• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path tracking for vehicle parallel parking based on ADRC controller

    2015-04-22 06:17:30WANGJian王健ZHAOYouqun趙又群JIXuewu季學(xué)武LIUYahui劉亞輝ZANGLiguo臧利國
    關(guān)鍵詞:學(xué)武王健

    WANG Jian (王健), ZHAO You-qun (趙又群),, JI Xue-wu (季學(xué)武),LIU Ya-hui (劉亞輝), ZANG Li-guo (臧利國)

    (1.College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

    ?

    Path tracking for vehicle parallel parking based on ADRC controller

    WANG Jian (王健)1, ZHAO You-qun (趙又群), JI Xue-wu (季學(xué)武)2,LIU Ya-hui (劉亞輝)2, ZANG Li-guo (臧利國)1

    (1.College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

    A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, which can estimate and compensate model uncertainty caused by steering kinematics and disturbances caused by parking speed and steering system delay. Collision-free path planning technology was adopted to generate the reference path. The simulation results validate that the performance of the proposed path tracking controller is better than the conventional PID controller. The actual vehicle tests show that the proposed path tracking controller is effective and robust to model uncertainty and disturbances.

    parallel parking; path tracking; active disturbance rejection control; active disturbance rejection control (ADRC); path planning

    With the rapid development of automotive industry, many automobile manufacturers have developed new electronic equipment to improve vehicle driving comfort and safety[1]. Vehicle parking is difficult for inexperienced drivers, intelligent parking assist systems (IPAS) become rapidly developed recently. IPAS can alleviate the labor of the driver[2].

    Path tracking algorithm for parallel parking has attracted some researchers in recent decades[3]. Zhao designed a skill-based fuzzy controller to generate control commands[4]. Demirli proposed a method to track the reference path online based on adaptive neuro fuzzy inference system (ANFIS)[5]. Lian presented a fuzzy sliding mode controller (FSMC) considering the drivers experience[6]. Ollero used fuzzy path tracking controller to track a previously defined path[7].

    However, previous studies have some disadvantages. Firstly, the fuzzy control method still has many problems in engineering applications, which is difficult to formulate the fuzzy control rules. Secondly, the sliding mode control method is complex. Thirdly,model uncertainty and disturbances are not considered in early research.

    Active disturbance rejection control (ADRC) is a novel robust method[8]. This method is developed based on traditional PID control, which does not depend on the system model. The simulation results show that the control effect of the proposed controller is much better than conventional PID controller. The actual vehicle tests validate the effectiveness of the path tracking controller.

    1 System description

    The parallel parking system consists of six components: ultrasonic sensor, electric power steering system (EPS), electronic control unit (ECU), steering angle sensor (SAS), wheel speed sensor (WSS) and human machine interface (HMI). The configuration of parallel parking system is depicted in Fig.1.

    Fig.1 Configuration of the parallel parking system

    At the beginning, the driver presses down the parking assist system start button on the HMI, and the ECU changes the system into the ready state. Then, the ultrasonic sensors start to detect the parking space. The ECU calculates the parking space using the information from the ultrasonic sensors and the wheel speed sensors. If the parking space satisfies the requirement of parallel parking, the environment model is constructed by the ECU. After that, the path planning module generates a collision-free path based on the starting position. Finally, the path tracking module controls the vehicle to follow the designed path.

    2 Vehicle kinematics and path planning

    2.1 Vehicle kinematics

    The vehicle reference position is located at the midpoint of rear axle. The rear wheels are fixed parallel to the longitudinal axis of car body. Suppose that there is a pure rolling contact between the rear wheels and road surface, this ensures that the vehicle speed vector is always tangent to the automobile orientation. The vehicle kinematic model is shown in Fig.2. The parameter specification for the kinematic model is presented in Tab.1.

    Fig.2 Kinematic model of the vehicle

    Tab. 1 Parameter specification

    ParametersDescriptionValue/mmWaVehiclewidth1666WbRearwheeltread1475LfFrontoverhanglength744LrRearoverhanglength585LaVehiclelength3779LbVehiclewheelbase2450RminMinimumturningradius4500

    The configuration of the vehicle can be described by four state variables: the reference position coordinates (xr,yr), the vehicle orientation (Φ),andthecurvature(ρ=1/R).Thekinematicsofthevehiclewithrespecttotheaxiscenteroftherearwheelsaredescribedas

    (1)

    whereVis the vehicle longitudinal velocity;f(V,t) is the parking velocity disturbance;ws(V,t) is the model uncertainty of the steering system kinematics;Lbis the vehicle wheelbase; δrepresentsthefrontwheelsteeringangle; Tsrepresentsthesteeringsystemdelaytime; uisthecommandfrontsteeringangle.

    Thecurvatureanditsderivativecanbedescribedas

    (2)

    Duetothephysicalpropertiesandsteeringmechanicalproperties,thecurvatureρa(bǔ)nditschangerateγshouldbelimited,i.e.

    (3)

    2.2Pathplanning

    ParallelparkingprocessconsistsofonestraightlineS0and two circular arcs (S1,S2). In Fig.3, the two black rectangles denote front and rear obstacles, the white rectangle on the right top denotes initial parking position, and the white rectangle on the left bottom denotes the final parking position.S1andS2denote the first and second arcs of the path of the middle point of the rear axle, respectively.

    Fig.3 Parallel parking process

    The parallel parking process can be described as follows:

    (4)

    whereR1,R2,S0, θandh0aredefinedinFig.3.Eachvalueoftheparameters[R1, R2, S0]determinesaparallelparkingpath.

    Collisionscouldbeavoidedifavirtualvehicleleavestheparkingspacewithoutcollision[9].Finalmanoeuvresareobtainedusingthisdesigninareversesequence.ThegoalpositionDgoisdefinedbythreesafetydistancesDrl, DloandDrrinaparkingspace.ThefirstpossiblecollisionisshowninFig.4.

    Fig.4 First possible collision

    Inordertodesignthefirstcontinuouscollision-freepath,thedesignedpathshouldavoidthecollisionbetweentherightfrontofvehicleandfrontobstacle.ThemaximumvalueofradiusR1canbecalculatedby

    (5)

    whereLpdenotes the parking space length,Dfris the safety distance, the other parameters have been defined by Fig.2.

    The minimum value of radiusR1is determined by the vehicle physical properties. It can be described as

    (6)

    TheradiusR1is located betweenR1minandR1max, i.e.

    R1∈[R1min,R1max]

    (7)

    The second possible collision is shown in Fig.5. The designed path should avoid the collision between the vehicle lateral side and the obstacle ahead.

    Fig.5 Second possible collision

    The maximum value of radiusR2can be obtained by solving the following equations as

    (8)

    ThelastpossiblecollisionisshowninFig.6.Itrepresentsthecollisionbetweentheleftfrontofvehicleandtheleftobstacleorstreetcenterline.

    Fig.6 Third possible collision

    TheminimumturningradiusR2mincan be calculated by

    (9)

    whereLobis the safety distance to the opposite obstacle,dis the lateral distance between the ultrasonic sensor and the obstacle,Wpis the parking space width.

    The value range of the radiusR2is located betweenR2minandR2max, i.e.

    R2∈[R2min,R2max]

    (10)

    The minimum forward displacementL0minand the maximum displacementL0maxcan be expressed as

    (11)

    (12)

    Eachparameters[R1,R2,L0] determines a parallel parking manoeuvre. Different manoeuvres under different forward displacements are shown in Fig.7.

    Fig.7 Different parallel parking manoeuvres

    3 ADRC controller design

    The focus of this research is to design a robustness path tracking controller, which can precisely control vehicle to follow the ideal parking path in spite of existing uncertainty and disturbances in the system. If the system exists model uncertainty, external disturbance and sensor noises, the traditional controller cannot reach the design objectives[10-11]. In this section, a path tracking controller based on ADRC is developed, which can estimate and compensate the influence generated by the model uncertainty and disturbances in real time.

    3.1 Tracking differentiator

    The ADRC controller is composed of a tracking differentiator (TD) which is in the feedforward path, an extended state observer (ESO) and a nonlinear state error feedback (NLSEF) control law in the feedback path. The structure diagram of second order ADRC is shown in Fig.8. The TD process is adopted in ADRC for transient process and command signal generation. The TD in the feedforward path is used to replace the PID differential component, which can improve the system effectiveness and robustness performance when the system suffers sensor noise and external disturbances.

    Fig.8 Second order ADRC structure

    The employment of TD can yield fast tracking without overshoots, while simultaneously avoiding the rapid fluctuations of the control signal. The definition of TD process can be expressed as

    (13)

    (14)

    3.2Extendedstateobserver

    AsshowninFig.8,theESOcanestimatethechangerateandthetotaldisturbanceoferror,whichisbasedonthecontrolvariablesandinputsignalerrors.TheESOcanbeseenasasoftsensor,whichcanmeasurethecontrolsystemunknowndisturbance[12].Thedynamicfeedbackcompensationcanbeconductedproperlyusingestimatedtotaldisturbances[13-15].Thirdorderextendedstateobservercanbedescribedas

    (15)

    wherex1(k),x2(k) andx3(k) are the outputs estimated by ESO,x1(k) represents the tracking signal ofy(k),x2(k) is the first derivative ofx1(k), which is the velocity of tracking signal,x3(k) represents the estimated total disturbances.

    The nonlinear functionfal(e(k),a,δ)canbeexpressedas

    fal(e(k),a,δ)=

    (16)

    wherea1,a2, δandb0arethedesignparameters, β01, β02andβ03arethegainsofESOandcanbedeterminedby[16]

    (17)

    3.3Nonlinearstateerrorfeedbackcontroller

    TheNLSEFcontrollerisanonlinearPDcontroller,whichcanbedescribedas

    (18)

    whereβ1, β2, α01, α02andδ0arethedesignparameters.

    Thecontrollawu0isanonlinearcombinationoferrore1anddifferentialerrore2.Inordertocancelouttheunknowndisturbancesbeforetheydegradethesystemperformance,thetotalactualcontrolvariablesappliedtotheactuatorofthecontrolsystemcanbeexpressedas

    u(k+1)=u0(k+1)-x3(k+1)/b0

    (19)

    3.4 Path tracking controller design

    The path tracking can be seen as a preview follower process, which is described in Fig.9. The target of path tracking is to control the displacement errorΔyandtheorientationerrorΔΦofthevehicle.ThelongitudinalvelocityVofthevehicleisperpendiculartothevehiclerearaxle, LrepresentsthepreviewdistanceandTdenotesthepreviewtime.

    Fig.9 Preview follower in parallel parking

    ThelateraldisplacementerrorΔyandtheorientationerrorΔΦcanbededucedas

    (20)

    where(x0,y0, Φ0)describesthecurrentpositionandorientationofvehicle, VxandVydenotethevelocitycomponents, f(x)isthereferencepath.

    ThetargetofADRCcontrolleristocontroltheerrorztozero,whichiscomposedbythelateraldisplacementerrorΔyandtheorientationerrorΔΦ.Theerrorzcanbedescribedby

    z=c1tanh (c0Δy)+Δφ

    (22)

    wherec0andc1are positive parameters, tanh represents hyperbolic tangent function. The astringency of the nonlinear equation can be proved by the Lyapunov function.

    The designed path tracking controller based on ADRC is shown in Fig.10. Wherev0is the desired signal, here, the purpose of ADRC path tracking controller is to control the errorzto track the signalv0, so the value ofv0is determined asv0=0;z1represents the tracking signal ofz;z2is the first derivative ofz1, which is the velocity of tracking signal;z3denotes the estimated total disturbances.

    Fig.10 Path tracking controller based on ADRC

    4 Simulation and real vehicle tests

    4.1 Simulation results and analysis

    To investigate the proposed path tracking controller, different simulation conditions considering the model uncertainties and disturbances are used to verify the robustness and effectiveness of path tracking controller. The model uncertainty of steering kinematics due to the complex mechanism can be described as a function of longitudinal velocity and time, which can be supposed asws(V,t)=0.02Vsin(5t). Considering the effect due to road disturbance such as road bumps, the external disturbancef(V,t) can be described asf(V,t)=Vsin(8t). The steering system delay described in Eq.(1) can be seen as a system internal disturbance, the delay time of steering systemTScan be defined asTS=0.5 s.

    The parameters (Tab.2) for ADRC controller and PID controller are determined using optimization methods.

    Tab.2 Parameters for ADRC and PID controllers

    The simulation results are shown as follows. The parking speed is shown in Fig.11, where the longitudinal velocityVis 1 m/s, the external disturbancef(V,t) changes as sine wave with time. The path tracking performance can be seen from Fig.12. The solid line represents the predetermined reference path, the dashed line describes the tracking path controlled by ADRC method, and the dotted line shows the tracking path controlled by PID method. From Fig.12, it can be seen that the path tracking controller based on ADRC gives superior performance to the conventional PID controller.

    Fig.11 Parking speed (V=1 m/s)

    Fig.12 Tracking performance comparison between PID and ADRC

    The ADRC controller contains an extended state observer (ESO), which can estimate the total disturbances and compensate the disturbances before the disturbances affect the controlled plant. The total disturbances estimated by ESO are shown in Fig.13.

    Fig.13 Estimated total disturbance z3

    The parking speed is measured by the wheel speed sensor, while the wheel speed sensor signal is vulnerable to outside world electromagnetic interference and the wheel speed detection device is easy to vibrate when vehicle is parking on a bumpy road. For this reason, a white noise occurs in the parking speed, the parking speed detected in the experiments is shown in Fig.14. In the following simulation studies, the parameters for PID and ADRC controllers remain the same as described in Tab.2, respectively. Fig.15 shows that the path tracking performance comparison between the PID controller and ADRC controller. The solid line is the desired path, the dashed line describes the tracking path controlled by ADRC method, and the dotted line shows the tracking path controlled by PID method. It can be observed that the ADRC method can effectively control vehicle to track the desired path even though vehicle suffers to external disturbances, while the PID controller cannot effectively track the desired path. The simulation result shows that the ADRC parameters are robust to external disturbances, but the PID parameters need to be constantly adjusted to resist the external disturbances. The PID method aggravates the burden of engineers for its parameters adjustment. The ADRC controller can use the ESO to estimate the system uncertainties and total disturbances, which is shown in Fig.16.

    Fig.14 Experimental parking speed

    Fig.15 Tracking performance comparison between PID and ADRC

    Fig.16 Estimated total disturbances z3

    4.2 Real vehicle tests

    To verify the performance of proposed path tracking controller, the parallel parking system controller is equipped on a prototype vehicle.A ComNav RTK GNSS differential global positioning system (DGPS) is used to measure the actual motion path of a vehicle. The DGPS can provide the position and orientation information. The position accuracy is around 1 cm and the orientation accuracy is around 0.1°. The data update rate of position and orientation is 200 ms. In Fig.17, the parking space is measured by the ultrasonic sensors and wheel speed sensors, the length of parking space is around 6 m, the width is around 2.5 m. The solid line describes ideal path and the dashed line represents actual motion path. In order to calculate the average lateral displacement error in the whole parallel parking, ten waypoints located on the ideal path and the actual path are recorded. In Tab.3, (X,Yid) and (X,Yac) represent the ideal and actual waypoints, respectively. The average value of lateral displacement error is 0.067 7 m. The maximum value of lateral displacement error is 0.11 m. The vehicle can be precisely controlled to track the ideal path without collision with the surrounding obstacles.

    Fig.17 Actual path and ideal path comparison

    Tab.3 Lateral displacement error

    WaypointX/mYid/mYac/mΔy/m11.2811.0981.0900.08021.8591.2341.2040.03032.1441.3521.3070.04542.4491.5031.4500.05353.1042.0301.9350.09563.9272.8962.7860.11074.8743.5843.4730.11185.7363.9853.9010.08496.5584.2154.1610.054107.4344.3214.3060.015

    5 Conclusion

    A novel path tracking controller based on ADRC method was proposed to improve the robustness of path tracking. The extended state observer (ESO) effectively estimated the total disturbances, such as steering system modeling imprecision, parking speed disturbance and steering system delay disturbance. The ADRC controller had estimated and compensated the total disturbances before the disturbances affected the controlled plant, while the PID controller began to work after the disturbances had influenced the controlled plant. The path tracking results show that the control effectiveness of ADRC controller was much better than conventional PID controller, the ADRC technique gave noticeably better results in terms of parametric robustness than PID. The real vehicle tests verify the effectiveness of path tracking controller. In the near future, the proposed path tracking method can be used in intelligent driving area.

    [1] Huang S J, Lin G Y. Parallel auto-parking of a model vehicle using a self-organizing fuzzy controller [J]. Journal of Automobile Engineering, 2010, 224(8): 997-1012.

    [2] Liu Yahui, Ji Xuewu, Ryouhei H, et al. Function of shoulder muscles of driver in vehicle steering maneuver [J]. Science China Technological Sciences, 2012, 55(12): 3445-3454.

    [3] Lee C K, Lin C L, Shiu B M. Autonomous vehicle parking using hybrid artificial intelligent approach [J]. Journal of Intelligent and Robotic Systems, 2009, 56:319-343.

    [4] Zhao Y N, Collins Jr E G. Robust automatic parallel parking in tight spaces via fuzzy logic [J]. Robotics and Autonomous Systems, 2005, 51(2):111-127

    [5] Demirli K, Khoshnejad M. Autonomous parallel parking of a car-like mobile robot by a neuro-fuzzy sensor-based controller [J]. Fuzzy Sets and Systems, 2009, 160(19): 2876-2891.

    [6] Lian K Y, Chiu C S, Chiang T S. Parallel parking a car-like robot using fuzzy gain scheduling [C]∥IEEE International Conference on Control Applications, Hawai, USA, 1999.

    [7] Ollero A, García-Cerezo A, Martínez J L, et al. Fuzzy tracking methods for mobile robots [J]. Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems, 1997, 9: 347-364.

    [8] Han Jingqing. From PID technique to active disturbances rejection control technique [J]. Control Engineering of China, 2002, 9(3):13-18. (in Chinese)

    [9] Gómez-Bravo F, Cuesta F, Ollero A, et al. Continuous curvature path generation based on βsplinecurvesforparkingmanoeuvres[J].RoboticsandAutonomousSystems, 2008, 56(4): 360-372.

    [10]YuGR,HwangRC.OptimalPIDspeedcontrolofbrushlessDCmotorsusingLQRapproach[C]∥IEEEInternationalConferenceonSystems,Man,andCybernetics,Hague,Netheirlands, 2004.

    [11]ZhaoWanzhong,LinYi,WeiJianwei,etal.Controlstrategyofanovelelectricpowersteeringsystemintegratedwithactivefrontsteeringfunction[J].ScienceChinaTechnologicalSciences, 2011, 54(6):1515-1520.

    [12]SuYX,DuanBY,ZhengCH,etal.Disturbance-rejectionhigh-precisionmotioncontrolofastewartPlatform[J].IEEETransactionsonControlSystemsTechnology, 2004, 12(3):364-374.

    [13]JeongJW,ChangPH,ParkKB.Sensorlessandmodelessestimationofexternalforceusingtimedelayestimation:applicationtoimpedancecontrol[J].JournalofMechanicalScienceandTechnology, 2011, 25(8): 2051-1059.

    [14]LiSL,YangX,YangD.Activedisturbancerejectioncontrolforhighpointingaccuracyandrotationspeed[J].Automatica, 2009, 45(8):1854-1860.

    [15]HanDK,ChangP.Robusttrackingofrobotmanipulatorwithnonlinearfrictionusingtimedelaycontrolwithgradientestimator[J].JournalofMechanicalScienceandTechnology, 2010, 24(8):1743-1752.

    [16]HanJQ.FromPIDtoactivedisturbancerejectioncontrol[J].IEEETransactionsonIndustrialElectronics, 2009, 56(3): 900-906.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0212

    U 471.15 Document code: A Article ID: 1004- 0579(2015)02- 0213- 09

    Received 2014- 05- 08

    Supported by the National Natural Science Foundation of China (11072106,51005133,51375009)

    E-mail: yqzhao@nuaa.edu.cn

    猜你喜歡
    學(xué)武王健
    “誠信之星”李學(xué)武:替烈士兒子償還助學(xué)貸款
    “誠信之星”李學(xué)武:替烈士兒子償還助學(xué)貸款
    王健
    美聯(lián)儲的艱難選擇:穩(wěn)通脹還是穩(wěn)金融市場
    Exact solution of an integrable quantum spin chain with competing interactions?
    無線仿真在基站搬遷評估中的應(yīng)用
    江蘇通信(2021年1期)2021-05-31 08:29:30
    柳學(xué)武
    百花園(2019年6期)2019-09-10 07:22:44
    “王健扇藝展”
    讀書感懷
    醫(yī)院內(nèi)的“塌方式”腐敗
    а√天堂www在线а√下载| 最新美女视频免费是黄的| 亚洲av片天天在线观看| 久久精品91蜜桃| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区| 高清黄色对白视频在线免费看| 操美女的视频在线观看| 看片在线看免费视频| 妹子高潮喷水视频| 男女下面进入的视频免费午夜 | 99久久久亚洲精品蜜臀av| 99re在线观看精品视频| 91av网站免费观看| 国产精品秋霞免费鲁丝片| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 欧美午夜高清在线| 久久亚洲真实| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 精品无人区乱码1区二区| 久久青草综合色| 999久久久精品免费观看国产| 欧美午夜高清在线| 1024视频免费在线观看| 欧洲精品卡2卡3卡4卡5卡区| 激情在线观看视频在线高清| 搡老岳熟女国产| 国产精品av久久久久免费| 午夜福利视频1000在线观看 | 人人妻人人爽人人添夜夜欢视频| 91精品三级在线观看| 免费无遮挡裸体视频| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品一卡2卡三卡4卡5卡| 又紧又爽又黄一区二区| 亚洲人成网站在线播放欧美日韩| 亚洲精品在线美女| av中文乱码字幕在线| 国产真人三级小视频在线观看| 欧美午夜高清在线| 99在线人妻在线中文字幕| 国产精品日韩av在线免费观看 | 最新美女视频免费是黄的| 亚洲av片天天在线观看| 欧美成人午夜精品| 成人av一区二区三区在线看| 美女大奶头视频| 久久人妻福利社区极品人妻图片| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| 精品人妻1区二区| 嫩草影院精品99| 精品国产一区二区久久| 99国产精品99久久久久| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 黄色片一级片一级黄色片| 日日爽夜夜爽网站| 午夜精品国产一区二区电影| 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 久久久久久久久中文| 亚洲精品在线美女| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 亚洲色图综合在线观看| 午夜福利高清视频| 亚洲中文av在线| 女警被强在线播放| 91九色精品人成在线观看| 最好的美女福利视频网| 国产精品爽爽va在线观看网站 | 欧美另类亚洲清纯唯美| 欧美不卡视频在线免费观看 | 成人三级黄色视频| 狠狠狠狠99中文字幕| 色综合欧美亚洲国产小说| 757午夜福利合集在线观看| 国产又色又爽无遮挡免费看| av网站免费在线观看视频| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 岛国视频午夜一区免费看| 久久午夜亚洲精品久久| 欧美最黄视频在线播放免费| 嫩草影视91久久| 久久人妻福利社区极品人妻图片| 中出人妻视频一区二区| 欧美不卡视频在线免费观看 | 国产精品香港三级国产av潘金莲| 日本 欧美在线| 中文字幕最新亚洲高清| 亚洲三区欧美一区| 一二三四社区在线视频社区8| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 最好的美女福利视频网| 满18在线观看网站| 在线播放国产精品三级| 日本黄色视频三级网站网址| 免费高清视频大片| 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 无遮挡黄片免费观看| 欧美日韩乱码在线| svipshipincom国产片| 成人特级黄色片久久久久久久| 一二三四社区在线视频社区8| 日韩有码中文字幕| 精品久久久精品久久久| 一a级毛片在线观看| 18美女黄网站色大片免费观看| 九色国产91popny在线| 老汉色∧v一级毛片| 亚洲无线在线观看| 久久精品国产99精品国产亚洲性色 | 黄色成人免费大全| 国产精品免费一区二区三区在线| 久9热在线精品视频| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 久久亚洲真实| 午夜免费鲁丝| 亚洲精品在线观看二区| 两个人视频免费观看高清| 午夜福利成人在线免费观看| 精品少妇一区二区三区视频日本电影| 88av欧美| av福利片在线| 一本综合久久免费| 精品人妻在线不人妻| 在线观看免费日韩欧美大片| 日日夜夜操网爽| 日本五十路高清| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 悠悠久久av| 国产一区二区三区在线臀色熟女| 中文字幕色久视频| 一边摸一边做爽爽视频免费| 久久久久久久午夜电影| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 免费女性裸体啪啪无遮挡网站| 亚洲第一电影网av| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 午夜成年电影在线免费观看| 麻豆久久精品国产亚洲av| 露出奶头的视频| 大码成人一级视频| 国产精品98久久久久久宅男小说| 亚洲熟妇熟女久久| 亚洲免费av在线视频| 少妇熟女aⅴ在线视频| 丁香欧美五月| 天堂√8在线中文| 又大又爽又粗| 窝窝影院91人妻| 国产成人系列免费观看| 1024视频免费在线观看| 脱女人内裤的视频| 国产精品久久久av美女十八| 久久久久九九精品影院| 男男h啪啪无遮挡| 国产又爽黄色视频| 久久久久九九精品影院| 亚洲av片天天在线观看| 男女做爰动态图高潮gif福利片 | 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看 | 亚洲av成人av| e午夜精品久久久久久久| 欧美日韩精品网址| 久久久水蜜桃国产精品网| 亚洲免费av在线视频| 黑人巨大精品欧美一区二区mp4| 久久香蕉国产精品| 亚洲av电影不卡..在线观看| 色哟哟哟哟哟哟| 精品国产乱码久久久久久男人| 国产片内射在线| 成人国产一区最新在线观看| 大型av网站在线播放| 久久人人爽av亚洲精品天堂| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 日日夜夜操网爽| 波多野结衣高清无吗| 18禁观看日本| 熟妇人妻久久中文字幕3abv| 悠悠久久av| 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 日日夜夜操网爽| 天天躁夜夜躁狠狠躁躁| 色综合亚洲欧美另类图片| 成人手机av| 搡老熟女国产l中国老女人| 亚洲激情在线av| 亚洲人成伊人成综合网2020| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 悠悠久久av| 亚洲aⅴ乱码一区二区在线播放 | 高清毛片免费观看视频网站| 91大片在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产精品久久久不卡| 精品一区二区三区四区五区乱码| 亚洲人成网站在线播放欧美日韩| 香蕉丝袜av| 亚洲情色 制服丝袜| 国产亚洲精品第一综合不卡| 在线观看免费日韩欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 国产伦人伦偷精品视频| 怎么达到女性高潮| 国产高清激情床上av| 免费在线观看黄色视频的| 97人妻天天添夜夜摸| 久久久国产精品麻豆| 在线播放国产精品三级| 午夜福利18| 亚洲成av人片免费观看| 岛国在线观看网站| 久久香蕉国产精品| 级片在线观看| 亚洲一区中文字幕在线| 露出奶头的视频| 久久热在线av| 国产真人三级小视频在线观看| 日韩有码中文字幕| 老熟妇乱子伦视频在线观看| 国产又色又爽无遮挡免费看| 女生性感内裤真人,穿戴方法视频| 一级a爱片免费观看的视频| 日韩三级视频一区二区三区| 久久精品成人免费网站| 国产片内射在线| 夜夜看夜夜爽夜夜摸| 亚洲男人天堂网一区| 制服诱惑二区| 午夜成年电影在线免费观看| 在线观看免费视频日本深夜| 国产精品二区激情视频| 久久久国产成人免费| 在线国产一区二区在线| 91成人精品电影| 51午夜福利影视在线观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜激情av网站| 亚洲av美国av| 免费在线观看黄色视频的| 一本综合久久免费| 日韩欧美一区视频在线观看| 一本久久中文字幕| 欧美最黄视频在线播放免费| 亚洲精品久久成人aⅴ小说| 97超级碰碰碰精品色视频在线观看| 成人特级黄色片久久久久久久| av视频在线观看入口| 看片在线看免费视频| 99热只有精品国产| 国产激情久久老熟女| 日本五十路高清| 久久久国产成人免费| 少妇 在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美大码av| 国产又色又爽无遮挡免费看| 亚洲成a人片在线一区二区| 亚洲成人久久性| 一级,二级,三级黄色视频| 搞女人的毛片| 久久久精品欧美日韩精品| 我的亚洲天堂| 国产91精品成人一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产三级在线视频| 久99久视频精品免费| 一边摸一边做爽爽视频免费| 母亲3免费完整高清在线观看| 欧美乱色亚洲激情| 国产精品一区二区三区四区久久 | 中文字幕人妻熟女乱码| 夜夜看夜夜爽夜夜摸| 亚洲一码二码三码区别大吗| 国产熟女xx| 亚洲中文av在线| 精品一区二区三区av网在线观看| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 男女午夜视频在线观看| 日本一区二区免费在线视频| 麻豆成人av在线观看| 51午夜福利影视在线观看| 91在线观看av| 国产精品免费一区二区三区在线| 美女 人体艺术 gogo| 满18在线观看网站| 久久久久久亚洲精品国产蜜桃av| 日韩国内少妇激情av| 国产免费av片在线观看野外av| 午夜福利视频1000在线观看 | 男女下面进入的视频免费午夜 | 色综合站精品国产| 亚洲情色 制服丝袜| 精品久久久久久,| 一级,二级,三级黄色视频| 亚洲av成人一区二区三| 黄片小视频在线播放| 色av中文字幕| 久久人人97超碰香蕉20202| 久久久久九九精品影院| 在线十欧美十亚洲十日本专区| 啦啦啦 在线观看视频| 人妻久久中文字幕网| 亚洲成人久久性| 日韩高清综合在线| 国产成+人综合+亚洲专区| 99在线人妻在线中文字幕| 日本在线视频免费播放| 亚洲伊人色综图| 午夜福利视频1000在线观看 | 久久天堂一区二区三区四区| e午夜精品久久久久久久| 国产一区二区三区视频了| 国产高清有码在线观看视频 | 色综合站精品国产| 日本在线视频免费播放| 久久久久亚洲av毛片大全| 国产色视频综合| 久久久久国产精品人妻aⅴ院| 亚洲熟妇熟女久久| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 国产精华一区二区三区| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜一区二区| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 99久久国产精品久久久| 亚洲电影在线观看av| 人成视频在线观看免费观看| 精品高清国产在线一区| 亚洲激情在线av| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 久久精品91无色码中文字幕| 亚洲专区字幕在线| 国产午夜精品久久久久久| 色尼玛亚洲综合影院| 亚洲成人精品中文字幕电影| 久久人妻福利社区极品人妻图片| 淫妇啪啪啪对白视频| 国产真人三级小视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美亚洲日本最大视频资源| 久久久久久久精品吃奶| 中文字幕av电影在线播放| 精品一品国产午夜福利视频| 久久久国产成人精品二区| 天天躁夜夜躁狠狠躁躁| 禁无遮挡网站| 又紧又爽又黄一区二区| 日本免费a在线| 91精品国产国语对白视频| 黄片小视频在线播放| 欧美中文综合在线视频| 色在线成人网| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 搡老妇女老女人老熟妇| 国产成人av激情在线播放| www.熟女人妻精品国产| 村上凉子中文字幕在线| 99久久国产精品久久久| 手机成人av网站| 1024香蕉在线观看| 欧美中文日本在线观看视频| 激情视频va一区二区三区| 亚洲一码二码三码区别大吗| 国产精品野战在线观看| 久久天堂一区二区三区四区| 国产精品亚洲av一区麻豆| 亚洲国产毛片av蜜桃av| 麻豆国产av国片精品| 一二三四在线观看免费中文在| 国产精品爽爽va在线观看网站 | 非洲黑人性xxxx精品又粗又长| 亚洲精品中文字幕在线视频| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 国产成人精品无人区| 国产成+人综合+亚洲专区| 美女高潮到喷水免费观看| 伦理电影免费视频| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 午夜视频精品福利| 久久久国产成人免费| 亚洲电影在线观看av| 又大又爽又粗| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清 | 免费高清视频大片| 男男h啪啪无遮挡| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 两个人视频免费观看高清| 国产精品98久久久久久宅男小说| 午夜福利视频1000在线观看 | 中出人妻视频一区二区| 久久精品国产亚洲av香蕉五月| 亚洲精品国产色婷婷电影| 岛国视频午夜一区免费看| 啦啦啦韩国在线观看视频| 久久精品人人爽人人爽视色| 好看av亚洲va欧美ⅴa在| а√天堂www在线а√下载| 国产精品98久久久久久宅男小说| 亚洲成av人片免费观看| 日韩精品青青久久久久久| 亚洲成国产人片在线观看| 一区福利在线观看| 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| 国产免费男女视频| av超薄肉色丝袜交足视频| 激情视频va一区二区三区| 中文字幕人妻熟女乱码| 亚洲成人精品中文字幕电影| 老司机深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 好看av亚洲va欧美ⅴa在| 国产成人精品无人区| 在线观看免费视频日本深夜| 国产欧美日韩综合在线一区二区| 亚洲欧美日韩无卡精品| 天堂影院成人在线观看| 女性生殖器流出的白浆| 欧美精品啪啪一区二区三区| 在线观看免费日韩欧美大片| 日韩精品青青久久久久久| 精品久久蜜臀av无| 亚洲第一青青草原| 热re99久久国产66热| 精品免费久久久久久久清纯| 国产精品亚洲美女久久久| 久热这里只有精品99| 国产亚洲欧美在线一区二区| 亚洲男人的天堂狠狠| 女人高潮潮喷娇喘18禁视频| 午夜精品在线福利| www日本在线高清视频| av在线播放免费不卡| 90打野战视频偷拍视频| svipshipincom国产片| 91成人精品电影| 热99re8久久精品国产| 12—13女人毛片做爰片一| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 免费看十八禁软件| 国产精品99久久99久久久不卡| 日日干狠狠操夜夜爽| 国产成+人综合+亚洲专区| 99国产综合亚洲精品| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 一级毛片精品| 亚洲精品美女久久av网站| 怎么达到女性高潮| 亚洲精品美女久久久久99蜜臀| 9色porny在线观看| 日韩欧美一区二区三区在线观看| 亚洲avbb在线观看| 97人妻精品一区二区三区麻豆 | 久久久久久国产a免费观看| 9191精品国产免费久久| 中国美女看黄片| ponron亚洲| 91麻豆av在线| 亚洲熟妇中文字幕五十中出| 国产免费男女视频| 国产色视频综合| 国产亚洲精品第一综合不卡| 欧美大码av| 免费高清在线观看日韩| 亚洲欧美日韩另类电影网站| 很黄的视频免费| 国产av一区二区精品久久| 成人欧美大片| 欧美在线一区亚洲| 精品电影一区二区在线| 欧美中文综合在线视频| 久久久久久国产a免费观看| 一边摸一边抽搐一进一出视频| 国产色视频综合| 午夜影院日韩av| 欧美大码av| 大陆偷拍与自拍| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 亚洲精品久久成人aⅴ小说| 可以在线观看毛片的网站| av视频在线观看入口| 精品国产超薄肉色丝袜足j| 久久久久久亚洲精品国产蜜桃av| 免费在线观看完整版高清| av电影中文网址| 黄片大片在线免费观看| 最好的美女福利视频网| 久久人妻av系列| 叶爱在线成人免费视频播放| 亚洲三区欧美一区| 国产精品亚洲av一区麻豆| 午夜福利,免费看| 国产伦一二天堂av在线观看| 久久九九热精品免费| 国产野战对白在线观看| 黄片播放在线免费| 精品免费久久久久久久清纯| 麻豆久久精品国产亚洲av| 精品日产1卡2卡| 日韩三级视频一区二区三区| 老司机在亚洲福利影院| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品电影 | 无遮挡黄片免费观看| 亚洲情色 制服丝袜| 国产亚洲精品久久久久5区| 999久久久精品免费观看国产| 狂野欧美激情性xxxx| 免费高清视频大片| 老熟妇乱子伦视频在线观看| 无人区码免费观看不卡| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 亚洲色图 男人天堂 中文字幕| 美女午夜性视频免费| 丁香六月欧美| 午夜福利在线观看吧| av天堂在线播放| 久久热在线av| 日日干狠狠操夜夜爽| ponron亚洲| 午夜成年电影在线免费观看| 国产精品自产拍在线观看55亚洲| 在线观看免费视频日本深夜| 国产精品亚洲av一区麻豆| 免费高清视频大片| 精品福利观看| 极品人妻少妇av视频| 欧美黄色片欧美黄色片| 岛国在线观看网站| 无人区码免费观看不卡| 宅男免费午夜| 欧美 亚洲 国产 日韩一| 99香蕉大伊视频| av视频免费观看在线观看| 好看av亚洲va欧美ⅴa在| 制服诱惑二区| 久久亚洲精品不卡| 在线观看舔阴道视频| 香蕉国产在线看| 亚洲国产看品久久| 中文字幕高清在线视频| 丝袜人妻中文字幕| 97人妻精品一区二区三区麻豆 | 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区精品| 婷婷六月久久综合丁香| 91在线观看av| 后天国语完整版免费观看| 国产主播在线观看一区二区| 欧美日本视频| 欧美色视频一区免费| 久久精品国产亚洲av香蕉五月| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区精品| 婷婷六月久久综合丁香| 搡老熟女国产l中国老女人| 精品欧美国产一区二区三| 美女免费视频网站| 成人精品一区二区免费| 久久久久九九精品影院| 99re在线观看精品视频| 亚洲午夜理论影院| 亚洲色图 男人天堂 中文字幕| 久久精品aⅴ一区二区三区四区| 国产熟女xx| 99精品久久久久人妻精品| 1024香蕉在线观看| 欧美日韩瑟瑟在线播放| 免费在线观看亚洲国产| 亚洲精品美女久久久久99蜜臀| 国产精品免费视频内射| www国产在线视频色| 久久久国产精品麻豆| 久久久久久免费高清国产稀缺| 欧美中文综合在线视频|