• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on inter-satellite measurement technique in high dynamic environment

    2015-04-22 06:17:32WANGYongqing王永慶SUNLida孫立達(dá)YANGLiyun楊麗云JIANGHongwei姜洪偉WUSiliang吳嗣亮
    關(guān)鍵詞:王永慶

    WANG Yong-qing(王永慶), SUN Li-da(孫立達(dá)), YANG Li-yun(楊麗云),JIANG Hong-wei(姜洪偉), WU Si-liang(吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Research on inter-satellite measurement technique in high dynamic environment

    WANG Yong-qing(王永慶), SUN Li-da(孫立達(dá)), YANG Li-yun(楊麗云),JIANG Hong-wei(姜洪偉), WU Si-liang(吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    An improved measurement algorithm, based upon the theory of two-way time transfer (TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.

    two-way time transfer; ranging; time synchronization; measurement accuracy

    Satellite networking is motivated by the demand for autonomous navigation with space technique growing, whose purpose is to guarantee the network work stably and elevate the network. To accomplish autonomous navigation task, the inter-satellite ranging and time difference measurement must be high-precise[1]. The commonly used ranging algorithms include the pseudo-code method and carrier method, and the time difference algorithms include the clear method and GPS common-view method. The method of two-way time transfer (TWTT)[2-4]is widely applied in inter-satellite ranging and time synchronization. This method can not only measure distance and time difference, but also eliminate channel common error in bidirectional measurement process[5-6]. The traditional time synchronization is among one satellite responder and some ground stations[7]. In Ref. [8], TWTT algorithm was applied in distance and time difference measurement in a static model with no relative motion between the two satellites. In Refs.[9-10], the realization scheme of the algorithm which considered the relative motion between the satellites was brought up, but the measurement error brought by the satellite motion during the transmitting and receiving delay were ignored.

    According to current opened references, there are few measurement algorithms taking the effect of equipment delay on the measurement algorithm into account. In Ref.[9], the algorithm just considered the equipment delay as a fixed delay of satellite’s interval from transmitting moment to receiving moment, and asserted that satellites keep relatively static when signals spread through the equipment transmitting channel and receiving channel. And the assertion confused the signals produce moment with transmitting moment and ignored satellites position changes during the equipment delay. The measurement accuracy may be affected by the error caused by satellites motion during the equipment delay, especially when satellites move at high-speed. The measurement result in Ref. [9] ignored a dynamic-changing error term which depends on the transmitting delay and the relative velocity between satellites. The relative velocity is especially larger when satellites move in different orbits, so the algorithm of ranging and time difference measurement must consider the equipment delay in high dynamic environment.

    To solve the problem described above, an improved algorithm of inter-satellite ranging and time difference measurement is put forward in this paper. The algorithm takes the equipment transmitting and receiving delay into account based upon the TWTT theorem, and eliminates the measurement error caused by the satellites motion.

    1 Two-way time transfer algorithm

    1.1 Principle

    The basic principle of the TWTT method which can be used for ranging and time difference measurement between two relative stillness satellites is given in Fig.1.

    Fig.1 Principle of two-way time transfer method in inter-satellite

    As shown in Fig.1, suppose that satellite A and B transmit the ranging signals without range ambiguity at their local starting second. For the sake of time differenceΔt,thetwosatellitesactuallytransmitthesignalsatthetimet1andt2separately.SatelliteA’sintervalfromtransmittingmomenttoreceivingmoment(shortfort-rinterval),whichiscalledTA,canbeobtainedbyacquiringthesignalstransmittedbysatelliteB. TAdependsonthesignalstransmissionintervalτBAfromsatelliteBtoA,satelliteB’stransmittingdelayτBt,satelliteA’sreceivingdelayτAr,andthetimedifferenceΔtbetweenthesatellites.So:

    TA=Δt+τBt+τBA(t2)+τAr

    (1)

    Similarly,TBis satellite B’s t-r interval, which depends on the signals transmission intervalτABfrom satellite A to satellite B, satellite A’s transmitting delayτAt, satellite B’s receiving delayτBr, and the time differenceΔtbetweenthetwosatellites.Therelationisexpressedas

    TB=-Δt+τAt+τAB(t1)+τBr

    (2)

    There isτBA=τABwhen satellite A and B transmit their ranging signals with a nearly frequency on the same transmission path at the same time. According to Eqs.(1)(2), the signals transmission interval and the distance can be expressed as

    (3)

    Thetimedifferencecanalsobeobtainedas

    (4)

    Consequently, based on TWTT, the distance and time difference between two satellites are successfully obtained at the same time.

    1.2 General measurement algorithm

    The condition ofτBA=τABis assumed in section 1.1, butτBAis actually not equivalent to τABwhenthetwosatelliteshaverelativemotions.Therefore,Eqs.(1)(2)shouldbereestablishedinvolvingtherelativemotions.ThenewequationsbroughtupbyRef.[9]canbeexpressedas

    (5)

    (6)

    The general measurement algorithm applied to dynamic environment considered the relative motion and equipment delay, but just regarded the equipment delay as a fixed delay of satellite’s t-r interval. This algorithm ignored satellites motion during the equipment delay and confused the signal produce moment with transmitting moment, which would introduce error terms positively associated with the relative velocity and transmitting delay. The satellite motion is relative to real-time velocity, so the error terms must be corrected in real time.

    The relative velocity between satellites in different orbits is large, so inter-satellite ranging and time synchronization algorithm must consider the satellite motion during the equipment delay, and how to eliminate the influence of transmitting and receiving delay is the key point to evaluate an algorithm designed for high dynamic environment.

    2 High dynamic inter-satellite ranging and time synchronization algorithm

    2.1 Improved measurement algorithm

    The improved algorithm can eliminate measurement error caused by the transmitting and receiving delay of inter-satellite measurement equipment in high dynamic environment, which is compared with traditional algorithms demonstrated in Ref. [9]. The relative satellite velocity varies slowly in measuring process, so it can be considered that two satellites move with the constant satellite velocityvA,vBseparately. The relative motion model of two satellites in communication process is given in Fig.2, wherecis the propagation speed of radio wave in a vacuum.

    Fig.2 Relative motion model of two satellites

    The distance between satellite A and B at a moment when A transmits ranging signal can be expressed as

    r(t1+τAt)=τAB(t1+τAt)(c+vB)

    (7)

    Suppose that ranging signal is transmitted att1+τAt, thent1~(t1+τAt) is the transmitting delay. Similarly, the distance between the two satellites at a moment when satellite B transmits ranging signal can be expressed as

    r(t2+τBt)=τBA(t2+τBt)(c+vA)

    (8)

    The relative motion relation of the two satellites is

    r(t1+τAt)-r(t2+τBt)=(t2-t1+τBt-τAt)(vA+vB)=

    (Δt+τBt-τAt)(vA+vB)

    (9)

    According to Eqs.(7)-(9), we can obtain

    τAB(t1+τAt)(c+vB)-τBA(t2+τBt)(c+vA)=

    (Δt+τBt-τAt)(vA+vB)

    (10)

    Satellite velocity can be accurately calculated by the Doppler frequency shift or by the ephemeris.

    τBA(t2+τBt)≠τBA(t2),τAB(t1+τAt)≠τAB(t1),soEqs.(1)(2)cometobe

    TA=Δt+τBt+τBA(t2+τBt)+τAr

    (11)

    TB=-Δt+τAt+τAB(t1+τAt)+τBr

    (12)

    Synthesizing Eqs.(10)-(12), the final result can be expressed as

    (13)

    So,thedistanceandtimedifferencebetweenthetwosatellitesatthemomentwhenrangingsignalstransmittedbysatelliteAcan be calculated as

    r(t1)=r(t1+τAt)+(vA+vB)τAt=

    (14)

    (15)

    2.2 Analysis of accuracy

    (16)

    whereRis the radius of the earth, andhis the orbit altitude. The orbit altitude of LEO satellite ranges from 400 km to 2 000 km. According to Eq. (16), we can obtainv=6.9 km/s-7.7 km/s. In conclusion, the maximum linear velocity of satellite in orbit is 7.7 km/s. So the last two items of the distance error term can be written as

    (τBt-τAt)+15.4×103×τAt=

    7.7×103×(τBt+τAt)+0.197×(τBt-τAt)

    (17)

    2.57×10-5(τBt-τAt)

    (18)

    In conclusion, if satellite transmitting delay is in an order of microsecond, which makes (τBt+τAt) larger than 1.3 μs, the last two distance error terms cannot be ignored in Eq.(14) in order to obtain the ranging accuracy of an order of centimeter. Meanwhile, if (τBt-τAt) is larger than 3.89 μs, the time difference error term in Eq.(15) cannot be ignored either in order to attain the precision of an order of 0.1 ns.

    3 Simulation and performance analysis

    The improved algorithm introduced in this paper is compared with the conventional algorithm demonstrated in Ref. [9]. The improved algorithm considered high-speed motion of satellite during the equipment delay in high dynamic environment. The orbit of Shenzhou-8 is nearly a circular orbit, its perigee height is 334 km, apogee height is 348 km, cycle is about 91 min and velocity is about 7.8 km/s. Simulation parameters are set as such Leo satellites. The simulation results of ranging and time synchronization, utilizing the two algorithms respectively, are shown in Fig.3 to Fig.8. In this paper, three different conditions are considered.

    Fig.3 Results of ranging compared the two algorithms under different relative velocity conditions

    Fig.4 Results of time difference compared the two algorithms under different relative velocity conditions

    Fig.5 Results of ranging compared the two algorithms under different transmitting delay conditions

    Fig.6 Results of time difference compared the two algorithms under different transmitting delay conditions

    Fig.7 Results of ranging compared the two algorithms under different distance conditions

    Fig.8 Results of time difference compared the two algorithms under different distance conditions

    ① Different relative velocities

    Simulation parameters are set as follows: satellite A’s t-r intervalTAis 1.1×10-5s; satellite B’s t-r intervalTBis 1.4×10-5s; satellite A’s transmitting delayτAtis 5×10-6s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s receiving delayτAris 5×10-7s; satellite B’s receiving delayτBris 5×10-7s; and relative velocity range between the two satellites is [8 300, 15 400] m/s.

    The simulation results show that the error terms in the two algorithms are much larger when the relative velocity between two satellites becomes larger. Compared with conventional algorithm, the new algorithm can correct distance error of 5 cm and time difference error of 0.1 ns at most in dynamic environment. Therefore, the accuracy of inter-satellite ranging and time synchronization is improved in the improved algorithm, which will be more obvious when the relative velocity is larger.

    ②Different transmitting delays

    Simulation parameters are set as follows: satelliteA’s transmitting delayτAtis (5×10-7-7×10-6) s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s t-r intervalTAis (τBt+1.1×10-5) s; satellite B’s t-r intervalTBis (τAt+1×10-5) s; satellite A’s receiving delayτAris 5×10-7s; satellite B’s receiving delayτBris 5×10-7s; satellite A’s velocityvAis 7 700 m/s; and satellite B’s velocityvBis 7 700 m/s.

    The simulation results show that the error terms in the two algorithms are much larger when the transmitting delay becomes larger. Compared with conventional algorithm, this algorithm can correct distance error of 6 cm and time difference error of 0.16 ns at most in dynamic environment. Therefore, the accuracy of inter-satellite ranging and time synchronization can be improved using the improved algorithm, which is more effective when the transmitting delay is larger.

    ③ Different distances

    Simulation parameters are set as follows: satellite A’s t-r intervalTAis (1.1×10-5-1.100 1×10-5) s; satelliteB’s t-r intervalTBis (TA-3×10-6) s; satellite A’s velocityvAis 7 700 m/s; satellite B’s velocityvBis 7 700 m/s; satellite A’s transmitting delayτAtis 5×10-6s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s receiving delayτAris 5×10-7s; and satellite B’s receiving delayτBris 5×10-7s.

    The simulation results show that the error term between the improved algorithm and the conventional algorithm is a constant in dynamic environment as the distance of two satellites increases, which means that the error term has nothing to do with the distance factors.

    The conclusion is that the new algorithm has obvious advantages compared with the conventional one in high dynamic environment, especially when ranging accuracy of centimeter order and time synchronization accuracy of 0.1 ns are required. The error terms of the two algorithms are mainly affected by relative velocity and satellite transmitting delay, which are much larger when the relative velocity and the transmitting delay becomes larger.

    4 Conclusion

    In order to eliminate measurement errors caused by high-speed motion of satellite during the transmitting and the receiving delay which are not considered in conventional algorithm, an improved algorithm of inter-satellite ranging and time synchronization, based upon the TWTT theory, is proposed in this paper. The algorithm is deduced on the motion model of two satellites in high dynamic environment and analyzed theoretically. Theoretical analysis demonstrates that the algorithm can effectively enhance the inter-satellite measurement accuracy for ranging systems with centimeter level and time synchronization systems with 0.1 ns level. Finally, simulation results approve the validity of the proposed algorithm by comparing with the conventional algorithm under different conditions. The proposed algorithm is verified to be more effective in high dynamic environment when the satellite transmitting delay and relative velocity become larger.

    [1] Chen Zhonggui, Shuai Ping, Qu Guangji. Current satellite navigation system techniques and the development trend analysis [J].Science in China, 2009, 39(4):686-695. (in Chinese)

    [2] Lin Huangtien, Liao Chiashu, Chu Fangdar, et al. Full utilization of TWSTT network data for the short-term stability and uncertainty improvement [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7):2564-2569.

    [3] Hanson D W. Fundamentals of two-way time transfer by satellite [C]∥43rdAnnual Symposium on Frequency Control, Denver, Colorado, USA, May31-June 3, 1989.

    [4] Merck P, Achkar J. Design of a Ku band delay difference calibration device for TWSTFT station [J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2):814-818.

    [5] Xu Yong, Chang Qing, Yu Zhijian. On new measurement and communication techniques of GNSS inter-satellite link [J]. Science in China, 2012, 42(2):230-240. (in Chinese)

    [6] Koppang P, Wheeler P. Working application of TWSTT for high precision remote synchronization [C]∥The Annual IEEE International Frequency Control Symposium, CA, USA, May 27-29, 1998

    [7] Li Zhigang, Qiao Rongchuan, Feng Chugang.Two way satellite time transfer(TWSTT) and satellite ranging [J]. Journal of Spacecraft TT&C Technology, 2006, 25(3):1-6. (in Chinese)

    [8] Zhong Xingwang, Chen Hao. The system and its calibration method on inter-satellite dual one-way ranging and timing [J]. Journal of Electronic Measurement and Instrument, 2009, 23(4):13-17. (in Chinese)

    [9] Huang Bo, Hu Xiulin. Inter-satellite ranging and time synchronization technique for BD2 [J]. Journal of Astronautics, 2011, 32(6):1271-1275. (in Chinese)

    [10] Zhong Xingwang, Chen Hao. Analysis and correction techniques of movement influence on inter-satellite two-way time transfer [J]. Chinese Space Science and Technology, 2007(6):54-58. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0215

    TN 927.3; V448.2 Document code: A Article ID: 1004- 0579(2015)02- 0233- 07

    Received 2013- 12- 07

    Supported by the National High Technology Research and Development Program of China (2012AA1406)

    E-mail: wangyongqing@bit.edu.cn

    猜你喜歡
    王永慶
    凌晨三點(diǎn)的面試
    凌晨三點(diǎn)的面試
    凌晨三點(diǎn)的面試
    雜文選刊(2019年1期)2019-01-14 02:23:58
    不計(jì)較的人才最好用
    首富從一粒米開始
    幸?!傋x(2018年1期)2018-01-17 21:44:38
    首富從一粒米開始
    雜文選刊(2017年11期)2017-11-08 20:48:06
    成功只靠一粒米
    誰(shuí)能一直跑下去
    成功,從一粒米開始
    成才之路(2014年15期)2014-06-10 12:32:37
    王永慶的“賣米經(jīng)”
    大香蕉久久网| 亚洲国产欧洲综合997久久,| 日韩强制内射视频| 午夜激情欧美在线| 亚洲av成人精品一区久久| 少妇高潮的动态图| 国产三级中文精品| 国产一区二区亚洲精品在线观看| 国产精品一区www在线观看| 成年av动漫网址| 熟妇人妻久久中文字幕3abv| 精华霜和精华液先用哪个| 国产亚洲最大av| 男人的好看免费观看在线视频| 国产久久久一区二区三区| 国产伦在线观看视频一区| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 国产精品熟女久久久久浪| av在线天堂中文字幕| 卡戴珊不雅视频在线播放| 一级黄片播放器| 亚洲丝袜综合中文字幕| 91午夜精品亚洲一区二区三区| 精品久久久久久电影网 | 99热精品在线国产| 你懂的网址亚洲精品在线观看 | 日本三级黄在线观看| av在线亚洲专区| 久久久亚洲精品成人影院| 97超视频在线观看视频| 亚洲国产精品成人久久小说| 国产色爽女视频免费观看| 九九在线视频观看精品| 美女黄网站色视频| 亚洲国产最新在线播放| 色尼玛亚洲综合影院| 日韩国内少妇激情av| 国产精品国产三级专区第一集| 99在线人妻在线中文字幕| 丰满少妇做爰视频| 亚洲久久久久久中文字幕| 日韩,欧美,国产一区二区三区 | 欧美成人午夜免费资源| 精品不卡国产一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲成人av在线免费| 久久精品国产自在天天线| 99国产精品一区二区蜜桃av| 中文字幕免费在线视频6| 中文资源天堂在线| 精品人妻视频免费看| 免费看美女性在线毛片视频| 啦啦啦啦在线视频资源| 天天一区二区日本电影三级| 亚洲怡红院男人天堂| 天天躁日日操中文字幕| 成人美女网站在线观看视频| 成人毛片a级毛片在线播放| 日韩欧美精品v在线| 日本午夜av视频| 人体艺术视频欧美日本| 观看免费一级毛片| 91精品一卡2卡3卡4卡| 特大巨黑吊av在线直播| 国产人妻一区二区三区在| 欧美另类亚洲清纯唯美| 欧美人与善性xxx| 男人舔奶头视频| 在线观看一区二区三区| 日本wwww免费看| 色综合亚洲欧美另类图片| 婷婷六月久久综合丁香| 亚洲av成人av| 欧美zozozo另类| 午夜精品在线福利| 直男gayav资源| 老女人水多毛片| 久久精品国产亚洲av天美| 亚洲av中文字字幕乱码综合| 少妇熟女aⅴ在线视频| 亚洲真实伦在线观看| 国产成人精品婷婷| 好男人视频免费观看在线| 精品无人区乱码1区二区| 99热这里只有是精品50| 一个人看视频在线观看www免费| 国产精品久久久久久久电影| 菩萨蛮人人尽说江南好唐韦庄 | 我要看日韩黄色一级片| 少妇猛男粗大的猛烈进出视频 | 少妇的逼好多水| 少妇熟女aⅴ在线视频| 美女被艹到高潮喷水动态| 99热精品在线国产| 久久久a久久爽久久v久久| 麻豆一二三区av精品| 91精品一卡2卡3卡4卡| 99久久精品一区二区三区| 日韩在线高清观看一区二区三区| 亚洲国产成人一精品久久久| 国产91av在线免费观看| av在线老鸭窝| 成人一区二区视频在线观看| 亚洲,欧美,日韩| 色5月婷婷丁香| 伦精品一区二区三区| 天天一区二区日本电影三级| h日本视频在线播放| 波野结衣二区三区在线| 国产精品1区2区在线观看.| 国内精品美女久久久久久| 成人三级黄色视频| 91aial.com中文字幕在线观看| 国产一区二区在线观看日韩| 听说在线观看完整版免费高清| 欧美色视频一区免费| 99久久成人亚洲精品观看| 色综合色国产| 国产精品无大码| 久久精品综合一区二区三区| 免费搜索国产男女视频| 国产麻豆成人av免费视频| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 亚洲性久久影院| 精品不卡国产一区二区三区| 国产一区二区三区av在线| 五月玫瑰六月丁香| 亚洲国产精品成人综合色| 午夜爱爱视频在线播放| 免费在线观看成人毛片| 成人二区视频| 日韩欧美国产在线观看| 久久精品熟女亚洲av麻豆精品 | 一夜夜www| 一本久久精品| 麻豆乱淫一区二区| 久久久久久久国产电影| 成人亚洲精品av一区二区| 欧美高清性xxxxhd video| 亚洲国产精品久久男人天堂| 国产精品99久久久久久久久| 全区人妻精品视频| 91av网一区二区| 美女黄网站色视频| 天天躁日日操中文字幕| 韩国av在线不卡| 夜夜爽夜夜爽视频| 亚洲在久久综合| 免费无遮挡裸体视频| 2021天堂中文幕一二区在线观| 国产三级在线视频| 大又大粗又爽又黄少妇毛片口| 乱码一卡2卡4卡精品| 熟妇人妻久久中文字幕3abv| 国内精品美女久久久久久| 久久99热这里只有精品18| 村上凉子中文字幕在线| 深夜a级毛片| 亚洲成人精品中文字幕电影| 丰满人妻一区二区三区视频av| 天天躁日日操中文字幕| 亚洲国产精品成人久久小说| 看片在线看免费视频| 国产精品无大码| 日韩强制内射视频| 久久精品夜色国产| 亚洲国产日韩欧美精品在线观看| 91久久精品电影网| 久久久成人免费电影| 国产亚洲av嫩草精品影院| 又爽又黄a免费视频| 精品不卡国产一区二区三区| 亚洲最大成人中文| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 国产一级毛片在线| 免费一级毛片在线播放高清视频| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 好男人在线观看高清免费视频| 桃色一区二区三区在线观看| 国产乱人偷精品视频| 国产免费福利视频在线观看| a级毛片免费高清观看在线播放| 亚洲欧美一区二区三区国产| 18+在线观看网站| 国产爱豆传媒在线观看| 亚洲av福利一区| 乱系列少妇在线播放| 中国美白少妇内射xxxbb| 亚洲国产精品sss在线观看| 男女视频在线观看网站免费| 午夜精品国产一区二区电影 | 国产精品乱码一区二三区的特点| 波多野结衣高清无吗| 黑人高潮一二区| 简卡轻食公司| 欧美日韩国产亚洲二区| 免费播放大片免费观看视频在线观看 | 色综合站精品国产| 女人被狂操c到高潮| 久久鲁丝午夜福利片| 国产精品一及| 美女内射精品一级片tv| av线在线观看网站| 色网站视频免费| 97人妻精品一区二区三区麻豆| 久久久久久国产a免费观看| 国产视频内射| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 精品久久久久久久久亚洲| 欧美性感艳星| 欧美成人精品欧美一级黄| 免费看光身美女| 国产一区二区三区av在线| 国产精品久久久久久av不卡| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 中文资源天堂在线| 国产av在哪里看| 日本av手机在线免费观看| 国产一级毛片在线| 成人午夜精彩视频在线观看| 欧美+日韩+精品| 人人妻人人澡欧美一区二区| 国产av不卡久久| 少妇人妻精品综合一区二区| 亚洲欧美成人精品一区二区| 伦精品一区二区三区| 日本五十路高清| 久久精品久久精品一区二区三区| 午夜精品国产一区二区电影 | 18禁在线无遮挡免费观看视频| 级片在线观看| 永久网站在线| 色综合站精品国产| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| av.在线天堂| 亚洲伊人久久精品综合 | 可以在线观看毛片的网站| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 日韩大片免费观看网站 | 在线播放国产精品三级| 亚洲色图av天堂| 久久久精品94久久精品| 午夜激情欧美在线| 国产精品一区二区三区四区免费观看| 婷婷六月久久综合丁香| 岛国在线免费视频观看| 高清毛片免费看| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 色5月婷婷丁香| 精品国产三级普通话版| videossex国产| 晚上一个人看的免费电影| 岛国毛片在线播放| 看非洲黑人一级黄片| 卡戴珊不雅视频在线播放| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| av又黄又爽大尺度在线免费看 | 欧美潮喷喷水| 2022亚洲国产成人精品| 偷拍熟女少妇极品色| 晚上一个人看的免费电影| 三级经典国产精品| 在线免费观看的www视频| 男人和女人高潮做爰伦理| 中文字幕av在线有码专区| 亚洲自拍偷在线| 69av精品久久久久久| 亚洲av熟女| 久久99热6这里只有精品| 国产午夜精品论理片| 黄片无遮挡物在线观看| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器| 麻豆成人av视频| av国产免费在线观看| 亚洲国产精品成人综合色| 亚洲精品一区蜜桃| 国产精品综合久久久久久久免费| 久久久精品94久久精品| 免费黄色在线免费观看| 免费看光身美女| 国内揄拍国产精品人妻在线| 男人和女人高潮做爰伦理| 欧美变态另类bdsm刘玥| 欧美日本亚洲视频在线播放| 少妇的逼好多水| 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 有码 亚洲区| 亚洲国产成人一精品久久久| 免费av不卡在线播放| 久久亚洲精品不卡| 色播亚洲综合网| 又黄又爽又刺激的免费视频.| 日本免费一区二区三区高清不卡| 久久综合国产亚洲精品| 久久精品国产亚洲av天美| 亚洲中文字幕一区二区三区有码在线看| av免费在线看不卡| 国产精品三级大全| 青春草亚洲视频在线观看| 99久国产av精品国产电影| 亚洲欧美精品综合久久99| 国产精品麻豆人妻色哟哟久久 | 日本五十路高清| 国产视频首页在线观看| 国产精品久久电影中文字幕| 欧美潮喷喷水| 亚洲欧洲国产日韩| 禁无遮挡网站| 男人狂女人下面高潮的视频| a级一级毛片免费在线观看| 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看| av视频在线观看入口| a级一级毛片免费在线观看| av播播在线观看一区| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类| 欧美97在线视频| av.在线天堂| 亚洲最大成人av| 国产精品伦人一区二区| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 亚洲自拍偷在线| 嫩草影院入口| 亚洲美女搞黄在线观看| 边亲边吃奶的免费视频| 久久精品影院6| 午夜精品在线福利| 久久久久国产网址| 免费看a级黄色片| 欧美性猛交黑人性爽| 亚洲国产精品久久男人天堂| 亚洲欧美精品自产自拍| 国产精品女同一区二区软件| 人妻少妇偷人精品九色| 国产午夜精品论理片| 欧美又色又爽又黄视频| 午夜福利在线观看吧| 亚洲在久久综合| 长腿黑丝高跟| 中文字幕制服av| 三级国产精品欧美在线观看| 男女视频在线观看网站免费| 免费人成在线观看视频色| 亚洲自拍偷在线| 一本久久精品| 级片在线观看| 成人三级黄色视频| 欧美成人a在线观看| 免费一级毛片在线播放高清视频| 26uuu在线亚洲综合色| 久久久久九九精品影院| 成人美女网站在线观看视频| 波多野结衣高清无吗| 国内精品宾馆在线| 国产欧美日韩精品一区二区| 1000部很黄的大片| 有码 亚洲区| 久久久a久久爽久久v久久| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 日韩欧美三级三区| 三级国产精品片| 成人亚洲欧美一区二区av| 国产av不卡久久| 免费黄网站久久成人精品| 全区人妻精品视频| 国国产精品蜜臀av免费| 别揉我奶头 嗯啊视频| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 22中文网久久字幕| 日日摸夜夜添夜夜爱| 国产伦精品一区二区三区四那| 亚洲激情五月婷婷啪啪| 最近视频中文字幕2019在线8| 内地一区二区视频在线| 亚洲乱码一区二区免费版| 一二三四中文在线观看免费高清| 国产伦精品一区二区三区四那| ponron亚洲| 亚洲av电影在线观看一区二区三区 | 久久久久久久久久久免费av| 久久久久久久午夜电影| 高清在线视频一区二区三区 | 精品免费久久久久久久清纯| 晚上一个人看的免费电影| 国产白丝娇喘喷水9色精品| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 国产精品女同一区二区软件| 国产淫语在线视频| 高清日韩中文字幕在线| 日本三级黄在线观看| 日产精品乱码卡一卡2卡三| 春色校园在线视频观看| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区成人| 亚洲欧美成人精品一区二区| 亚洲伊人久久精品综合 | 十八禁国产超污无遮挡网站| 亚洲激情五月婷婷啪啪| 99久久无色码亚洲精品果冻| 麻豆成人av视频| 舔av片在线| 国产激情偷乱视频一区二区| 亚洲精品成人久久久久久| a级毛色黄片| 久久欧美精品欧美久久欧美| 男插女下体视频免费在线播放| 亚洲欧美日韩东京热| 欧美一区二区国产精品久久精品| 精品久久久噜噜| 精品一区二区免费观看| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 成人午夜高清在线视频| 亚洲三级黄色毛片| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 国产熟女欧美一区二区| 久久午夜福利片| 熟妇人妻久久中文字幕3abv| 亚洲18禁久久av| 亚洲不卡免费看| 国产av在哪里看| 午夜福利视频1000在线观看| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 久久6这里有精品| 日日摸夜夜添夜夜添av毛片| 国产黄a三级三级三级人| 国产单亲对白刺激| 天天躁夜夜躁狠狠久久av| 午夜免费激情av| 黄色一级大片看看| videossex国产| 国产女主播在线喷水免费视频网站 | 国产视频内射| 国产精品av视频在线免费观看| 赤兔流量卡办理| 成人特级av手机在线观看| 伊人久久精品亚洲午夜| 久久久久九九精品影院| 亚洲av中文av极速乱| 如何舔出高潮| 亚洲自偷自拍三级| 国产伦在线观看视频一区| 嫩草影院入口| 午夜福利高清视频| 欧美成人免费av一区二区三区| 99久久中文字幕三级久久日本| 国产激情偷乱视频一区二区| 亚洲av熟女| 国产极品精品免费视频能看的| 狂野欧美白嫩少妇大欣赏| 欧美日韩精品成人综合77777| 久久久a久久爽久久v久久| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 国内精品宾馆在线| 村上凉子中文字幕在线| 国产大屁股一区二区在线视频| 久久久久久久午夜电影| 欧美不卡视频在线免费观看| 99久国产av精品国产电影| 国产亚洲5aaaaa淫片| 极品教师在线视频| 丰满人妻一区二区三区视频av| 久久久欧美国产精品| 两个人视频免费观看高清| 成年女人看的毛片在线观看| 成年免费大片在线观看| 久久久成人免费电影| 国产伦精品一区二区三区四那| 日本爱情动作片www.在线观看| 亚洲成色77777| 能在线免费观看的黄片| 男人舔女人下体高潮全视频| 免费人成在线观看视频色| 校园人妻丝袜中文字幕| 国产一级毛片七仙女欲春2| 国产亚洲一区二区精品| 色吧在线观看| 国产午夜精品论理片| 日韩欧美精品免费久久| 国产极品天堂在线| 在线播放国产精品三级| or卡值多少钱| 精品不卡国产一区二区三区| 久久久久性生活片| 国产成人91sexporn| 国产在线男女| 91精品伊人久久大香线蕉| 成人毛片a级毛片在线播放| 亚洲欧美精品综合久久99| 亚洲国产欧美在线一区| 不卡视频在线观看欧美| 精品欧美国产一区二区三| 国产 一区精品| 男女那种视频在线观看| 观看美女的网站| 亚洲电影在线观看av| 美女高潮的动态| 久久久久久久久久黄片| 欧美+日韩+精品| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 亚洲人成网站高清观看| 嫩草影院新地址| 精品一区二区三区人妻视频| 特大巨黑吊av在线直播| 九色成人免费人妻av| 伦理电影大哥的女人| 国产成人aa在线观看| 国内揄拍国产精品人妻在线| 赤兔流量卡办理| 国模一区二区三区四区视频| 免费看a级黄色片| 老师上课跳d突然被开到最大视频| 成人漫画全彩无遮挡| 欧美日韩一区二区视频在线观看视频在线 | 欧美又色又爽又黄视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品精品国产色婷婷| 全区人妻精品视频| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久影院| 熟妇人妻久久中文字幕3abv| 1024手机看黄色片| 看非洲黑人一级黄片| 99久久精品一区二区三区| 亚洲五月天丁香| 国产极品天堂在线| av在线老鸭窝| 国产黄色小视频在线观看| 两个人的视频大全免费| 欧美高清性xxxxhd video| 久久久精品94久久精品| 欧美区成人在线视频| 青春草国产在线视频| 国产精品一及| 精品少妇黑人巨大在线播放 | av国产免费在线观看| 成人欧美大片| 亚洲精品影视一区二区三区av| 亚洲av中文av极速乱| 老女人水多毛片| 日本爱情动作片www.在线观看| 一区二区三区高清视频在线| 亚洲图色成人| 激情 狠狠 欧美| 高清午夜精品一区二区三区| 99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热6这里只有精品| 免费电影在线观看免费观看| 亚洲,欧美,日韩| 久久久久网色| 精品国产三级普通话版| 亚洲国产日韩欧美精品在线观看| 日本一二三区视频观看| 精品久久久久久久久亚洲| 国产探花在线观看一区二区| 亚洲欧美日韩卡通动漫| 亚洲激情五月婷婷啪啪| 十八禁国产超污无遮挡网站| av视频在线观看入口| 午夜日本视频在线| 乱码一卡2卡4卡精品| 日本av手机在线免费观看| 国产爱豆传媒在线观看| 午夜久久久久精精品| 日本av手机在线免费观看| 日韩人妻高清精品专区| 国产91av在线免费观看| 亚洲精品国产成人久久av| 欧美三级亚洲精品| 女的被弄到高潮叫床怎么办| 久久久精品94久久精品| 精品熟女少妇av免费看| 老司机福利观看| 日韩强制内射视频| 国产免费福利视频在线观看| 99热这里只有精品一区| 偷拍熟女少妇极品色| 国内少妇人妻偷人精品xxx网站| 中文在线观看免费www的网站|