☉江蘇省如皋市石莊鎮(zhèn)初級(jí)中學(xué) 孫來(lái)扣
中考復(fù)習(xí),從“起點(diǎn)”再出發(fā)
——以“一次方程(組)”復(fù)習(xí)為例
☉江蘇省如皋市石莊鎮(zhèn)初級(jí)中學(xué) 孫來(lái)扣
在完成了初中階段的所有新授知識(shí)的教學(xué)后,九年級(jí)各班陸續(xù)開始了中考前的緊張復(fù)習(xí).此時(shí)的教學(xué)定位十分重要,它直接關(guān)系著教學(xué)的走向和復(fù)習(xí)的效益.為了明晰首輪復(fù)習(xí)課的指向,筆者所在的備課組進(jìn)行了沙龍研討.大家一致認(rèn)為,在近三年的數(shù)學(xué)學(xué)習(xí)中,隨著知識(shí)的積累與能力的提升,很多基礎(chǔ)知識(shí)已經(jīng)被遺忘,復(fù)習(xí)有必要從“起點(diǎn)”再出發(fā).為此,備課組精心設(shè)計(jì)了與復(fù)習(xí)主題匹配的題組,力求通過(guò)學(xué)生解答和互動(dòng)交流“喚醒”四基.現(xiàn)結(jié)合“一次方程(組)”復(fù)習(xí)課時(shí)我們的做法談幾點(diǎn)體會(huì),希望對(duì)您有所啟示.
1.題組設(shè)計(jì)
設(shè)計(jì)意圖:本題組主要圍繞一次方程、方程組的定義及解法進(jìn)行了設(shè)計(jì),意在通過(guò)題組的解答帶領(lǐng)學(xué)生回顧一元一次方程和二元一次方程(組)的基本概念及解法,同時(shí)將解題中用到的數(shù)學(xué)思想及積累下的活動(dòng)經(jīng)驗(yàn)也一并梳理.
2.教學(xué)過(guò)程
學(xué)生自主解答題組,并在小組中交流解題的過(guò)程、結(jié)果、解題中用到的知識(shí)及思想方法.教師巡視指導(dǎo),并請(qǐng)兩名學(xué)生將(3)(4)板書出完整的解題過(guò)程.
教師:解答這幾道題目,你們用到了哪些知識(shí)?
學(xué)生1:第(1)題用到了一元一次方程的定義,根據(jù)“一元”可以得到“a-1≠0”,根據(jù)“一次”可以得到“|a|=1”.所以,a只能?。?.
(教師板書“一元一次方程”并在“一元”和“一次”下方畫上橫線)
學(xué)生2:我還用到了方程和方程組的解的定義.
教師:什么是方程的解?
(教師板書“方程的解”并在“解”下方畫上橫線)
學(xué)生3:使方程左右兩邊相等的未知數(shù)的值叫做方程的解.
教師:在解題中怎么應(yīng)用呢?
教師:很好!是不是所有的“解”都具有這樣的性質(zhì)呢?
學(xué)生5:是的.不管是我們今天復(fù)習(xí)的一次方程(組)的解,還是后面的一元二次方程的解,將它們代入到原來(lái)的方程(組)中,都能使其左右兩邊相等.
學(xué)生6:還有不等式(組)呢!它的解也同樣具有“使原式成立”這一性質(zhì).
教師:非常棒!“代入能使原式成立”是認(rèn)識(shí)“解”的起點(diǎn),也是我們應(yīng)用“解”的起點(diǎn).在今后遇到“解”時(shí),就應(yīng)該想到這一性質(zhì)并用好這一性質(zhì).下面,我們來(lái)看看這兩位同學(xué)解方程(組)的過(guò)程,在小組中說(shuō)說(shuō)他們解題中的優(yōu)點(diǎn)和存在的問(wèn)題,稍候在全班交流.
3分鐘后,學(xué)生小組交流結(jié)束,開始全班交流.
學(xué)生7:“過(guò)程1”中按部就班地給出了解一元一次方程的最后幾個(gè)步驟,很不錯(cuò)!
教師:他給出了哪幾個(gè)步驟呢?
學(xué)生8:移項(xiàng),合并同類項(xiàng),系數(shù)化為1.
(教師根據(jù)學(xué)生8的敘述進(jìn)行了對(duì)應(yīng)板書)
教師:那他還缺哪些步驟呢?
學(xué)生9:去分母,去括號(hào).
教師:缺了這兩步的解題結(jié)果正確嗎?
教師:你能給出正確的過(guò)程嗎?
學(xué)生11到黑板上充實(shí)“過(guò)程1”,在“4x+2-10x+1=1”前添上“2(2x+1)-(10x+1)=6”和“4x+2-10x-1=6”,并將接下來(lái)的過(guò)程進(jìn)行了對(duì)應(yīng)的調(diào)整.
(教師在學(xué)生11補(bǔ)充的兩步旁分別標(biāo)注“去分母”和“去括號(hào)”)
教師:從過(guò)程1來(lái)看,我們?cè)诮庖辉淮畏匠虝r(shí),應(yīng)該注意些什么?
學(xué)生12:按照既定步驟一步一步解,不能跨步.
學(xué)生13:呈現(xiàn)每一步都要特別細(xì)心,盡可能規(guī)避那些“易錯(cuò)點(diǎn)”.
接下來(lái),教師組織學(xué)生對(duì)“過(guò)程2”進(jìn)行了詳細(xì)交流,將每一個(gè)步驟進(jìn)行了對(duì)應(yīng)標(biāo)注,呈現(xiàn)出“代入消元法”的完整解題流程.同時(shí),教師將學(xué)生給出的用“加減消元法”求解的過(guò)程進(jìn)行了投影,充實(shí)并矯正了學(xué)生的解題過(guò)程,形成與“過(guò)程2”類似的解題范式.最后,教師通過(guò)兩種解法的比對(duì),讓學(xué)生陳述自己理解的“消元思想”和兩種不同消元方法的異同.師生互動(dòng)交流后,教師讓學(xué)生說(shuō)說(shuō)“什么情況下選擇代入消元法解二元一次方程組?什么情況下選擇加減消元法”,從而形成了二元一次方程組解法的優(yōu)選策略.
3.教學(xué)過(guò)程分析
本節(jié)課復(fù)習(xí)的主題是一次方程(組),是初中階段的“數(shù)與代數(shù)”的基礎(chǔ)知識(shí),是方程思想的根.一元一次方程、方程的解、一元一次方程的解法是初中階段學(xué)生認(rèn)識(shí)方程的起點(diǎn).這一學(xué)段中,幾乎所有的方程、不等式及函數(shù)的學(xué)習(xí)都離不開它們.因此,教者以題組引領(lǐng)學(xué)生從“起點(diǎn)”再出發(fā).第(1)題,意在回顧一元一次方程的定義,解題與交流中,讓學(xué)生重新認(rèn)知了定義中“關(guān)鍵詞”,找到了定義與常見(jiàn)數(shù)學(xué)模型的“銜接點(diǎn)”;第(2)題,從“二元一次方程的解”出發(fā),通過(guò)代入建模,發(fā)揮了“解”的應(yīng)用價(jià)值,教師的追問(wèn)又讓解所具有的“代入原式成立”的性質(zhì)進(jìn)一步拓展,成為解所有的方程(組)及不等式(組)的公共性質(zhì);第(3)題和第(4)題,解方程(組),教師和學(xué)生關(guān)注的重點(diǎn)是一致的,他們都在努力呈現(xiàn)完美的解題過(guò)程,為此圍繞“過(guò)程1”和“過(guò)程2”展開的富有成效的討論與交流.經(jīng)過(guò)教師在課堂上獨(dú)具匠心的教學(xué)實(shí)施,讓這四道看似簡(jiǎn)單的練習(xí)題發(fā)揮出了巨大的復(fù)習(xí)價(jià)值,值得稱道.
1.梳理基礎(chǔ)知識(shí),完善知識(shí)網(wǎng)絡(luò)
在中考中,充足的基礎(chǔ)知識(shí)儲(chǔ)備是學(xué)生化解數(shù)學(xué)問(wèn)題的重要保證.因此,中考前的復(fù)習(xí)應(yīng)高度重視基礎(chǔ)知識(shí)的復(fù)習(xí).為此,課前分析,我們應(yīng)將課時(shí)復(fù)習(xí)可能遇到的基礎(chǔ)知識(shí)認(rèn)真梳理,確保教學(xué)設(shè)計(jì)和課堂教學(xué)心中有數(shù);教學(xué)設(shè)計(jì),我們應(yīng)圍繞這些基礎(chǔ)知識(shí)設(shè)計(jì)復(fù)習(xí)題組和教學(xué)流程,形成基礎(chǔ)知識(shí)的教學(xué)載體;教學(xué)實(shí)施,我們應(yīng)以學(xué)生為知識(shí)梳理的主體,讓他們自主經(jīng)歷題組解答和互動(dòng)交流的過(guò)程,推動(dòng)基礎(chǔ)知識(shí)的有效入網(wǎng).以本節(jié)課為例,本節(jié)課的復(fù)習(xí)主線是“一次方程(組)”,所涉及的基礎(chǔ)知識(shí)主要有一元一次方程的定義及解法、二元一次方程的定義、二元一次方程組的解法、方程(組)的解等.為了梳理這些基礎(chǔ)知識(shí),教者一共為這些基礎(chǔ)知識(shí)設(shè)計(jì)了8道練習(xí)題,本文中給出的這4道練習(xí)題與學(xué)生在初一獲取新知時(shí)的練習(xí)幾乎是一致的.教者圍繞這些題組精心設(shè)計(jì)了與之匹配的教學(xué)流程,自主解答,幫助學(xué)生從已有知識(shí)結(jié)構(gòu)中提取出與題組對(duì)應(yīng)的基礎(chǔ)知識(shí);小組交流,個(gè)體梳理的知識(shí)在小組中融通互補(bǔ),推動(dòng)組內(nèi)成員的知識(shí)網(wǎng)絡(luò)不斷完善;全班交流,教師以教學(xué)追問(wèn)引領(lǐng)學(xué)生以題理知、就題拓展,形成以基礎(chǔ)知識(shí)為起點(diǎn)的知識(shí)鏈,讓基礎(chǔ)知識(shí)在學(xué)生腦海中形成了眾多的“關(guān)聯(lián)點(diǎn)”.
2.規(guī)范解題過(guò)程,重建解題范式
數(shù)學(xué)中考,是對(duì)學(xué)生數(shù)學(xué)素養(yǎng)的綜合考查.不僅要考查學(xué)生基礎(chǔ)知識(shí)的掌握情況,還要考查學(xué)生的數(shù)學(xué)表達(dá)能力.對(duì)數(shù)學(xué)表達(dá)能力的考查主要依靠試卷中的解答題來(lái)實(shí)現(xiàn),這類考題一般會(huì)要求學(xué)生給出“文字說(shuō)明、證明過(guò)程或演算步驟”.新授課上,學(xué)生在獲得新知過(guò)程中,一般都會(huì)經(jīng)歷規(guī)范解題過(guò)程的展示與摹寫,這些解題過(guò)程與教材所給的范例高度接近,是符合中考要求的.然而,經(jīng)過(guò)多年的學(xué)習(xí),這些解題范式已經(jīng)被學(xué)生逐漸淡忘,學(xué)生在這種情況下給出的解題過(guò)程很多都是“缺斤少兩”的.顯然,喚醒學(xué)生腦海中的解題范式應(yīng)該成為中考首輪復(fù)習(xí)課一項(xiàng)重要的教學(xué)任務(wù).為此,在教學(xué)中,我們應(yīng)高度重視對(duì)學(xué)生解題過(guò)程的矯正,突出規(guī)范解題過(guò)程的展示,將那些解題“榜樣”重新拉回學(xué)生的視野,為他們能在中考中有效地進(jìn)行數(shù)學(xué)表達(dá)掃清障礙.“一次方程(組)”是學(xué)生初中階段認(rèn)知方程的起點(diǎn),解一次方程組是解不等式(組)、二次方程的起點(diǎn),學(xué)生在新授課上已經(jīng)非常熟練地掌握了一次方程(組)的解題范式,給出規(guī)范過(guò)程在那時(shí)是再常見(jiàn)不過(guò)的事了.案例中,教者對(duì)學(xué)生的知識(shí)與技能的基礎(chǔ)是非常清楚的.在教學(xué)中,他非常重視學(xué)生的求解經(jīng)驗(yàn),讓兩名學(xué)生分別“板書(3)、(4)兩題的解答過(guò)程”,既喚醒了板演者的基礎(chǔ)知識(shí)與解題經(jīng)驗(yàn),也點(diǎn)燃了其他學(xué)生再現(xiàn)范式的熱情.接下來(lái)的組內(nèi)交流和全班交流,緊扣兩名學(xué)生的板書展開,對(duì)解題步驟的逐一分析與矯正,讓隱藏在學(xué)生大腦深處的解題范式重新回歸,解題范式最終以板書的方式再現(xiàn)課堂,中考復(fù)習(xí)的目標(biāo)也就順勢(shì)達(dá)成.
3.建構(gòu)答題策略,關(guān)注解法優(yōu)選
中考答題是有講究的,基礎(chǔ)知識(shí)與基本技能能夠正確地提取與應(yīng)用固然可貴,解題策略與解題技巧的準(zhǔn)確應(yīng)用同樣難得.一道中考試題的解法往往是有很多種,如果解題時(shí)能夠選擇較為便捷的解法,就會(huì)節(jié)省大量的答題時(shí)間,從而提高單位時(shí)間的解題效益.因此,在復(fù)習(xí)課上,我們要關(guān)注解題策略的建構(gòu),通過(guò)呈現(xiàn)同一類題的不同的解題方法,讓學(xué)生充分認(rèn)識(shí)各種解法的優(yōu)勢(shì)所在,從而形成解題方法的優(yōu)選策略,養(yǎng)成優(yōu)選解法的思維習(xí)慣.以二元一次方程組的解法為例,可供選擇的有代入消元法和加減消元法.二元一次方程組的這兩種解法同時(shí)存在于學(xué)生的知識(shí)結(jié)構(gòu)之中,考試時(shí)用哪種解法直接影響著學(xué)生的解題進(jìn)度.為此,我們應(yīng)和上面案例一樣,通過(guò)題目的解答讓學(xué)生明晰這兩種解法的具體步驟,剖析這兩種解法在解題中的優(yōu)劣,發(fā)現(xiàn)不同解法的獨(dú)特之處,形成“根據(jù)未知數(shù)系數(shù)”的特點(diǎn)選擇消元方法的解題策略.這樣的教學(xué)歷程,在學(xué)生經(jīng)歷自主解答的過(guò)程之后,從不同的解法入手,在對(duì)比剖析中形成了具有個(gè)性色彩的方法選擇策略.學(xué)生的思維在解題和比對(duì)中逐步貼上了個(gè)性標(biāo)簽,不同的方法在互動(dòng)交流和解題反思后,都能在學(xué)生的認(rèn)知網(wǎng)絡(luò)中找到自己獨(dú)特的位置,對(duì)學(xué)生今后解題的有效提取與優(yōu)選應(yīng)用的作用是巨大的.
中考復(fù)習(xí),包羅萬(wàn)象,涉及的面是非常廣泛的,它是在學(xué)生獲取初中階段所有數(shù)學(xué)知識(shí)之后的一次系統(tǒng)性復(fù)習(xí),是學(xué)生走進(jìn)考場(chǎng)前的一次知識(shí)“清理”,不僅要回顧學(xué)生在初中階段獲得的基礎(chǔ)知識(shí),還要關(guān)注他們?cè)谶@一階段所獲得的基本技能和思想方法,甚至包含他們?cè)趩?wèn)題解決中積累下的基本活動(dòng)經(jīng)驗(yàn).為此,我們應(yīng)抓住考前復(fù)習(xí)的短暫時(shí)光,讓復(fù)習(xí)從學(xué)生的認(rèn)知起點(diǎn)出發(fā),在梳理中實(shí)現(xiàn)知識(shí)的再積累與能力的再提升.為此,中考復(fù)習(xí)課應(yīng)更多地關(guān)注學(xué)生,關(guān)注知識(shí)的再現(xiàn)與能力的重整.所以,課上,我們應(yīng)呈現(xiàn)知識(shí)生成的過(guò)程,喚醒知識(shí)網(wǎng)絡(luò)中與課時(shí)復(fù)習(xí)相關(guān)的基礎(chǔ)知識(shí);經(jīng)歷問(wèn)題解決的過(guò)程,用解題喚醒學(xué)生已有的數(shù)學(xué)技能;體驗(yàn)不同方法的優(yōu)劣,在辨析中固化問(wèn)題解決的優(yōu)選策略;重視解題經(jīng)驗(yàn)的共享,在交流中實(shí)現(xiàn)個(gè)體經(jīng)驗(yàn)的全班共享.只有我們關(guān)注了中考前的學(xué)生狀態(tài),從學(xué)生的學(xué)情入手設(shè)計(jì)教學(xué),才能讓中考前的這段復(fù)習(xí)扎實(shí)有效.以上所述,僅為本人在教學(xué)中的做法及感悟,不足之處,敬請(qǐng)各位同行專家批評(píng)指正!H