碩士,住院醫(yī)師,E-mail:pengluogen2012@163.com
530021 南寧,廣西壯族自治區(qū)廣西醫(yī)科大學(xué)第一附屬醫(yī)院急診科
趙會民,E-mail:hmzhao2006@163.com
R361