• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The coupling characteristics of supersonic dual inlets for missile①

    2015-04-24 07:32:42SUNZhenhuaWUCuisheng
    固體火箭技術(shù) 2015年6期
    關(guān)鍵詞:背風(fēng)永利進(jìn)氣道

    SUN Zhen-hua,WU Cui-sheng

    (China Airborne Missile Academy,Luoyang 471009,China)

    ?

    The coupling characteristics of supersonic dual inlets for missile①

    SUN Zhen-hua,WU Cui-sheng

    (China Airborne Missile Academy,Luoyang 471009,China)

    The numerical investigation and wind tunnel tests on the coupling characteristics of the dual inlets for the ducted rocket were presented. Once the dual inlets stop working, the windward inlet has to start first when the back pressure decreases to 16.9 times the static pressure of the inflow under stable state. By contrast, the leeward inlet can restart only if the back pressure decreases to 8.9 times the static pressure of the inflow. The results show that the inlets achieve the best performance when the leeward side reaches its critical state with certain angle of sideslip.

    ducted rocket;dual inlets;coupling characteristics;numerical simulation;wind tunnel test

    0 Introduction

    The operation of the inlet determines the performance of the ducted rocket. The layout forms of the inlet can be various on the missile. “Meteor” and “HSAD” employ two inlets located at the downside of the missile; bilateral inlets are used on “ASMP” and “T3”. Four bilateral inlets are placed on “P77M” and “GQM-163A”.

    Under the circumstances of critical phase of the ducted rocket, high maneuvering of the missile and intense perturbation of the airflow, the performance of the supersonic inlet could have certain mutation, including transient choked flow, inlet backflow and inlet buzz. For the unstable working characteristics of the inlet, large quantities of researches are performed, including mechanisms of inlet buzz[1-3], subcritical characteristics of the inlet[4-5], oscillation during starting of the inlet[6-8]and restart mechanism of the inlet[9-10].Researches mentioned above mainly focus on the working characteristics of the single inlet, for the system with multiple inlets, the working characteristics for the whole system is different from each single inlet when the incoming flow from multiple inlets mixes in the chamber abnormally. It is mainly attributed to the variation of the stable working boundaries, matching characteristics with the motor, start and restart characteristics, etc. Thus it is necessary to investigate the coupling characteristics of multiple inlets system.The study focus on the bilateral inlets system model of the missile and the whole process from regular work to working unstable and finally back to normal, in order to provide the solutions for the stable control of the inlet.

    1 Numerical simulation

    1.1 Inlet modeling

    From Fig.1, the inlet employs bilateral mixed-compression model. The front dual cone is applied to compress the air. The inlet is relative longer because the air flows into the engine from the head. The air expands at radial and circumferential direction inside the inlet and finally flows into the combustor.

    1.2 Flow solver

    Fluent is used for the numerical simulation and Gauss-Seidel method is used for the time integration. Roe format with second order difference division is applied for the in-viscid convection flux. Realizablek-εmodel is applied for the turbulence model. Similarly, second-order upwind format is used and non-equilibrium surface function is applied for the region close to the wall. The convergence rule is based on the decrease of each residual of all the functions at three levels of magnitude. In addition, the back pressure of the inlet should be stable and the outlet flow should be constant for convergence requirement.

    Fig.1 Schematic graph for the bilateral inlet

    1.3 Boundary conditions

    Fig.2 indicates boundary conditions used in the simulation. They are: pressure far-field, pressure outlet, no slip adiabatic wall. The typical state for the simulation is chosen asMa=3.0,H=10 km,attack angleα=0° ,yaw angleβ=5°.

    Fig.2 Schematic diagram of boundary conditions for inlet

    1.4 Numerical grid

    ICEM is applied for the generation of numerical grid for the inlet inside and outside flow region. In order to improve the precision and efficiency of the calculation, structured grid is applied and finer mesh is used locally to improve the precision. The thickness of the first mesh layer on the wall is set between 0.01mm to 0.1mm. The increasing ratio from the wall is set between 1.1 to 1.2. The element number is around 2 200 000 and is shown in Fig.3.

    Fig.3 Schematic diagram of numerical grid for the head of the inlet

    2 Results and discussion

    Fig.4 shows the stable working state of the inlet in different throttle condition using steady calculation, as well as the throttle characteristics. More specifically, Fig.4(a) shows the overall throttle characteristics while Fig.4(b) indicates the throttle characteristics for each inlet. In this study, the variation of back pressure at combustor is modeled through increasing the exports of jet flow outside the combustor. From Fig.4, the flow coefficient of inlet is around 0.91 under supercritical condition. Meanwhile, the simulation results indicate that the flow coefficient of the inlet on the upwind side is 1.09 times that of the leeward side. The total pressure recovery coefficient, increasing with the increase of the percentage of blockage, achieve its maximum at 0.56 when the inlet is on the leeward side under supercritical condition. With the decrease of the flow coefficient, the total pressure recovery coefficient decreases correspondingly. The main reason is that the shock wave at the end of the inlet on the leeward side is pushed outside the lip, which results in the sudden drop of the performance. Moreover, with the percentage of blockage keeps increasing, the flow coefficient decreases continuously while the total pressure recovery coefficient increases a little bit (point 3 to point 4 in Fig.4(a)). When the flow coefficient is smaller than 0.82, the performance of the inlet will decrease drastically and the inlet cannot work stably. The Mach number distributions of the mid-surface of dual inlets under throttle condition are shown in Fig.5 and Fig.6.

    (a) The overall throttle characteristics

    (b) The throttle characteristics for each inlet

    Fig.5 Mach number distribution of the mid-surface for the dual side inlet under throttle state

    Fig.6 Mach number distribution of the mid-surface for the dual side inlet during restart process

    If dual supersonic inlets are under the condition of sideslip, the inlet on the upwind side owns better performance of back pressure. Under the same back pressure of combustor, the position of the shock wave is more close to the front inside the inlet. Thus, with the increase of the back pressure to 17.7 times the static pressure of the incoming flow, the inlet on the leeward side will transform to the sub-critical state first(1#). At this time, the shock wave stays at the lip for the inlet on the leeward side while it will be located at the throat for the inlet on the upwind side. With the increase the back pressure, the overflows on the leeward side of the inlet increases while the inlet on the upwind side still stays at the critical state. Once the back pressure reaches 18.4 times the inflow pressure, the shock wave will be pushed outside the lip and then the inlets on both side will be in deep sub-critical state(5#、6#). In this case, the shock wave before the inlet is not stable, and the captured flow and the total pressure will be oscillating with the time.

    If the pressure in the combustor is decreased to 16.9 times the static pressure of the incoming flow under the condition that dual inlets do not start, the inlet on the upwind side will restart first while the shock wave of the inlet on the leeward side still stay at the lip. The main reason for the difference of the back pressure between the non-start and restart of upwind inlet is that the mix-pressure design for the inlet has delay in the certain range (decrease around 1.5 times static pressure of the incoming flow). If the back pressure decreases continuously, the shock wave moves more closely to the lip but inlet still doesn't restart. Meanwhile, the inlet on the upwind side has already reached the super-critical state. If the back pressure decreases to 8.9 times the back pressure of incoming flows, the inlet on the leeward side restarts again. It is obvious that during the starting process, especially with the existence of the sideslip, dual inlets design is different from single inlet design in the engineering perspective, which is needed to pay more attention during the design.

    3 Experimental setup

    3.1 Test model and wind tunnel facility

    During the experiment, the throttle is set at the mixing section of the blowing model. The back pressure of the chamber is modeled through adjusting the position of the throttle vertebral, thereby to obtain the characteristic curve for the inlet. In total 42 pressure holes are distributed along the outer cover and expansion section of the inlet blowing model to monitor the axial distribution of the wave system. For the measurement of total pressure, 81 pressure holes are set at the left and the right side of the export surface as well as the mixing section to measure the inlet characteristics. The inlet model is shown in Fig.7.

    The blowing test of the inlet was performed using wind tunnel named as“FD-06”, half backflow short duration for subsonic, transonic and supersonic wind tunnel. The range of the Mach number is from 0.4 to 4.5. The cross-section area for the experimental section is 0.6 m×0.6 m and the length is 1.575 m. During the supersonic experiment, different Mach number can be obtained via using different nozzles. Two windows, with the diameter of 230 mm, for observation and flow display are equipped at each side of the inlet. Scimitar support machine is used to fix the test model. Shim is used to adjust sideslip angle. To adjust angle of attack, a normal mechanism is used for the angle in the range of -15°~15°,-10°~20° and 0°~30° while the special one is used for the range of -2°~38°.

    The wind tunnel uses 8400 electronic scanning valve to measure the pressure. It could measure 128 pressure holes of the test model in the same time. The maximum speed of the valve is 50 kHz and the range is ±0.2 MPa. For the precision, the valve could reach ±0.05%F.S while ±0.01%F.S for the pressure calibration accuracy. Wind tunnel model setup is shown in Fig.8.

    Fig.7 Schematic graph for inlet model

    Fig.8 Wind tunnel model setup

    3.2 Results for the blowing test

    In the wind tunnel experiment for the inlet, the back pressure is adjusted by adding throttle vertebras at the outlet of the combustor. Fig.9 indicates the throttle curve for the blowing test of the inlet under the state ofMa=3.0,α=0°,β=5°. In Fig.8, the capturing flow coefficient is 0.93 when the dual inlets are in the state of super-critical. With the increase of the percentage of blockage, the capturing flow coefficient stays constant while the total pressure recovery coefficient increases. The performance of the dual inlets can reach their maximum when the total pressure recovery coefficient increases to 0.52. If the percentage of blockage increases continually, the inlet flow will decrease as well as total pressure recovery coefficient. However, the total pressure recovery coefficient cannot decrease more when the inlet flow keeps decreasing in the small scale. Interestingly, the performance of the inlet will decrease dramatically if the shock waves on both inlets are pushed outside the lips. In the same time, the pressure oscillates drastically as indicated in Fig.10, corresponding to the point 1, 2 and 3 in Fig.9. When the dual inlets stop operation, it is required to decrease the back pressure via decreasing the percentage of blockage, thereby to lead the inlet to restart.

    Fig.9 Inlet characteristic diagrams for wind tunnel experiment

    Fig.10 Sequence of schlieren images of the inlet under the condition of Ma=3.0,α=0°,β=5°

    4 Conclusion

    (1) With the sideslip angle of 5°, inlet on the leeward side reaches its critical point and the performance achieves its maximum(σ=0.56). After that, with the increase of back pressure, the flow of inlet decrease in the small amount in the beginning while it decreases drastically after a while. By contrast, the total pressure recovery coefficient almost remains constant in the beginning while it decreases drastically after.

    (2) After dual inlets stops working, the inlet on the upwind side start first with the decrease of the back pressure and it remains consistently 16.9 times the inflow static pressure. In contrast, the inlet on the leeward side requires even more decreasing of the back pressure, around 8.9 times the inflow static pressure, to restart.

    (3) With the existence of the attitude angle, the inlet in the system with multiple inlets does not have the same working state, which should be considered in the research.

    [1] Lu P J,Jain L T. Numerical investigation of inlet buzz flow [J]. Journal of Propulsion and Power,1998,14(1):90-100.

    [2] Yufeng Wang, Bao'e Yang. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion, 2008,34(1):17-22.

    [3] Wooram Hong,Chongam Kim. Numberical study on supersonic inlet buzz under various throttling conditions and fluid-structure interaction[R]. AIAA 2011-3967.

    [4] Newsome R W. Numberical simulation of near-critical and unsteady, subcritical inlet flow[J]. AIAA Journal, 1984, 22(10):1375-1379.

    [5] Ferri A, Nucci L M. The origin of aerodynamic instablility of supersonic inlets at subcritical conditions[R]. NASA RM L50K30, 1951.

    [6] Liu Zhansheng, Zhang Yunfeng, Tian Xin. Research on self-excited oscillation flows in inlet of ramjet[J].Journal of Aerospace Power,2008(9).

    [7] Fujiwara H,Murakami A,Watanabe Y. Numerical analysis on shock oscillation of two-dimensional external compression intakes [R]. AIAA 2002-2740.

    [8] Nishizawa U,Kameda M. Computational simulation of shock oscillation around a supersonic air-intake [R]. AIAA 2006-3042.

    [9] Van Wie D M,Kwok F T. Starting characteristics of supersonic inlets[R]. AIAA 96-2914.

    [10] Ryan Throckmorton and Joseph A Schetz. Experimental and computational investigation of a dynamic starting method for supersonic/hypersonic inlets[R]. AIAA 2010-589.

    (編輯:薛永利)

    彈用雙進(jìn)氣道耦合特性

    孫振華,吳催生

    (中國(guó)空空導(dǎo)彈研究院,洛陽 471009)

    針對(duì)某彈用雙進(jìn)氣道系統(tǒng)之間的耦合特性進(jìn)行數(shù)值模擬和風(fēng)洞試驗(yàn)研究。結(jié)果表明,雙側(cè)進(jìn)氣道均不起動(dòng)后,減小反壓至16.9倍來流靜壓時(shí),迎風(fēng)側(cè)進(jìn)氣道先起動(dòng),而背風(fēng)側(cè)進(jìn)氣道需要大幅降低反壓至8.9倍來流靜壓才能實(shí)現(xiàn)再起動(dòng);有彈體側(cè)滑角狀態(tài)下,雙進(jìn)氣道的背風(fēng)側(cè)進(jìn)氣道處于臨界時(shí),性能達(dá)到最大。

    沖壓發(fā)動(dòng)機(jī);雙進(jìn)氣道;耦合特性;數(shù)值模擬;風(fēng)洞試驗(yàn)

    V435 Do cument code:A Article ID:1006-2793(2015)06-0793-05

    10.7673/j.issn.1006-2793.2015.06.008

    ① Received date: 2015-03-03; Revised date: 2015-04-21。

    Biography: SUN Zhen-hua( 1976—) ,male,doctor,speciality: ducted rocket design and research.

    猜你喜歡
    背風(fēng)永利進(jìn)氣道
    海邊即景
    環(huán)境(2025年1期)2025-02-21 00:00:00
    完整
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    基于AVL-Fire的某1.5L發(fā)動(dòng)機(jī)進(jìn)氣道優(yōu)化設(shè)計(jì)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    基于輔助進(jìn)氣門的進(jìn)氣道/發(fā)動(dòng)機(jī)一體化控制
    畢永利教授簡(jiǎn)介
    射流對(duì)高超聲速進(jìn)氣道起動(dòng)性能的影響
    新型沙丘形突擴(kuò)燃燒室三維冷態(tài)背風(fēng)角度研究*
    某柴油機(jī)進(jìn)氣道數(shù)值模擬及試驗(yàn)研究
    汽車零部件(2014年2期)2014-03-11 17:46:30
    xxxhd国产人妻xxx| 哪个播放器可以免费观看大片| 精品酒店卫生间| 女人久久www免费人成看片| 90打野战视频偷拍视频| a级片在线免费高清观看视频| 在线天堂最新版资源| 中文欧美无线码| 一级片'在线观看视频| 啦啦啦在线免费观看视频4| 免费黄色在线免费观看| a级片在线免费高清观看视频| 国产精品 国内视频| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 熟女av电影| 亚洲国产欧美一区二区综合| 欧美另类一区| 一级黄片播放器| 精品视频人人做人人爽| 亚洲精品aⅴ在线观看| 亚洲欧美成人综合另类久久久| 丰满迷人的少妇在线观看| 777久久人妻少妇嫩草av网站| 乱人伦中国视频| 成年人免费黄色播放视频| 青草久久国产| 亚洲,一卡二卡三卡| 国产亚洲一区二区精品| 精品少妇黑人巨大在线播放| 男人操女人黄网站| 黄片播放在线免费| 中文字幕制服av| 人妻一区二区av| 亚洲精品自拍成人| 国产高清国产精品国产三级| 少妇人妻精品综合一区二区| kizo精华| 国产精品无大码| 丰满迷人的少妇在线观看| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 免费人妻精品一区二区三区视频| av天堂久久9| 最近2019中文字幕mv第一页| 熟女av电影| 亚洲人成电影观看| 国产精品三级大全| 水蜜桃什么品种好| 国产不卡av网站在线观看| av网站免费在线观看视频| 啦啦啦在线观看免费高清www| www.av在线官网国产| 91国产中文字幕| av天堂久久9| 麻豆乱淫一区二区| 亚洲久久久国产精品| 视频在线观看一区二区三区| 9色porny在线观看| 狠狠精品人妻久久久久久综合| 久久av网站| 亚洲激情五月婷婷啪啪| 成人影院久久| 悠悠久久av| 不卡视频在线观看欧美| 久久久精品国产亚洲av高清涩受| 一本大道久久a久久精品| av线在线观看网站| 男女之事视频高清在线观看 | 亚洲精品乱久久久久久| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 国产精品久久久久久人妻精品电影 | 婷婷色综合www| 国产成人系列免费观看| 精品福利永久在线观看| 国产一区二区 视频在线| 建设人人有责人人尽责人人享有的| 1024香蕉在线观看| 亚洲欧美成人综合另类久久久| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网 | 亚洲精品一二三| 国产极品天堂在线| 久久影院123| 激情视频va一区二区三区| 人妻一区二区av| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 久久久久久人妻| 人人妻人人澡人人爽人人夜夜| 久久精品久久久久久噜噜老黄| 国产1区2区3区精品| 自线自在国产av| 国产成人精品在线电影| 777米奇影视久久| 在线 av 中文字幕| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 国产免费视频播放在线视频| 欧美精品高潮呻吟av久久| 天堂中文最新版在线下载| 777米奇影视久久| 狂野欧美激情性bbbbbb| 捣出白浆h1v1| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 亚洲精华国产精华液的使用体验| av福利片在线| 国产高清国产精品国产三级| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 免费观看a级毛片全部| 亚洲成人手机| 久久婷婷青草| 亚洲精品,欧美精品| 精品少妇久久久久久888优播| 18禁动态无遮挡网站| 国产高清不卡午夜福利| 久久久国产一区二区| 亚洲四区av| 国产精品麻豆人妻色哟哟久久| 欧美精品人与动牲交sv欧美| 黄片播放在线免费| av在线老鸭窝| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 国产一区有黄有色的免费视频| 成人毛片60女人毛片免费| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 伦理电影大哥的女人| 亚洲一级一片aⅴ在线观看| 欧美人与性动交α欧美软件| 黄片小视频在线播放| 国产 一区精品| 毛片一级片免费看久久久久| 成年动漫av网址| 国产黄色免费在线视频| 午夜免费鲁丝| 999精品在线视频| 成人亚洲精品一区在线观看| 成人三级做爰电影| 飞空精品影院首页| 满18在线观看网站| 高清不卡的av网站| 成人午夜精彩视频在线观看| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 国产成人系列免费观看| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 在线观看免费视频网站a站| 91aial.com中文字幕在线观看| 最近中文字幕高清免费大全6| 久久久久国产精品人妻一区二区| 九九爱精品视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看人妻少妇| 国产精品国产av在线观看| 日本黄色日本黄色录像| 欧美日韩一区二区视频在线观看视频在线| 黑人猛操日本美女一级片| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇久久久久久888优播| 男女午夜视频在线观看| 黄片无遮挡物在线观看| 亚洲国产欧美网| 午夜福利乱码中文字幕| 日本wwww免费看| 2021少妇久久久久久久久久久| 蜜桃在线观看..| 在线观看免费午夜福利视频| 水蜜桃什么品种好| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 90打野战视频偷拍视频| 国产精品一区二区在线不卡| 亚洲美女搞黄在线观看| 免费人妻精品一区二区三区视频| 老司机影院成人| 一本一本久久a久久精品综合妖精| 日韩不卡一区二区三区视频在线| 在线免费观看不下载黄p国产| 中文字幕人妻丝袜制服| 丰满乱子伦码专区| 男女午夜视频在线观看| 观看av在线不卡| 欧美乱码精品一区二区三区| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| 一区二区三区乱码不卡18| 成人午夜精彩视频在线观看| 国产精品亚洲av一区麻豆 | 久久性视频一级片| netflix在线观看网站| 在线观看免费视频网站a站| 两性夫妻黄色片| 亚洲激情五月婷婷啪啪| 一级毛片黄色毛片免费观看视频| 日本一区二区免费在线视频| 好男人视频免费观看在线| 91成人精品电影| 国产黄色免费在线视频| 热99国产精品久久久久久7| 人人妻人人爽人人添夜夜欢视频| 女人精品久久久久毛片| 老汉色∧v一级毛片| 中文字幕人妻丝袜制服| 毛片一级片免费看久久久久| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| 韩国精品一区二区三区| 两性夫妻黄色片| 又黄又粗又硬又大视频| 91精品三级在线观看| 亚洲成国产人片在线观看| 麻豆精品久久久久久蜜桃| 午夜福利在线免费观看网站| 黄片播放在线免费| 赤兔流量卡办理| 日本wwww免费看| 韩国av在线不卡| 国产高清不卡午夜福利| 国精品久久久久久国模美| 精品国产一区二区三区四区第35| 日本wwww免费看| 欧美成人午夜精品| 纵有疾风起免费观看全集完整版| 久久97久久精品| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 国产亚洲av高清不卡| 午夜福利在线免费观看网站| 久久精品久久精品一区二区三区| 亚洲精品一二三| 操美女的视频在线观看| 国产成人欧美| 亚洲国产欧美一区二区综合| 精品一区二区三区av网在线观看 | 午夜福利一区二区在线看| 亚洲欧美成人综合另类久久久| 亚洲精品第二区| 精品国产乱码久久久久久男人| 天美传媒精品一区二区| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 国产精品久久久久久久久免| 国产伦人伦偷精品视频| 色婷婷av一区二区三区视频| 久久综合国产亚洲精品| 一边摸一边抽搐一进一出视频| 一级爰片在线观看| 黑丝袜美女国产一区| 少妇被粗大猛烈的视频| 高清不卡的av网站| 亚洲精品一区蜜桃| 久久女婷五月综合色啪小说| 精品一区二区免费观看| 咕卡用的链子| 美女午夜性视频免费| 国产成人精品无人区| 亚洲欧洲日产国产| 欧美日韩精品网址| 亚洲精华国产精华液的使用体验| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 女的被弄到高潮叫床怎么办| 看十八女毛片水多多多| 日韩一卡2卡3卡4卡2021年| 国产精品熟女久久久久浪| 久久狼人影院| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 成人毛片60女人毛片免费| 精品国产国语对白av| 不卡视频在线观看欧美| 国产日韩一区二区三区精品不卡| 久久精品aⅴ一区二区三区四区| 精品一区二区三区四区五区乱码 | 伊人久久国产一区二区| 久久精品久久久久久噜噜老黄| 麻豆精品久久久久久蜜桃| 午夜福利网站1000一区二区三区| 又黄又粗又硬又大视频| 欧美激情高清一区二区三区 | 国产免费福利视频在线观看| 毛片一级片免费看久久久久| 成人免费观看视频高清| 久久韩国三级中文字幕| 性高湖久久久久久久久免费观看| 日日爽夜夜爽网站| 国产在线免费精品| 一区二区三区四区激情视频| 欧美人与善性xxx| www.精华液| 国产欧美日韩一区二区三区在线| 一级毛片黄色毛片免费观看视频| 激情五月婷婷亚洲| 婷婷成人精品国产| www.av在线官网国产| 十分钟在线观看高清视频www| 国产精品熟女久久久久浪| 1024香蕉在线观看| 99热国产这里只有精品6| 丝袜美足系列| 国产又爽黄色视频| 久久久亚洲精品成人影院| 啦啦啦中文免费视频观看日本| 精品亚洲成国产av| 亚洲av中文av极速乱| 国精品久久久久久国模美| 在线观看人妻少妇| 国产黄色免费在线视频| 在现免费观看毛片| 欧美日韩亚洲综合一区二区三区_| 美女福利国产在线| 色94色欧美一区二区| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 啦啦啦在线观看免费高清www| 国产亚洲av片在线观看秒播厂| av福利片在线| 免费黄网站久久成人精品| 亚洲美女黄色视频免费看| 国产精品免费视频内射| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 久久99一区二区三区| 国语对白做爰xxxⅹ性视频网站| 人人妻人人澡人人爽人人夜夜| 久久97久久精品| 久久久久精品人妻al黑| 日本爱情动作片www.在线观看| 国产成人一区二区在线| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| www.精华液| 日韩电影二区| 亚洲四区av| 狠狠婷婷综合久久久久久88av| 丝袜美足系列| 丝袜美腿诱惑在线| 不卡av一区二区三区| 欧美激情高清一区二区三区 | 1024视频免费在线观看| 2021少妇久久久久久久久久久| 一级毛片黄色毛片免费观看视频| 超碰成人久久| 永久免费av网站大全| 不卡av一区二区三区| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 大陆偷拍与自拍| 精品少妇内射三级| 久久女婷五月综合色啪小说| 亚洲综合精品二区| 十八禁网站网址无遮挡| 一级片'在线观看视频| 黑人猛操日本美女一级片| 久久久久人妻精品一区果冻| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯 | 99国产精品免费福利视频| 亚洲成国产人片在线观看| 一区二区三区激情视频| 黄频高清免费视频| 成人漫画全彩无遮挡| 极品少妇高潮喷水抽搐| 国产伦人伦偷精品视频| 黄色一级大片看看| 精品久久蜜臀av无| 亚洲熟女毛片儿| 亚洲欧美精品自产自拍| 国产一区二区 视频在线| av线在线观看网站| 这个男人来自地球电影免费观看 | 波多野结衣av一区二区av| 亚洲精品久久久久久婷婷小说| 精品卡一卡二卡四卡免费| 午夜免费男女啪啪视频观看| 久久这里只有精品19| 国产日韩欧美视频二区| 香蕉丝袜av| 天美传媒精品一区二区| 亚洲第一av免费看| 观看av在线不卡| 九色亚洲精品在线播放| 亚洲av电影在线进入| 国产激情久久老熟女| 免费黄网站久久成人精品| 亚洲精品久久久久久婷婷小说| av电影中文网址| 亚洲精品美女久久av网站| www.精华液| 91成人精品电影| 美女主播在线视频| 99久久人妻综合| 国产97色在线日韩免费| 在线观看免费视频网站a站| 久久久久精品国产欧美久久久 | 国产一级毛片在线| 日本一区二区免费在线视频| 午夜福利视频在线观看免费| √禁漫天堂资源中文www| 亚洲欧美成人精品一区二区| 亚洲 欧美一区二区三区| videosex国产| 夜夜骑夜夜射夜夜干| 国产成人精品久久二区二区91 | 人体艺术视频欧美日本| 曰老女人黄片| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃| 成人国产麻豆网| 在线观看www视频免费| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 国产在线免费精品| 国产亚洲欧美精品永久| 成年av动漫网址| 又大又爽又粗| av女优亚洲男人天堂| 黑丝袜美女国产一区| 国产99久久九九免费精品| 男女无遮挡免费网站观看| 精品国产一区二区三区久久久樱花| 嫩草影院入口| 国产免费福利视频在线观看| 国产精品国产三级国产专区5o| 日本午夜av视频| 日韩制服丝袜自拍偷拍| 大码成人一级视频| 赤兔流量卡办理| 人人妻人人添人人爽欧美一区卜| 国产男女超爽视频在线观看| 老司机亚洲免费影院| 视频在线观看一区二区三区| 欧美 日韩 精品 国产| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| 青春草亚洲视频在线观看| 亚洲在久久综合| 9191精品国产免费久久| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 日韩不卡一区二区三区视频在线| 巨乳人妻的诱惑在线观看| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀 | 伊人久久大香线蕉亚洲五| 日韩中文字幕视频在线看片| 午夜免费男女啪啪视频观看| 国产1区2区3区精品| 肉色欧美久久久久久久蜜桃| 国产精品免费视频内射| 在线观看免费午夜福利视频| 天天影视国产精品| 搡老乐熟女国产| 久久鲁丝午夜福利片| 久久精品国产综合久久久| 精品福利永久在线观看| 老司机靠b影院| 十分钟在线观看高清视频www| 日韩欧美一区视频在线观看| 午夜免费鲁丝| 免费观看av网站的网址| 建设人人有责人人尽责人人享有的| 日本一区二区免费在线视频| 欧美在线黄色| 9色porny在线观看| 国产av精品麻豆| 曰老女人黄片| 99香蕉大伊视频| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲精品一区二区精品久久久 | 又大又爽又粗| 99久久人妻综合| 午夜久久久在线观看| 午夜福利,免费看| av国产久精品久网站免费入址| 人成视频在线观看免费观看| 亚洲精品在线美女| 亚洲一级一片aⅴ在线观看| 热99久久久久精品小说推荐| 丝袜美足系列| 男女边摸边吃奶| 晚上一个人看的免费电影| 狂野欧美激情性xxxx| 亚洲,欧美精品.| 午夜91福利影院| 男的添女的下面高潮视频| 悠悠久久av| 大码成人一级视频| 久久精品国产亚洲av涩爱| 又黄又粗又硬又大视频| 国产精品成人在线| 亚洲成人免费av在线播放| 欧美av亚洲av综合av国产av | 女人久久www免费人成看片| 五月天丁香电影| 午夜av观看不卡| 国产一区有黄有色的免费视频| 亚洲国产精品一区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲精品成人av观看孕妇| 亚洲天堂av无毛| 精品人妻一区二区三区麻豆| 中文字幕最新亚洲高清| 99精国产麻豆久久婷婷| 国产乱来视频区| 国产成人免费观看mmmm| 亚洲欧美成人精品一区二区| 美国免费a级毛片| 亚洲一区二区三区欧美精品| 亚洲国产精品国产精品| www.熟女人妻精品国产| 女性生殖器流出的白浆| 国产精品免费视频内射| 日韩一卡2卡3卡4卡2021年| 国产精品国产av在线观看| 王馨瑶露胸无遮挡在线观看| 18在线观看网站| 极品少妇高潮喷水抽搐| 9色porny在线观看| 成年美女黄网站色视频大全免费| 欧美亚洲日本最大视频资源| 狂野欧美激情性xxxx| 中文字幕人妻丝袜一区二区 | 中文欧美无线码| 国产一区有黄有色的免费视频| 天堂8中文在线网| 精品国产乱码久久久久久男人| 久久久精品区二区三区| 精品久久蜜臀av无| 日韩,欧美,国产一区二区三区| 又黄又粗又硬又大视频| 日本色播在线视频| 日韩视频在线欧美| 亚洲 欧美一区二区三区| 中文天堂在线官网| 亚洲精品国产av蜜桃| 免费av中文字幕在线| 夫妻性生交免费视频一级片| 亚洲熟女毛片儿| 一本—道久久a久久精品蜜桃钙片| 亚洲成人国产一区在线观看 | 国产又爽黄色视频| 高清不卡的av网站| 1024视频免费在线观看| 国产野战对白在线观看| 午夜免费鲁丝| 亚洲av欧美aⅴ国产| 乱人伦中国视频| 国产日韩一区二区三区精品不卡| 成年美女黄网站色视频大全免费| 欧美日韩亚洲高清精品| 欧美少妇被猛烈插入视频| 欧美日韩综合久久久久久| 亚洲欧美激情在线| 日韩大片免费观看网站| 精品人妻熟女毛片av久久网站| av女优亚洲男人天堂| 国产精品秋霞免费鲁丝片| 黄片小视频在线播放| 欧美国产精品va在线观看不卡| 欧美日韩一级在线毛片| 国产精品国产av在线观看| 亚洲综合精品二区| 两性夫妻黄色片| 亚洲国产精品国产精品| 国产亚洲欧美精品永久| 尾随美女入室| 日韩人妻精品一区2区三区| 99久久综合免费| 亚洲av电影在线进入| av电影中文网址| 久久99一区二区三区| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 日韩制服丝袜自拍偷拍| 成年女人毛片免费观看观看9 | 少妇的丰满在线观看| 久热这里只有精品99| 看免费av毛片| 波野结衣二区三区在线| a级毛片黄视频| av在线观看视频网站免费| 久久久久久人妻| 国产男人的电影天堂91| 久久亚洲国产成人精品v| 热re99久久国产66热| 国产免费福利视频在线观看| 国产亚洲av高清不卡| 亚洲欧洲国产日韩| 亚洲欧美色中文字幕在线| 亚洲国产精品一区三区| 午夜福利免费观看在线| av女优亚洲男人天堂| 国产一区二区三区av在线| 人人妻,人人澡人人爽秒播 | 色精品久久人妻99蜜桃| 国产精品久久久久久精品古装|