• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on inter-satellite measurement technique in high dynamic environment

    2015-04-22 06:17:32WANGYongqing王永慶SUNLida孫立達(dá)YANGLiyun楊麗云JIANGHongwei姜洪偉WUSiliang吳嗣亮
    關(guān)鍵詞:王永慶

    WANG Yong-qing(王永慶), SUN Li-da(孫立達(dá)), YANG Li-yun(楊麗云),JIANG Hong-wei(姜洪偉), WU Si-liang(吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Research on inter-satellite measurement technique in high dynamic environment

    WANG Yong-qing(王永慶), SUN Li-da(孫立達(dá)), YANG Li-yun(楊麗云),JIANG Hong-wei(姜洪偉), WU Si-liang(吳嗣亮)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    An improved measurement algorithm, based upon the theory of two-way time transfer (TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.

    two-way time transfer; ranging; time synchronization; measurement accuracy

    Satellite networking is motivated by the demand for autonomous navigation with space technique growing, whose purpose is to guarantee the network work stably and elevate the network. To accomplish autonomous navigation task, the inter-satellite ranging and time difference measurement must be high-precise[1]. The commonly used ranging algorithms include the pseudo-code method and carrier method, and the time difference algorithms include the clear method and GPS common-view method. The method of two-way time transfer (TWTT)[2-4]is widely applied in inter-satellite ranging and time synchronization. This method can not only measure distance and time difference, but also eliminate channel common error in bidirectional measurement process[5-6]. The traditional time synchronization is among one satellite responder and some ground stations[7]. In Ref. [8], TWTT algorithm was applied in distance and time difference measurement in a static model with no relative motion between the two satellites. In Refs.[9-10], the realization scheme of the algorithm which considered the relative motion between the satellites was brought up, but the measurement error brought by the satellite motion during the transmitting and receiving delay were ignored.

    According to current opened references, there are few measurement algorithms taking the effect of equipment delay on the measurement algorithm into account. In Ref.[9], the algorithm just considered the equipment delay as a fixed delay of satellite’s interval from transmitting moment to receiving moment, and asserted that satellites keep relatively static when signals spread through the equipment transmitting channel and receiving channel. And the assertion confused the signals produce moment with transmitting moment and ignored satellites position changes during the equipment delay. The measurement accuracy may be affected by the error caused by satellites motion during the equipment delay, especially when satellites move at high-speed. The measurement result in Ref. [9] ignored a dynamic-changing error term which depends on the transmitting delay and the relative velocity between satellites. The relative velocity is especially larger when satellites move in different orbits, so the algorithm of ranging and time difference measurement must consider the equipment delay in high dynamic environment.

    To solve the problem described above, an improved algorithm of inter-satellite ranging and time difference measurement is put forward in this paper. The algorithm takes the equipment transmitting and receiving delay into account based upon the TWTT theorem, and eliminates the measurement error caused by the satellites motion.

    1 Two-way time transfer algorithm

    1.1 Principle

    The basic principle of the TWTT method which can be used for ranging and time difference measurement between two relative stillness satellites is given in Fig.1.

    Fig.1 Principle of two-way time transfer method in inter-satellite

    As shown in Fig.1, suppose that satellite A and B transmit the ranging signals without range ambiguity at their local starting second. For the sake of time differenceΔt,thetwosatellitesactuallytransmitthesignalsatthetimet1andt2separately.SatelliteA’sintervalfromtransmittingmomenttoreceivingmoment(shortfort-rinterval),whichiscalledTA,canbeobtainedbyacquiringthesignalstransmittedbysatelliteB. TAdependsonthesignalstransmissionintervalτBAfromsatelliteBtoA,satelliteB’stransmittingdelayτBt,satelliteA’sreceivingdelayτAr,andthetimedifferenceΔtbetweenthesatellites.So:

    TA=Δt+τBt+τBA(t2)+τAr

    (1)

    Similarly,TBis satellite B’s t-r interval, which depends on the signals transmission intervalτABfrom satellite A to satellite B, satellite A’s transmitting delayτAt, satellite B’s receiving delayτBr, and the time differenceΔtbetweenthetwosatellites.Therelationisexpressedas

    TB=-Δt+τAt+τAB(t1)+τBr

    (2)

    There isτBA=τABwhen satellite A and B transmit their ranging signals with a nearly frequency on the same transmission path at the same time. According to Eqs.(1)(2), the signals transmission interval and the distance can be expressed as

    (3)

    Thetimedifferencecanalsobeobtainedas

    (4)

    Consequently, based on TWTT, the distance and time difference between two satellites are successfully obtained at the same time.

    1.2 General measurement algorithm

    The condition ofτBA=τABis assumed in section 1.1, butτBAis actually not equivalent to τABwhenthetwosatelliteshaverelativemotions.Therefore,Eqs.(1)(2)shouldbereestablishedinvolvingtherelativemotions.ThenewequationsbroughtupbyRef.[9]canbeexpressedas

    (5)

    (6)

    The general measurement algorithm applied to dynamic environment considered the relative motion and equipment delay, but just regarded the equipment delay as a fixed delay of satellite’s t-r interval. This algorithm ignored satellites motion during the equipment delay and confused the signal produce moment with transmitting moment, which would introduce error terms positively associated with the relative velocity and transmitting delay. The satellite motion is relative to real-time velocity, so the error terms must be corrected in real time.

    The relative velocity between satellites in different orbits is large, so inter-satellite ranging and time synchronization algorithm must consider the satellite motion during the equipment delay, and how to eliminate the influence of transmitting and receiving delay is the key point to evaluate an algorithm designed for high dynamic environment.

    2 High dynamic inter-satellite ranging and time synchronization algorithm

    2.1 Improved measurement algorithm

    The improved algorithm can eliminate measurement error caused by the transmitting and receiving delay of inter-satellite measurement equipment in high dynamic environment, which is compared with traditional algorithms demonstrated in Ref. [9]. The relative satellite velocity varies slowly in measuring process, so it can be considered that two satellites move with the constant satellite velocityvA,vBseparately. The relative motion model of two satellites in communication process is given in Fig.2, wherecis the propagation speed of radio wave in a vacuum.

    Fig.2 Relative motion model of two satellites

    The distance between satellite A and B at a moment when A transmits ranging signal can be expressed as

    r(t1+τAt)=τAB(t1+τAt)(c+vB)

    (7)

    Suppose that ranging signal is transmitted att1+τAt, thent1~(t1+τAt) is the transmitting delay. Similarly, the distance between the two satellites at a moment when satellite B transmits ranging signal can be expressed as

    r(t2+τBt)=τBA(t2+τBt)(c+vA)

    (8)

    The relative motion relation of the two satellites is

    r(t1+τAt)-r(t2+τBt)=(t2-t1+τBt-τAt)(vA+vB)=

    (Δt+τBt-τAt)(vA+vB)

    (9)

    According to Eqs.(7)-(9), we can obtain

    τAB(t1+τAt)(c+vB)-τBA(t2+τBt)(c+vA)=

    (Δt+τBt-τAt)(vA+vB)

    (10)

    Satellite velocity can be accurately calculated by the Doppler frequency shift or by the ephemeris.

    τBA(t2+τBt)≠τBA(t2),τAB(t1+τAt)≠τAB(t1),soEqs.(1)(2)cometobe

    TA=Δt+τBt+τBA(t2+τBt)+τAr

    (11)

    TB=-Δt+τAt+τAB(t1+τAt)+τBr

    (12)

    Synthesizing Eqs.(10)-(12), the final result can be expressed as

    (13)

    So,thedistanceandtimedifferencebetweenthetwosatellitesatthemomentwhenrangingsignalstransmittedbysatelliteAcan be calculated as

    r(t1)=r(t1+τAt)+(vA+vB)τAt=

    (14)

    (15)

    2.2 Analysis of accuracy

    (16)

    whereRis the radius of the earth, andhis the orbit altitude. The orbit altitude of LEO satellite ranges from 400 km to 2 000 km. According to Eq. (16), we can obtainv=6.9 km/s-7.7 km/s. In conclusion, the maximum linear velocity of satellite in orbit is 7.7 km/s. So the last two items of the distance error term can be written as

    (τBt-τAt)+15.4×103×τAt=

    7.7×103×(τBt+τAt)+0.197×(τBt-τAt)

    (17)

    2.57×10-5(τBt-τAt)

    (18)

    In conclusion, if satellite transmitting delay is in an order of microsecond, which makes (τBt+τAt) larger than 1.3 μs, the last two distance error terms cannot be ignored in Eq.(14) in order to obtain the ranging accuracy of an order of centimeter. Meanwhile, if (τBt-τAt) is larger than 3.89 μs, the time difference error term in Eq.(15) cannot be ignored either in order to attain the precision of an order of 0.1 ns.

    3 Simulation and performance analysis

    The improved algorithm introduced in this paper is compared with the conventional algorithm demonstrated in Ref. [9]. The improved algorithm considered high-speed motion of satellite during the equipment delay in high dynamic environment. The orbit of Shenzhou-8 is nearly a circular orbit, its perigee height is 334 km, apogee height is 348 km, cycle is about 91 min and velocity is about 7.8 km/s. Simulation parameters are set as such Leo satellites. The simulation results of ranging and time synchronization, utilizing the two algorithms respectively, are shown in Fig.3 to Fig.8. In this paper, three different conditions are considered.

    Fig.3 Results of ranging compared the two algorithms under different relative velocity conditions

    Fig.4 Results of time difference compared the two algorithms under different relative velocity conditions

    Fig.5 Results of ranging compared the two algorithms under different transmitting delay conditions

    Fig.6 Results of time difference compared the two algorithms under different transmitting delay conditions

    Fig.7 Results of ranging compared the two algorithms under different distance conditions

    Fig.8 Results of time difference compared the two algorithms under different distance conditions

    ① Different relative velocities

    Simulation parameters are set as follows: satellite A’s t-r intervalTAis 1.1×10-5s; satellite B’s t-r intervalTBis 1.4×10-5s; satellite A’s transmitting delayτAtis 5×10-6s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s receiving delayτAris 5×10-7s; satellite B’s receiving delayτBris 5×10-7s; and relative velocity range between the two satellites is [8 300, 15 400] m/s.

    The simulation results show that the error terms in the two algorithms are much larger when the relative velocity between two satellites becomes larger. Compared with conventional algorithm, the new algorithm can correct distance error of 5 cm and time difference error of 0.1 ns at most in dynamic environment. Therefore, the accuracy of inter-satellite ranging and time synchronization is improved in the improved algorithm, which will be more obvious when the relative velocity is larger.

    ②Different transmitting delays

    Simulation parameters are set as follows: satelliteA’s transmitting delayτAtis (5×10-7-7×10-6) s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s t-r intervalTAis (τBt+1.1×10-5) s; satellite B’s t-r intervalTBis (τAt+1×10-5) s; satellite A’s receiving delayτAris 5×10-7s; satellite B’s receiving delayτBris 5×10-7s; satellite A’s velocityvAis 7 700 m/s; and satellite B’s velocityvBis 7 700 m/s.

    The simulation results show that the error terms in the two algorithms are much larger when the transmitting delay becomes larger. Compared with conventional algorithm, this algorithm can correct distance error of 6 cm and time difference error of 0.16 ns at most in dynamic environment. Therefore, the accuracy of inter-satellite ranging and time synchronization can be improved using the improved algorithm, which is more effective when the transmitting delay is larger.

    ③ Different distances

    Simulation parameters are set as follows: satellite A’s t-r intervalTAis (1.1×10-5-1.100 1×10-5) s; satelliteB’s t-r intervalTBis (TA-3×10-6) s; satellite A’s velocityvAis 7 700 m/s; satellite B’s velocityvBis 7 700 m/s; satellite A’s transmitting delayτAtis 5×10-6s; satellite B’s transmitting delayτBtis 1×10-6s; satellite A’s receiving delayτAris 5×10-7s; and satellite B’s receiving delayτBris 5×10-7s.

    The simulation results show that the error term between the improved algorithm and the conventional algorithm is a constant in dynamic environment as the distance of two satellites increases, which means that the error term has nothing to do with the distance factors.

    The conclusion is that the new algorithm has obvious advantages compared with the conventional one in high dynamic environment, especially when ranging accuracy of centimeter order and time synchronization accuracy of 0.1 ns are required. The error terms of the two algorithms are mainly affected by relative velocity and satellite transmitting delay, which are much larger when the relative velocity and the transmitting delay becomes larger.

    4 Conclusion

    In order to eliminate measurement errors caused by high-speed motion of satellite during the transmitting and the receiving delay which are not considered in conventional algorithm, an improved algorithm of inter-satellite ranging and time synchronization, based upon the TWTT theory, is proposed in this paper. The algorithm is deduced on the motion model of two satellites in high dynamic environment and analyzed theoretically. Theoretical analysis demonstrates that the algorithm can effectively enhance the inter-satellite measurement accuracy for ranging systems with centimeter level and time synchronization systems with 0.1 ns level. Finally, simulation results approve the validity of the proposed algorithm by comparing with the conventional algorithm under different conditions. The proposed algorithm is verified to be more effective in high dynamic environment when the satellite transmitting delay and relative velocity become larger.

    [1] Chen Zhonggui, Shuai Ping, Qu Guangji. Current satellite navigation system techniques and the development trend analysis [J].Science in China, 2009, 39(4):686-695. (in Chinese)

    [2] Lin Huangtien, Liao Chiashu, Chu Fangdar, et al. Full utilization of TWSTT network data for the short-term stability and uncertainty improvement [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(7):2564-2569.

    [3] Hanson D W. Fundamentals of two-way time transfer by satellite [C]∥43rdAnnual Symposium on Frequency Control, Denver, Colorado, USA, May31-June 3, 1989.

    [4] Merck P, Achkar J. Design of a Ku band delay difference calibration device for TWSTFT station [J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(2):814-818.

    [5] Xu Yong, Chang Qing, Yu Zhijian. On new measurement and communication techniques of GNSS inter-satellite link [J]. Science in China, 2012, 42(2):230-240. (in Chinese)

    [6] Koppang P, Wheeler P. Working application of TWSTT for high precision remote synchronization [C]∥The Annual IEEE International Frequency Control Symposium, CA, USA, May 27-29, 1998

    [7] Li Zhigang, Qiao Rongchuan, Feng Chugang.Two way satellite time transfer(TWSTT) and satellite ranging [J]. Journal of Spacecraft TT&C Technology, 2006, 25(3):1-6. (in Chinese)

    [8] Zhong Xingwang, Chen Hao. The system and its calibration method on inter-satellite dual one-way ranging and timing [J]. Journal of Electronic Measurement and Instrument, 2009, 23(4):13-17. (in Chinese)

    [9] Huang Bo, Hu Xiulin. Inter-satellite ranging and time synchronization technique for BD2 [J]. Journal of Astronautics, 2011, 32(6):1271-1275. (in Chinese)

    [10] Zhong Xingwang, Chen Hao. Analysis and correction techniques of movement influence on inter-satellite two-way time transfer [J]. Chinese Space Science and Technology, 2007(6):54-58. (in Chinese)

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0215

    TN 927.3; V448.2 Document code: A Article ID: 1004- 0579(2015)02- 0233- 07

    Received 2013- 12- 07

    Supported by the National High Technology Research and Development Program of China (2012AA1406)

    E-mail: wangyongqing@bit.edu.cn

    猜你喜歡
    王永慶
    凌晨三點(diǎn)的面試
    凌晨三點(diǎn)的面試
    凌晨三點(diǎn)的面試
    雜文選刊(2019年1期)2019-01-14 02:23:58
    不計(jì)較的人才最好用
    首富從一粒米開始
    幸?!傋x(2018年1期)2018-01-17 21:44:38
    首富從一粒米開始
    雜文選刊(2017年11期)2017-11-08 20:48:06
    成功只靠一粒米
    誰(shuí)能一直跑下去
    成功,從一粒米開始
    成才之路(2014年15期)2014-06-10 12:32:37
    王永慶的“賣米經(jīng)”
    精品人妻在线不人妻| 在线观看66精品国产| 国产1区2区3区精品| 亚洲午夜理论影院| 香蕉久久夜色| 韩国av一区二区三区四区| 一本综合久久免费| 水蜜桃什么品种好| 国产成人系列免费观看| 国产av精品麻豆| 麻豆国产av国片精品| 国产片内射在线| 一本综合久久免费| 精品少妇一区二区三区视频日本电影| 最近最新中文字幕大全电影3 | av网站在线播放免费| 99热国产这里只有精品6| 日韩人妻精品一区2区三区| 日韩欧美免费精品| 精品国产乱码久久久久久男人| 免费人成视频x8x8入口观看| 精品免费久久久久久久清纯| av在线天堂中文字幕 | 国产黄色免费在线视频| 久久人妻熟女aⅴ| 美女高潮到喷水免费观看| av有码第一页| 极品教师在线免费播放| www.www免费av| 久久久久久久精品吃奶| 国产精品自产拍在线观看55亚洲| 亚洲九九香蕉| 一个人免费在线观看的高清视频| 国产成人精品在线电影| 女生性感内裤真人,穿戴方法视频| 亚洲精品美女久久av网站| 国产精品日韩av在线免费观看 | 嫩草影院精品99| 精品熟女少妇八av免费久了| 91老司机精品| 嫩草影视91久久| 亚洲久久久国产精品| 男女之事视频高清在线观看| 青草久久国产| 午夜免费激情av| 久久亚洲真实| 在线观看午夜福利视频| 久久亚洲真实| 免费在线观看黄色视频的| 久久性视频一级片| 久久久久久久精品吃奶| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一小说| 久久九九热精品免费| 在线观看免费午夜福利视频| 成人手机av| 91国产中文字幕| 在线观看日韩欧美| 欧美日韩亚洲国产一区二区在线观看| 亚洲av五月六月丁香网| 日本 av在线| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 精品久久久久久,| 精品国产乱码久久久久久男人| e午夜精品久久久久久久| 亚洲午夜理论影院| 免费看a级黄色片| 成在线人永久免费视频| 少妇的丰满在线观看| 亚洲专区字幕在线| 一区二区日韩欧美中文字幕| 亚洲黑人精品在线| 精品一区二区三区av网在线观看| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 人人妻人人澡人人看| 看片在线看免费视频| 亚洲 国产 在线| 一个人免费在线观看的高清视频| 超色免费av| 亚洲成a人片在线一区二区| 久久久久精品国产欧美久久久| 在线观看免费高清a一片| 一二三四在线观看免费中文在| 精品少妇一区二区三区视频日本电影| 午夜激情av网站| 国产一区二区三区视频了| 成人国产一区最新在线观看| 亚洲成人免费av在线播放| av欧美777| 人人妻人人爽人人添夜夜欢视频| 五月开心婷婷网| 18禁美女被吸乳视频| 免费看十八禁软件| 中文欧美无线码| 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 在线观看免费视频网站a站| 天天添夜夜摸| 欧美亚洲日本最大视频资源| 亚洲精品成人av观看孕妇| 亚洲美女黄片视频| 啦啦啦免费观看视频1| 1024香蕉在线观看| 午夜免费观看网址| 另类亚洲欧美激情| 黄色视频不卡| 中文字幕色久视频| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 亚洲免费av在线视频| 超碰成人久久| 男女床上黄色一级片免费看| 国产成人欧美在线观看| 亚洲欧美日韩另类电影网站| 久久久久久久午夜电影 | 国产精品免费视频内射| 国产精品国产av在线观看| 国产色视频综合| 人人澡人人妻人| www日本在线高清视频| 美女福利国产在线| 久久午夜亚洲精品久久| 满18在线观看网站| 国产精品久久久人人做人人爽| 91av网站免费观看| 久久影院123| 午夜视频精品福利| 欧美在线一区亚洲| 怎么达到女性高潮| 男女午夜视频在线观看| 免费搜索国产男女视频| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 国产精品久久视频播放| 国产成人免费无遮挡视频| 在线视频色国产色| 久久性视频一级片| 国产精品久久久久成人av| 亚洲精品久久成人aⅴ小说| 国产精品偷伦视频观看了| 国产激情欧美一区二区| 99re在线观看精品视频| 在线观看免费午夜福利视频| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 国产亚洲欧美98| 国产乱人伦免费视频| 国产精品免费一区二区三区在线| 久久香蕉激情| 久久久久国产精品人妻aⅴ院| 精品人妻在线不人妻| 大陆偷拍与自拍| 色婷婷av一区二区三区视频| 亚洲精品国产色婷婷电影| 9191精品国产免费久久| 亚洲专区国产一区二区| 热re99久久精品国产66热6| 男女午夜视频在线观看| 一进一出好大好爽视频| 国产成人精品无人区| 国产人伦9x9x在线观看| 色在线成人网| 真人一进一出gif抽搐免费| 欧美乱码精品一区二区三区| a级片在线免费高清观看视频| 一级作爱视频免费观看| 一边摸一边抽搐一进一出视频| 亚洲精品一二三| 在线观看日韩欧美| 少妇 在线观看| 国产三级黄色录像| √禁漫天堂资源中文www| 欧美日韩黄片免| 国产精品自产拍在线观看55亚洲| 久久影院123| 久久久久亚洲av毛片大全| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区| 中文欧美无线码| 欧美日韩国产mv在线观看视频| 一a级毛片在线观看| 欧美精品一区二区免费开放| 超碰成人久久| 99国产精品免费福利视频| 极品人妻少妇av视频| 777久久人妻少妇嫩草av网站| 啦啦啦 在线观看视频| 久久草成人影院| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| xxx96com| av欧美777| 在线观看日韩欧美| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 色综合欧美亚洲国产小说| 不卡一级毛片| 精品福利永久在线观看| 国产熟女xx| 欧美老熟妇乱子伦牲交| 中出人妻视频一区二区| www.自偷自拍.com| 中国美女看黄片| 在线观看免费高清a一片| 国产主播在线观看一区二区| 色婷婷av一区二区三区视频| 夜夜看夜夜爽夜夜摸 | 操出白浆在线播放| 又紧又爽又黄一区二区| 日日干狠狠操夜夜爽| 国产精品一区二区免费欧美| 男女下面进入的视频免费午夜 | 啦啦啦 在线观看视频| 老司机福利观看| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 看片在线看免费视频| 久热这里只有精品99| 日本wwww免费看| 97人妻天天添夜夜摸| 国产三级黄色录像| 亚洲在线自拍视频| 婷婷六月久久综合丁香| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 欧美成人性av电影在线观看| 午夜日韩欧美国产| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 男人的好看免费观看在线视频 | 黄片大片在线免费观看| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 91大片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 九色亚洲精品在线播放| 日本免费a在线| 夜夜躁狠狠躁天天躁| 国产又色又爽无遮挡免费看| 国产成人av教育| 亚洲色图av天堂| 国产亚洲欧美在线一区二区| 午夜免费鲁丝| 欧美激情 高清一区二区三区| 欧美一级毛片孕妇| 91成人精品电影| 麻豆国产av国片精品| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 热re99久久国产66热| 久久中文看片网| 99久久综合精品五月天人人| 国产av在哪里看| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 天堂动漫精品| 99热国产这里只有精品6| 国产成人免费无遮挡视频| 日韩免费av在线播放| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人一区二区三| 精品久久久久久,| 一个人观看的视频www高清免费观看 | 中文字幕高清在线视频| 女人被躁到高潮嗷嗷叫费观| 日韩精品青青久久久久久| 波多野结衣av一区二区av| 久久久久久久精品吃奶| 搡老乐熟女国产| 欧美一区二区精品小视频在线| 国产一区二区三区在线臀色熟女 | 男人舔女人的私密视频| 俄罗斯特黄特色一大片| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 欧美日本中文国产一区发布| 无人区码免费观看不卡| 国产免费男女视频| 国产欧美日韩一区二区三| 国产精品秋霞免费鲁丝片| 久久久久久免费高清国产稀缺| 在线看a的网站| 真人做人爱边吃奶动态| 免费在线观看完整版高清| 欧美成人免费av一区二区三区| 亚洲伊人色综图| 香蕉国产在线看| 国产精品1区2区在线观看.| 欧美日韩亚洲综合一区二区三区_| 看免费av毛片| 一进一出好大好爽视频| www.熟女人妻精品国产| av在线播放免费不卡| 极品人妻少妇av视频| 12—13女人毛片做爰片一| 亚洲一区二区三区欧美精品| 老熟妇乱子伦视频在线观看| 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 嫩草影视91久久| 麻豆国产av国片精品| 国产亚洲av高清不卡| 日韩av在线大香蕉| 手机成人av网站| 国内毛片毛片毛片毛片毛片| 韩国av一区二区三区四区| 美女高潮到喷水免费观看| 91老司机精品| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 在线永久观看黄色视频| 丰满人妻熟妇乱又伦精品不卡| 国产野战对白在线观看| 夜夜爽天天搞| 久久精品亚洲熟妇少妇任你| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 久久久久久久午夜电影 | 国产三级黄色录像| 99久久国产精品久久久| 激情在线观看视频在线高清| 国产精品九九99| 亚洲男人的天堂狠狠| www.自偷自拍.com| 国产精华一区二区三区| netflix在线观看网站| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 欧美乱色亚洲激情| 亚洲精品美女久久久久99蜜臀| 一级片'在线观看视频| 亚洲国产精品sss在线观看 | 欧美日韩亚洲高清精品| 欧美日韩福利视频一区二区| ponron亚洲| 久久香蕉激情| 精品电影一区二区在线| 国产麻豆69| 好男人电影高清在线观看| 成人手机av| 成人特级黄色片久久久久久久| 日韩人妻精品一区2区三区| 亚洲午夜精品一区,二区,三区| 一夜夜www| 一本综合久久免费| 亚洲七黄色美女视频| 超碰成人久久| 亚洲黑人精品在线| 亚洲欧美日韩另类电影网站| 国产精华一区二区三区| 国产成人欧美| 欧美日韩福利视频一区二区| 久久欧美精品欧美久久欧美| 桃色一区二区三区在线观看| 午夜影院日韩av| e午夜精品久久久久久久| 女人高潮潮喷娇喘18禁视频| 狂野欧美激情性xxxx| 午夜影院日韩av| 亚洲免费av在线视频| 国产三级在线视频| 亚洲欧美精品综合久久99| 精品久久久久久,| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av| 成熟少妇高潮喷水视频| 国产av一区二区精品久久| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 夫妻午夜视频| 免费在线观看完整版高清| 9色porny在线观看| 国产午夜精品久久久久久| 免费在线观看日本一区| 久久香蕉国产精品| 热re99久久国产66热| 亚洲人成77777在线视频| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 免费日韩欧美在线观看| 色精品久久人妻99蜜桃| 热re99久久精品国产66热6| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合久久99| 男人舔女人下体高潮全视频| 成人影院久久| 国产精品二区激情视频| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| 久久久久国产精品人妻aⅴ院| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 久99久视频精品免费| 日韩精品青青久久久久久| 操美女的视频在线观看| 日韩 欧美 亚洲 中文字幕| 午夜久久久在线观看| 男女做爰动态图高潮gif福利片 | 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站 | 久久精品91无色码中文字幕| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 国产成人欧美| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 最新美女视频免费是黄的| 亚洲熟妇中文字幕五十中出 | 亚洲一码二码三码区别大吗| 黑人巨大精品欧美一区二区mp4| 国产精品偷伦视频观看了| 老司机靠b影院| 国产麻豆69| 亚洲国产毛片av蜜桃av| 午夜成年电影在线免费观看| 天堂动漫精品| 9191精品国产免费久久| 大型av网站在线播放| 国产精品98久久久久久宅男小说| 亚洲五月婷婷丁香| 纯流量卡能插随身wifi吗| 免费不卡黄色视频| 日本 av在线| 国产精品一区二区在线不卡| 女生性感内裤真人,穿戴方法视频| netflix在线观看网站| 亚洲av第一区精品v没综合| 9热在线视频观看99| 超色免费av| 老熟妇仑乱视频hdxx| 极品人妻少妇av视频| 亚洲伊人色综图| 久久香蕉激情| 国产精品亚洲一级av第二区| 十八禁网站免费在线| 免费不卡黄色视频| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| 黄色 视频免费看| 热99re8久久精品国产| 一区在线观看完整版| 日韩欧美国产一区二区入口| 一级片'在线观看视频| 宅男免费午夜| 免费在线观看日本一区| 欧美激情高清一区二区三区| 侵犯人妻中文字幕一二三四区| tocl精华| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 99re在线观看精品视频| 久久人人爽av亚洲精品天堂| 国产一区二区三区在线臀色熟女 | 1024视频免费在线观看| 久久久久久人人人人人| 亚洲第一欧美日韩一区二区三区| 亚洲第一青青草原| 国产亚洲精品综合一区在线观看 | 久久人人97超碰香蕉20202| 一级作爱视频免费观看| 亚洲成人精品中文字幕电影 | 久久国产乱子伦精品免费另类| 免费久久久久久久精品成人欧美视频| 88av欧美| av电影中文网址| 国产精品久久久久久人妻精品电影| 亚洲中文字幕日韩| 亚洲欧美激情综合另类| 欧美黑人精品巨大| 日日夜夜操网爽| 免费女性裸体啪啪无遮挡网站| 少妇 在线观看| 欧美日韩一级在线毛片| 久久人人精品亚洲av| 在线播放国产精品三级| 在线天堂中文资源库| 亚洲专区字幕在线| 99riav亚洲国产免费| ponron亚洲| 大码成人一级视频| 免费在线观看完整版高清| 99久久99久久久精品蜜桃| 母亲3免费完整高清在线观看| 不卡一级毛片| 国产成人欧美在线观看| 午夜福利,免费看| 精品国产国语对白av| 一级片免费观看大全| 99久久久亚洲精品蜜臀av| www国产在线视频色| 国产欧美日韩一区二区三| 麻豆一二三区av精品| 男女下面插进去视频免费观看| 精品国产超薄肉色丝袜足j| 日本wwww免费看| 一区二区日韩欧美中文字幕| 免费一级毛片在线播放高清视频 | 亚洲精品国产一区二区精华液| 亚洲av成人av| 欧美精品啪啪一区二区三区| 午夜精品在线福利| 成人三级黄色视频| 国产成人av激情在线播放| 大陆偷拍与自拍| 亚洲欧美日韩另类电影网站| 很黄的视频免费| 日韩欧美一区二区三区在线观看| 美女福利国产在线| 最近最新免费中文字幕在线| 91字幕亚洲| 国产精品久久电影中文字幕| 女生性感内裤真人,穿戴方法视频| 岛国在线观看网站| 欧美人与性动交α欧美精品济南到| 国产在线观看jvid| 黄色怎么调成土黄色| 亚洲精品中文字幕一二三四区| 国产无遮挡羞羞视频在线观看| 两人在一起打扑克的视频| 丰满的人妻完整版| 亚洲av成人一区二区三| 日韩大码丰满熟妇| 婷婷精品国产亚洲av在线| 国产人伦9x9x在线观看| 黄色视频,在线免费观看| 欧美成人午夜精品| av片东京热男人的天堂| 宅男免费午夜| 午夜福利影视在线免费观看| 18禁裸乳无遮挡免费网站照片 | 亚洲专区字幕在线| 欧美成狂野欧美在线观看| 在线观看一区二区三区激情| 久久青草综合色| 亚洲国产精品一区二区三区在线| 少妇粗大呻吟视频| 欧美中文综合在线视频| 亚洲中文av在线| 国产精品一区二区精品视频观看| 国产国语露脸激情在线看| 在线观看免费视频网站a站| 99国产精品99久久久久| 久久精品成人免费网站| 亚洲精品在线观看二区| 国产日韩一区二区三区精品不卡| 少妇裸体淫交视频免费看高清 | 亚洲精华国产精华精| 亚洲av成人不卡在线观看播放网| 天堂影院成人在线观看| 极品教师在线免费播放| 超碰97精品在线观看| 欧美成人免费av一区二区三区| 成年人免费黄色播放视频| 一边摸一边抽搐一进一出视频| 18禁黄网站禁片午夜丰满| 国产精品国产av在线观看| 国产亚洲精品一区二区www| 欧美成狂野欧美在线观看| 美女午夜性视频免费| 日日夜夜操网爽| 一级,二级,三级黄色视频| 亚洲少妇的诱惑av| 黄色a级毛片大全视频| а√天堂www在线а√下载| 黄色 视频免费看| 欧美中文综合在线视频| 国产精品自产拍在线观看55亚洲| 动漫黄色视频在线观看| 国产亚洲欧美98| 免费高清视频大片| 欧美不卡视频在线免费观看 | 在线观看免费视频网站a站| 在线国产一区二区在线| 久久性视频一级片| 国产又色又爽无遮挡免费看| 丝袜美足系列| 在线观看免费日韩欧美大片| 99re在线观看精品视频| 久久久久久久久中文| 91国产中文字幕| 国产不卡一卡二| 9191精品国产免费久久| 如日韩欧美国产精品一区二区三区| av在线播放免费不卡| 9191精品国产免费久久| 香蕉国产在线看| 在线观看免费视频网站a站| 久久精品国产综合久久久| tocl精华| 久久精品国产亚洲av香蕉五月| 美国免费a级毛片| 欧美日韩视频精品一区| 日本 av在线| 香蕉久久夜色| 欧美日韩一级在线毛片| 午夜免费观看网址| 老司机亚洲免费影院| 精品一区二区三区四区五区乱码| 美女高潮喷水抽搐中文字幕| 亚洲av五月六月丁香网| 国产区一区二久久| 亚洲av成人av|