摘要:基于對(duì)50根彎曲破壞鋼筋混凝土圓柱低周反復(fù)試驗(yàn)結(jié)果的分析,建立了完整滯回環(huán)的數(shù)學(xué)表達(dá)式并推導(dǎo)得出等效阻尼比計(jì)算模型;以雙柱墩橋梁為例,說(shuō)明了建立橋梁整體結(jié)構(gòu)等效阻尼比與墩柱端部塑性鉸等效阻尼比關(guān)系的方法。研究表明,完整滯回環(huán)數(shù)學(xué)表達(dá)式較好地反映了彎曲破壞鋼筋混凝土圓柱的滯回特性,得到的等效阻尼比模型計(jì)算結(jié)果與試驗(yàn)結(jié)果符合較好;采用建立的橋梁整體結(jié)構(gòu)等效阻尼比與墩柱端部塑性鉸等效阻尼比的關(guān)系進(jìn)行pushover分析更能反映實(shí)際情況。采用等效阻尼比模型算得的目標(biāo)位移與基于Rosenblueth模型和Kowalsky模型算得的位移之間存在較大差距。
關(guān)鍵詞:鋼筋混凝土;圓柱;彎曲破壞;滯回環(huán);等效阻尼比
中圖分類(lèi)號(hào):TU357.3 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1674-4764(2015)05-0001-10
Abstract:Based on analysis of the test results of 50 RC specimens of circular columns failed in flexure, an expression for defining the hysteretic loop is proposed and a model for predicting the equivalent damping ratio is developed. The procedure for associating the equivalent damping ratio of a structure as a whole with those of its element is established by an example of double-column pier-bridge. It’s indicated that the expression of hysteretic loop proposed well defines the hysteretic loops of RC columns. Rational outcome can be expected when performing pushover analysis using the relationship of equivalent damping ratio of a bridge as a whole with those of its element. The target displacement predicted with the proposed model is different from those predicted with Rosenblueth’s model and Kowalsky’ model.
Key words:Reinforced concrete;circular columns;flexural failure;hysteretic loop;equivalent damping ratio.
非線性靜力彈塑性分析方法是近年來(lái)結(jié)構(gòu)抗震分析常用的一種方法[1-6],能力譜法是該方法中的一種。此類(lèi)方法將結(jié)構(gòu)等效為一個(gè)單自由度體系,采用等效割線剛度和等效阻尼比,結(jié)合地震反應(yīng)譜計(jì)算規(guī)定地震下結(jié)構(gòu)的最大反應(yīng)位移。等效阻尼比的合理確定非常重要。
關(guān)于等效阻尼的確定,眾多學(xué)者已進(jìn)行了大量研究。Jacobsen[7-8]最早針對(duì)彈塑性單自由度體系提出了等效粘性阻尼的概念,其成果對(duì)等效阻尼比的研究產(chǎn)生了重要意義。Rosenbluethn等[9]將實(shí)際的荷載-位移關(guān)系簡(jiǎn)化為Kinematic雙線型模型,基于Jacobsen的等效粘性阻尼概念,利用一個(gè)運(yùn)動(dòng)循環(huán)滯回曲線所圍成的面積與阻尼消耗的能量相等的關(guān)系確定等效阻尼比。Kowalsky [10]將該方法用于Takeda[11]提出的具有卸載剛度退化特征的滯回模型,將卸載剛度系數(shù)取為0.5,確定了等效單自由度體系的等效阻尼比計(jì)算模型。Gulan等[12]根據(jù)小比尺鋼筋混凝土框架結(jié)構(gòu)的振動(dòng)臺(tái)試驗(yàn)結(jié)果,結(jié)合Taketa等[11]滯回模型提出了等效阻尼比模型。Iwan等[13]利用庫(kù)侖滑移單元和彈性單元得到的滯回模型,根據(jù)12條地震波作用下的時(shí)程分析結(jié)果,得出了等效阻尼比模型。Kwan等[14]根據(jù)Iwan所提出的方法研究了6種滯回模型、20條地震波、周期范圍在0.1~1.5 s的等效阻尼比模型和等效周期關(guān)系式,所提出的等效阻尼比模型中考慮了滯回模型的影響。中國(guó)也有學(xué)者從不同角度對(duì)等效阻尼比進(jìn)行了研究[15-19]。馬愷澤等[20]在統(tǒng)計(jì)分析的基礎(chǔ)上,提出了考慮場(chǎng)地類(lèi)別和設(shè)計(jì)地震分組的等效阻尼比模型。陸本燕等[21]通過(guò)對(duì)不同研究者提出的等效阻尼比模型進(jìn)行對(duì)比研究指出,滯回模型對(duì)等效阻尼比有很大影響。
按照能量相等原理得到的等效阻尼比是針對(duì)一個(gè)構(gòu)件塑性鉸的,并不適用于有多個(gè)塑性鉸的結(jié)構(gòu)(盡管目前仍這樣做);通過(guò)地震數(shù)值分析得到的經(jīng)驗(yàn)等效阻尼比公式是針對(duì)所分析情況的,當(dāng)實(shí)際結(jié)構(gòu)與所分析結(jié)構(gòu)不同時(shí),采用這種等效阻尼比是不合理的。
本文對(duì)項(xiàng)目組16根[22]和PEER數(shù)據(jù)庫(kù)中34根[23]彎曲破壞的圓形截面鋼筋混凝土柱低周反復(fù)試驗(yàn)試驗(yàn)結(jié)果進(jìn)行了分析,建立了滯回環(huán)的數(shù)學(xué)模型,推導(dǎo)得出構(gòu)件的等效阻尼比計(jì)算公式;以雙柱墩橋梁為例,建立了橋梁整體結(jié)構(gòu)等效阻尼比與墩柱端部塑性鉸等效阻尼比的關(guān)系式。闡述了本文等效阻尼比公式在鋼筋混凝土雙柱墩橋梁抗震pushover分析中的應(yīng)用。
1 滯回環(huán)模型
1.1 曲線上的特征點(diǎn)
設(shè)計(jì)制作了16根圓形截面鋼筋混凝土試件,試件截面直徑為235 mm,混凝土保護(hù)層厚度為20 mm,剪跨比為6和7,如圖1所示?;炷翉?qiáng)度等級(jí)為C40,實(shí)測(cè)混凝土立方體抗壓強(qiáng)度51.39 MPa,彈性模量3.66×104N/mm2??v筋采用HRB335級(jí)鋼筋,采用816和612 mm兩種配筋方式,對(duì)應(yīng)的配筋率為3.7%和1.56%,沿試件周邊均勻布置。箍筋采用直徑6.5 mm的HPB235級(jí)鋼筋,間距分別為50、100 mm,對(duì)應(yīng)的配箍率分別為0.28%和0.56%,主要試驗(yàn)參數(shù)如表1所示。
試驗(yàn)在大連理工大學(xué)結(jié)構(gòu)工程實(shí)驗(yàn)室進(jìn)行,采用懸臂梁式擬靜力加載方法加載,如圖2所示。首先利用液壓千斤頂在試件頂部施加恒定的豎向荷載,千斤頂通過(guò)滾子滑板與反力架橫梁相連,以確保千斤頂與試件一起平動(dòng)。試件頂部水平荷載通過(guò)固定于兩側(cè)反力架上的液壓千斤頂施加。試驗(yàn)采用位移控制,開(kāi)始加載時(shí)變形為2 mm,3個(gè)循環(huán)后按照4 mm的倍數(shù)遞增,每級(jí)循環(huán)3次,直到試件發(fā)生嚴(yán)重破壞而無(wú)法承受軸力。試驗(yàn)加載制度如圖3所示。試驗(yàn)測(cè)量的主要參數(shù)包括:柱頂水平加載點(diǎn)處的水平荷載和位移;沿柱試件高度一定范圍內(nèi)的彎曲、剪切變形及塑性鉸區(qū)段的轉(zhuǎn)角;縱向鋼筋和箍筋應(yīng)變等。儀表和應(yīng)變測(cè)點(diǎn)布置如圖4所示。所有荷載、位移和應(yīng)變均采用32通道的德國(guó)imc數(shù)據(jù)采集系統(tǒng)采集。
所選PEER數(shù)據(jù)庫(kù)中34根彎曲破壞圓形截面鋼筋混凝土柱的主要試驗(yàn)參數(shù)同樣列于表1中,表中所有試件均為低周反復(fù)加載。
5 結(jié) 論
根據(jù)彎曲破壞型鋼筋混凝土圓柱的試驗(yàn)結(jié)果,建立了完整滯回環(huán)的數(shù)學(xué)模型,基于所建立的滯回環(huán)模型,根據(jù)Jacobsen理論推導(dǎo)得出圓柱的等效阻尼比模型。以雙墩鋼筋混凝土連續(xù)梁橋?yàn)槔?,建立了橋梁結(jié)構(gòu)體系等效阻尼比與墩柱端部塑性鉸等效阻尼比的轉(zhuǎn)換關(guān)系式。本研究主要結(jié)論如下:
1)所提出彎曲破壞型鋼筋混凝土圓柱的滯回環(huán)表達(dá)式較好地反映了彎曲破壞型試件的滯回特性;基于該模型建立的等效阻尼比模型概念明確,與試驗(yàn)結(jié)果吻合良好,可用于地震作用下彎曲破壞鋼筋混凝土圓形截面偏心受壓構(gòu)件的抗震分析。
2)從原理上講,用反映橋梁墩柱不同位置塑性鉸及考慮塑性鉸不同出現(xiàn)次序和轉(zhuǎn)動(dòng)情況的橋梁整體等效阻尼比分析地震作用下橋梁的位移,比目前Pushover分析中常用的采用一個(gè)構(gòu)件的等效阻尼比計(jì)算橋梁的位移更能反映橋梁整體的耗能和等效粘滯阻尼特性。
3)以建立的單個(gè)塑性鉸的等效阻尼比為基礎(chǔ)、采用本文提出的橋梁整體等效阻尼比公式進(jìn)行poshover分析,計(jì)算的橋梁目標(biāo)位移與基于Rosenblueth模型以及Kowalsky模型的計(jì)算結(jié)果存在較大的差距。
參考文獻(xiàn):
[1] Federal Emergency Management Agency. NEHRP guidelines for the seismic rehabilitation of buildings [R]. FEMA 356. Washington D C, 2000.
[2] Priestley M J N, Kowalsky M J. Direct displacement- based seismic design of concrete buildings [J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(4): 421-444.
[3] Chopra A K, Goel R K. Capacity-demand-diagram methods based on inelastic design spectrum [J]. Earthquake Spectra, 1999, 15(4): 637-656.
[4] Fajfar P, Fischinger M. N2-A method for non-linear seismic analysis of regular buildings[C]//Proceedings of the Ninth World Conference in Earthquake Engineering, 1988, 5: 111-116.
[5] Gasp P, Fajfar P, Fischinger M. An approximate method for seismic damage analysis of buildings[C]// Proceedings of the Tenth World Conference on Earthquake Engineering (Madrid), Rotterdam: AA Balkema, 1992: 3921-6.
[6] Prestandard F E M A. Commentary for the seismic rehabilitation of buildings[R]. Rep. No. FEMA 356,2000.
[7] Jacobsen L S. Steady forced vibrations as influenced by damping [J]. Transactions ASME, 1930, 52:169-181.
[8] Jacobsen L S. Damping in composite structures[C]//Proceedings of 2nd World Conference on Earthquake Engineering, 1960: 1029-1044.
[9] Rosenblueth E, Herrera1.On a kind of hysteretic damping [J]. Journal of Engineering Mechanics Division, ASCE, 1964, 90(l): 37-4.
[10] Kowalsky M J. Displacement-based design: A methodology for seismic design applied to RC bridge columns [D]. University of California at San Diego, La Jolla, California, 1994.
[11] Takeda T, Sozen M A, Neilsen N N. Reinforced concrete response to simulated earthquakes [J]. Journal of the Structural Division, ASCE, 1981, 107(9):1713-1729.
[12] GuIkan P, Sozen M. Inelastic response of reinforced concrete structures to earthquake motions [J]. ACI Structural Journal, 1974, 71(12):604-610.
[13] Iwan W D. Estimating inelastic response spectra from elastic spectra [J]. Earthquake Engineering and Structural Dynamics, 1982, 8: 375 -388.
[14] Kwan W P, Billington S L. Influence of hysteretic behavior on equivalent period and damping of structural systems [J]. Journal of Structural Engineering, 2003, 129(5): 576 -585.
[15] 丁建國(guó). 彈塑性反應(yīng)譜及其在抗震設(shè)計(jì)中的應(yīng)用[J]. 南京理工大學(xué)學(xué)報(bào), 2007, 31 (6): 780- 783.
Ding J G.Elasto-plastic response spectrum and its applications in a seismic design [J]. Journal of Nanjing University of Science and Technology, 2007, 31 (6): 780-783. (in Chinese)
[16] 曲哲, 葉列平. 建筑結(jié)構(gòu)彈塑性地震響應(yīng)計(jì)算的等價(jià)線性化法研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2010, 31( 9) : 95-102.
Qu Z, Ye L P.Equivalent linear analysis in estimating nonlinear seismic responses of building structures [J]. Journal of Building Structures, 2010, 31(9): 95-102. (in Chinese)
[17] 梁仁杰, 吳京, 孟少平. 能力譜法中等效阻尼比的誤差分析及假設(shè)檢驗(yàn)[J]. 土木工程學(xué)報(bào), 2010, 43: 33 -36.
Liang R J, Wu J, Meng S P.Error analysis and assumption test on the equivalent damping ratio in capacity spectrum method [J]. China Civil Engineering Journal, 2010, 43: 33 -36. (in Chinese)
[18] 程光煜 葉列平. 基于等效線性化方法彈塑性SDOF系統(tǒng)能量譜的研究[J]. 建筑結(jié)構(gòu), 2007:37(8): 74-77.
Cheng G Y, Ye L P.Estimation of input energy spectra of inelastic SDOF systems with equivalent linear method [J]. Building Structure, 2007, 37(8): 74-77. (in Chinese)
[19] 李妍, 吳斌, 歐進(jìn)萍. 彈塑性結(jié)構(gòu)等效線性化方法的對(duì)比研究[J]. 工程抗震與加固改造, 2005, 27(1): 1-6.
Li Y, Wu B, Ou J P.Comparison of equivalent linearization methods for inelastic structures [J]. Earthquake Resistant Engineering and Retrofitting, 2005, 27(1): 1-6. (in Chinese)
[20] 馬愷澤, 鄢紅良, 劉伯權(quán),等. 基于位移的抗震設(shè)計(jì)方法中的等效阻尼模型的研究[J]. 地震工程與工程振動(dòng), 2013, 33 (4): 134-139.
Ma Z K, Yan H L, Liu B Q, et al. Research on equivalent damping ratio for displacement-based seismic design method [J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33 (4): 134-139. (in Chinese)
[21] 陸本燕, 劉伯權(quán), 劉鳴, 等. 等效阻尼比對(duì)基于位移的抗震設(shè)計(jì)的影響分析[J]. 防災(zāi)減災(zāi)工程學(xué)報(bào), 2010, 30(6): 667- 673.
Lu B Y, Liu B Q, Liu M,et al.Analysis of equivalent damping ratio on displacement-based seismic design [J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(6): 667- 673. (in Chinese)
[22] 貢金鑫. 鋼筋混凝土構(gòu)件等效阻尼比研究[R]. 大連理工大學(xué), 2013.
Gong J X.Research on equivalent damping ratio of reinforced concrete elements [R]. Dalian University of Technology, 2013. (in Chinese)
[23]Pacific Earthquake Engineering Research Center. PEER structural performance database[DB].http://www.ce.washington.edu/~peera1/,University of California, Berkeley, 2004.
[24] 張勤, 貢金鑫, 姜鳳嬌,等. 鋼筋混凝土柱非線性特性的分析方法[J]. 土木建筑與環(huán)境工程, 2011, 33 (6): 51-58.
Zhang Q, Gong J X, Jiang F J, et al. Analysis method for nonlinear properties of reinforced concrete columns[J]. Journal of Civil, Architectural and Environmental Engineering, 2011, 33 (6): 51-58. (in Chinese)
[25] Caltrans Seismic Design Criteria[S]. California Department of Transportation, Sacramento, California, 2010.
[26] Esmaeily G H, Xiao Y. Seismic behavior of bridge columns subjected to various loading patterns[R]. Pacific Earthquake Engineering Research Center. University of California, Berkeley, California, 2002.
[27] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal Structure Engineering, ASCE, 1988, 114(8), 1804-1826
[28] JTG/T B02—01—2008 公路橋梁抗震設(shè)計(jì)細(xì)則[S]. 北京: 人民交通出版社, 2008