• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path tracking for vehicle parallel parking based on ADRC controller

    2015-04-22 06:17:30WANGJian王健ZHAOYouqun趙又群JIXuewu季學(xué)武LIUYahui劉亞輝ZANGLiguo臧利國
    關(guān)鍵詞:學(xué)武王健

    WANG Jian (王健), ZHAO You-qun (趙又群),, JI Xue-wu (季學(xué)武),LIU Ya-hui (劉亞輝), ZANG Li-guo (臧利國)

    (1.College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

    ?

    Path tracking for vehicle parallel parking based on ADRC controller

    WANG Jian (王健)1, ZHAO You-qun (趙又群), JI Xue-wu (季學(xué)武)2,LIU Ya-hui (劉亞輝)2, ZANG Li-guo (臧利國)1

    (1.College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

    A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, which can estimate and compensate model uncertainty caused by steering kinematics and disturbances caused by parking speed and steering system delay. Collision-free path planning technology was adopted to generate the reference path. The simulation results validate that the performance of the proposed path tracking controller is better than the conventional PID controller. The actual vehicle tests show that the proposed path tracking controller is effective and robust to model uncertainty and disturbances.

    parallel parking; path tracking; active disturbance rejection control; active disturbance rejection control (ADRC); path planning

    With the rapid development of automotive industry, many automobile manufacturers have developed new electronic equipment to improve vehicle driving comfort and safety[1]. Vehicle parking is difficult for inexperienced drivers, intelligent parking assist systems (IPAS) become rapidly developed recently. IPAS can alleviate the labor of the driver[2].

    Path tracking algorithm for parallel parking has attracted some researchers in recent decades[3]. Zhao designed a skill-based fuzzy controller to generate control commands[4]. Demirli proposed a method to track the reference path online based on adaptive neuro fuzzy inference system (ANFIS)[5]. Lian presented a fuzzy sliding mode controller (FSMC) considering the drivers experience[6]. Ollero used fuzzy path tracking controller to track a previously defined path[7].

    However, previous studies have some disadvantages. Firstly, the fuzzy control method still has many problems in engineering applications, which is difficult to formulate the fuzzy control rules. Secondly, the sliding mode control method is complex. Thirdly,model uncertainty and disturbances are not considered in early research.

    Active disturbance rejection control (ADRC) is a novel robust method[8]. This method is developed based on traditional PID control, which does not depend on the system model. The simulation results show that the control effect of the proposed controller is much better than conventional PID controller. The actual vehicle tests validate the effectiveness of the path tracking controller.

    1 System description

    The parallel parking system consists of six components: ultrasonic sensor, electric power steering system (EPS), electronic control unit (ECU), steering angle sensor (SAS), wheel speed sensor (WSS) and human machine interface (HMI). The configuration of parallel parking system is depicted in Fig.1.

    Fig.1 Configuration of the parallel parking system

    At the beginning, the driver presses down the parking assist system start button on the HMI, and the ECU changes the system into the ready state. Then, the ultrasonic sensors start to detect the parking space. The ECU calculates the parking space using the information from the ultrasonic sensors and the wheel speed sensors. If the parking space satisfies the requirement of parallel parking, the environment model is constructed by the ECU. After that, the path planning module generates a collision-free path based on the starting position. Finally, the path tracking module controls the vehicle to follow the designed path.

    2 Vehicle kinematics and path planning

    2.1 Vehicle kinematics

    The vehicle reference position is located at the midpoint of rear axle. The rear wheels are fixed parallel to the longitudinal axis of car body. Suppose that there is a pure rolling contact between the rear wheels and road surface, this ensures that the vehicle speed vector is always tangent to the automobile orientation. The vehicle kinematic model is shown in Fig.2. The parameter specification for the kinematic model is presented in Tab.1.

    Fig.2 Kinematic model of the vehicle

    Tab. 1 Parameter specification

    ParametersDescriptionValue/mmWaVehiclewidth1666WbRearwheeltread1475LfFrontoverhanglength744LrRearoverhanglength585LaVehiclelength3779LbVehiclewheelbase2450RminMinimumturningradius4500

    The configuration of the vehicle can be described by four state variables: the reference position coordinates (xr,yr), the vehicle orientation (Φ),andthecurvature(ρ=1/R).Thekinematicsofthevehiclewithrespecttotheaxiscenteroftherearwheelsaredescribedas

    (1)

    whereVis the vehicle longitudinal velocity;f(V,t) is the parking velocity disturbance;ws(V,t) is the model uncertainty of the steering system kinematics;Lbis the vehicle wheelbase; δrepresentsthefrontwheelsteeringangle; Tsrepresentsthesteeringsystemdelaytime; uisthecommandfrontsteeringangle.

    Thecurvatureanditsderivativecanbedescribedas

    (2)

    Duetothephysicalpropertiesandsteeringmechanicalproperties,thecurvatureρa(bǔ)nditschangerateγshouldbelimited,i.e.

    (3)

    2.2Pathplanning

    ParallelparkingprocessconsistsofonestraightlineS0and two circular arcs (S1,S2). In Fig.3, the two black rectangles denote front and rear obstacles, the white rectangle on the right top denotes initial parking position, and the white rectangle on the left bottom denotes the final parking position.S1andS2denote the first and second arcs of the path of the middle point of the rear axle, respectively.

    Fig.3 Parallel parking process

    The parallel parking process can be described as follows:

    (4)

    whereR1,R2,S0, θandh0aredefinedinFig.3.Eachvalueoftheparameters[R1, R2, S0]determinesaparallelparkingpath.

    Collisionscouldbeavoidedifavirtualvehicleleavestheparkingspacewithoutcollision[9].Finalmanoeuvresareobtainedusingthisdesigninareversesequence.ThegoalpositionDgoisdefinedbythreesafetydistancesDrl, DloandDrrinaparkingspace.ThefirstpossiblecollisionisshowninFig.4.

    Fig.4 First possible collision

    Inordertodesignthefirstcontinuouscollision-freepath,thedesignedpathshouldavoidthecollisionbetweentherightfrontofvehicleandfrontobstacle.ThemaximumvalueofradiusR1canbecalculatedby

    (5)

    whereLpdenotes the parking space length,Dfris the safety distance, the other parameters have been defined by Fig.2.

    The minimum value of radiusR1is determined by the vehicle physical properties. It can be described as

    (6)

    TheradiusR1is located betweenR1minandR1max, i.e.

    R1∈[R1min,R1max]

    (7)

    The second possible collision is shown in Fig.5. The designed path should avoid the collision between the vehicle lateral side and the obstacle ahead.

    Fig.5 Second possible collision

    The maximum value of radiusR2can be obtained by solving the following equations as

    (8)

    ThelastpossiblecollisionisshowninFig.6.Itrepresentsthecollisionbetweentheleftfrontofvehicleandtheleftobstacleorstreetcenterline.

    Fig.6 Third possible collision

    TheminimumturningradiusR2mincan be calculated by

    (9)

    whereLobis the safety distance to the opposite obstacle,dis the lateral distance between the ultrasonic sensor and the obstacle,Wpis the parking space width.

    The value range of the radiusR2is located betweenR2minandR2max, i.e.

    R2∈[R2min,R2max]

    (10)

    The minimum forward displacementL0minand the maximum displacementL0maxcan be expressed as

    (11)

    (12)

    Eachparameters[R1,R2,L0] determines a parallel parking manoeuvre. Different manoeuvres under different forward displacements are shown in Fig.7.

    Fig.7 Different parallel parking manoeuvres

    3 ADRC controller design

    The focus of this research is to design a robustness path tracking controller, which can precisely control vehicle to follow the ideal parking path in spite of existing uncertainty and disturbances in the system. If the system exists model uncertainty, external disturbance and sensor noises, the traditional controller cannot reach the design objectives[10-11]. In this section, a path tracking controller based on ADRC is developed, which can estimate and compensate the influence generated by the model uncertainty and disturbances in real time.

    3.1 Tracking differentiator

    The ADRC controller is composed of a tracking differentiator (TD) which is in the feedforward path, an extended state observer (ESO) and a nonlinear state error feedback (NLSEF) control law in the feedback path. The structure diagram of second order ADRC is shown in Fig.8. The TD process is adopted in ADRC for transient process and command signal generation. The TD in the feedforward path is used to replace the PID differential component, which can improve the system effectiveness and robustness performance when the system suffers sensor noise and external disturbances.

    Fig.8 Second order ADRC structure

    The employment of TD can yield fast tracking without overshoots, while simultaneously avoiding the rapid fluctuations of the control signal. The definition of TD process can be expressed as

    (13)

    (14)

    3.2Extendedstateobserver

    AsshowninFig.8,theESOcanestimatethechangerateandthetotaldisturbanceoferror,whichisbasedonthecontrolvariablesandinputsignalerrors.TheESOcanbeseenasasoftsensor,whichcanmeasurethecontrolsystemunknowndisturbance[12].Thedynamicfeedbackcompensationcanbeconductedproperlyusingestimatedtotaldisturbances[13-15].Thirdorderextendedstateobservercanbedescribedas

    (15)

    wherex1(k),x2(k) andx3(k) are the outputs estimated by ESO,x1(k) represents the tracking signal ofy(k),x2(k) is the first derivative ofx1(k), which is the velocity of tracking signal,x3(k) represents the estimated total disturbances.

    The nonlinear functionfal(e(k),a,δ)canbeexpressedas

    fal(e(k),a,δ)=

    (16)

    wherea1,a2, δandb0arethedesignparameters, β01, β02andβ03arethegainsofESOandcanbedeterminedby[16]

    (17)

    3.3Nonlinearstateerrorfeedbackcontroller

    TheNLSEFcontrollerisanonlinearPDcontroller,whichcanbedescribedas

    (18)

    whereβ1, β2, α01, α02andδ0arethedesignparameters.

    Thecontrollawu0isanonlinearcombinationoferrore1anddifferentialerrore2.Inordertocancelouttheunknowndisturbancesbeforetheydegradethesystemperformance,thetotalactualcontrolvariablesappliedtotheactuatorofthecontrolsystemcanbeexpressedas

    u(k+1)=u0(k+1)-x3(k+1)/b0

    (19)

    3.4 Path tracking controller design

    The path tracking can be seen as a preview follower process, which is described in Fig.9. The target of path tracking is to control the displacement errorΔyandtheorientationerrorΔΦofthevehicle.ThelongitudinalvelocityVofthevehicleisperpendiculartothevehiclerearaxle, LrepresentsthepreviewdistanceandTdenotesthepreviewtime.

    Fig.9 Preview follower in parallel parking

    ThelateraldisplacementerrorΔyandtheorientationerrorΔΦcanbededucedas

    (20)

    where(x0,y0, Φ0)describesthecurrentpositionandorientationofvehicle, VxandVydenotethevelocitycomponents, f(x)isthereferencepath.

    ThetargetofADRCcontrolleristocontroltheerrorztozero,whichiscomposedbythelateraldisplacementerrorΔyandtheorientationerrorΔΦ.Theerrorzcanbedescribedby

    z=c1tanh (c0Δy)+Δφ

    (22)

    wherec0andc1are positive parameters, tanh represents hyperbolic tangent function. The astringency of the nonlinear equation can be proved by the Lyapunov function.

    The designed path tracking controller based on ADRC is shown in Fig.10. Wherev0is the desired signal, here, the purpose of ADRC path tracking controller is to control the errorzto track the signalv0, so the value ofv0is determined asv0=0;z1represents the tracking signal ofz;z2is the first derivative ofz1, which is the velocity of tracking signal;z3denotes the estimated total disturbances.

    Fig.10 Path tracking controller based on ADRC

    4 Simulation and real vehicle tests

    4.1 Simulation results and analysis

    To investigate the proposed path tracking controller, different simulation conditions considering the model uncertainties and disturbances are used to verify the robustness and effectiveness of path tracking controller. The model uncertainty of steering kinematics due to the complex mechanism can be described as a function of longitudinal velocity and time, which can be supposed asws(V,t)=0.02Vsin(5t). Considering the effect due to road disturbance such as road bumps, the external disturbancef(V,t) can be described asf(V,t)=Vsin(8t). The steering system delay described in Eq.(1) can be seen as a system internal disturbance, the delay time of steering systemTScan be defined asTS=0.5 s.

    The parameters (Tab.2) for ADRC controller and PID controller are determined using optimization methods.

    Tab.2 Parameters for ADRC and PID controllers

    The simulation results are shown as follows. The parking speed is shown in Fig.11, where the longitudinal velocityVis 1 m/s, the external disturbancef(V,t) changes as sine wave with time. The path tracking performance can be seen from Fig.12. The solid line represents the predetermined reference path, the dashed line describes the tracking path controlled by ADRC method, and the dotted line shows the tracking path controlled by PID method. From Fig.12, it can be seen that the path tracking controller based on ADRC gives superior performance to the conventional PID controller.

    Fig.11 Parking speed (V=1 m/s)

    Fig.12 Tracking performance comparison between PID and ADRC

    The ADRC controller contains an extended state observer (ESO), which can estimate the total disturbances and compensate the disturbances before the disturbances affect the controlled plant. The total disturbances estimated by ESO are shown in Fig.13.

    Fig.13 Estimated total disturbance z3

    The parking speed is measured by the wheel speed sensor, while the wheel speed sensor signal is vulnerable to outside world electromagnetic interference and the wheel speed detection device is easy to vibrate when vehicle is parking on a bumpy road. For this reason, a white noise occurs in the parking speed, the parking speed detected in the experiments is shown in Fig.14. In the following simulation studies, the parameters for PID and ADRC controllers remain the same as described in Tab.2, respectively. Fig.15 shows that the path tracking performance comparison between the PID controller and ADRC controller. The solid line is the desired path, the dashed line describes the tracking path controlled by ADRC method, and the dotted line shows the tracking path controlled by PID method. It can be observed that the ADRC method can effectively control vehicle to track the desired path even though vehicle suffers to external disturbances, while the PID controller cannot effectively track the desired path. The simulation result shows that the ADRC parameters are robust to external disturbances, but the PID parameters need to be constantly adjusted to resist the external disturbances. The PID method aggravates the burden of engineers for its parameters adjustment. The ADRC controller can use the ESO to estimate the system uncertainties and total disturbances, which is shown in Fig.16.

    Fig.14 Experimental parking speed

    Fig.15 Tracking performance comparison between PID and ADRC

    Fig.16 Estimated total disturbances z3

    4.2 Real vehicle tests

    To verify the performance of proposed path tracking controller, the parallel parking system controller is equipped on a prototype vehicle.A ComNav RTK GNSS differential global positioning system (DGPS) is used to measure the actual motion path of a vehicle. The DGPS can provide the position and orientation information. The position accuracy is around 1 cm and the orientation accuracy is around 0.1°. The data update rate of position and orientation is 200 ms. In Fig.17, the parking space is measured by the ultrasonic sensors and wheel speed sensors, the length of parking space is around 6 m, the width is around 2.5 m. The solid line describes ideal path and the dashed line represents actual motion path. In order to calculate the average lateral displacement error in the whole parallel parking, ten waypoints located on the ideal path and the actual path are recorded. In Tab.3, (X,Yid) and (X,Yac) represent the ideal and actual waypoints, respectively. The average value of lateral displacement error is 0.067 7 m. The maximum value of lateral displacement error is 0.11 m. The vehicle can be precisely controlled to track the ideal path without collision with the surrounding obstacles.

    Fig.17 Actual path and ideal path comparison

    Tab.3 Lateral displacement error

    WaypointX/mYid/mYac/mΔy/m11.2811.0981.0900.08021.8591.2341.2040.03032.1441.3521.3070.04542.4491.5031.4500.05353.1042.0301.9350.09563.9272.8962.7860.11074.8743.5843.4730.11185.7363.9853.9010.08496.5584.2154.1610.054107.4344.3214.3060.015

    5 Conclusion

    A novel path tracking controller based on ADRC method was proposed to improve the robustness of path tracking. The extended state observer (ESO) effectively estimated the total disturbances, such as steering system modeling imprecision, parking speed disturbance and steering system delay disturbance. The ADRC controller had estimated and compensated the total disturbances before the disturbances affected the controlled plant, while the PID controller began to work after the disturbances had influenced the controlled plant. The path tracking results show that the control effectiveness of ADRC controller was much better than conventional PID controller, the ADRC technique gave noticeably better results in terms of parametric robustness than PID. The real vehicle tests verify the effectiveness of path tracking controller. In the near future, the proposed path tracking method can be used in intelligent driving area.

    [1] Huang S J, Lin G Y. Parallel auto-parking of a model vehicle using a self-organizing fuzzy controller [J]. Journal of Automobile Engineering, 2010, 224(8): 997-1012.

    [2] Liu Yahui, Ji Xuewu, Ryouhei H, et al. Function of shoulder muscles of driver in vehicle steering maneuver [J]. Science China Technological Sciences, 2012, 55(12): 3445-3454.

    [3] Lee C K, Lin C L, Shiu B M. Autonomous vehicle parking using hybrid artificial intelligent approach [J]. Journal of Intelligent and Robotic Systems, 2009, 56:319-343.

    [4] Zhao Y N, Collins Jr E G. Robust automatic parallel parking in tight spaces via fuzzy logic [J]. Robotics and Autonomous Systems, 2005, 51(2):111-127

    [5] Demirli K, Khoshnejad M. Autonomous parallel parking of a car-like mobile robot by a neuro-fuzzy sensor-based controller [J]. Fuzzy Sets and Systems, 2009, 160(19): 2876-2891.

    [6] Lian K Y, Chiu C S, Chiang T S. Parallel parking a car-like robot using fuzzy gain scheduling [C]∥IEEE International Conference on Control Applications, Hawai, USA, 1999.

    [7] Ollero A, García-Cerezo A, Martínez J L, et al. Fuzzy tracking methods for mobile robots [J]. Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems, 1997, 9: 347-364.

    [8] Han Jingqing. From PID technique to active disturbances rejection control technique [J]. Control Engineering of China, 2002, 9(3):13-18. (in Chinese)

    [9] Gómez-Bravo F, Cuesta F, Ollero A, et al. Continuous curvature path generation based on βsplinecurvesforparkingmanoeuvres[J].RoboticsandAutonomousSystems, 2008, 56(4): 360-372.

    [10]YuGR,HwangRC.OptimalPIDspeedcontrolofbrushlessDCmotorsusingLQRapproach[C]∥IEEEInternationalConferenceonSystems,Man,andCybernetics,Hague,Netheirlands, 2004.

    [11]ZhaoWanzhong,LinYi,WeiJianwei,etal.Controlstrategyofanovelelectricpowersteeringsystemintegratedwithactivefrontsteeringfunction[J].ScienceChinaTechnologicalSciences, 2011, 54(6):1515-1520.

    [12]SuYX,DuanBY,ZhengCH,etal.Disturbance-rejectionhigh-precisionmotioncontrolofastewartPlatform[J].IEEETransactionsonControlSystemsTechnology, 2004, 12(3):364-374.

    [13]JeongJW,ChangPH,ParkKB.Sensorlessandmodelessestimationofexternalforceusingtimedelayestimation:applicationtoimpedancecontrol[J].JournalofMechanicalScienceandTechnology, 2011, 25(8): 2051-1059.

    [14]LiSL,YangX,YangD.Activedisturbancerejectioncontrolforhighpointingaccuracyandrotationspeed[J].Automatica, 2009, 45(8):1854-1860.

    [15]HanDK,ChangP.Robusttrackingofrobotmanipulatorwithnonlinearfrictionusingtimedelaycontrolwithgradientestimator[J].JournalofMechanicalScienceandTechnology, 2010, 24(8):1743-1752.

    [16]HanJQ.FromPIDtoactivedisturbancerejectioncontrol[J].IEEETransactionsonIndustrialElectronics, 2009, 56(3): 900-906.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0212

    U 471.15 Document code: A Article ID: 1004- 0579(2015)02- 0213- 09

    Received 2014- 05- 08

    Supported by the National Natural Science Foundation of China (11072106,51005133,51375009)

    E-mail: yqzhao@nuaa.edu.cn

    猜你喜歡
    學(xué)武王健
    “誠信之星”李學(xué)武:替烈士兒子償還助學(xué)貸款
    “誠信之星”李學(xué)武:替烈士兒子償還助學(xué)貸款
    王健
    美聯(lián)儲的艱難選擇:穩(wěn)通脹還是穩(wěn)金融市場
    Exact solution of an integrable quantum spin chain with competing interactions?
    無線仿真在基站搬遷評估中的應(yīng)用
    江蘇通信(2021年1期)2021-05-31 08:29:30
    柳學(xué)武
    百花園(2019年6期)2019-09-10 07:22:44
    “王健扇藝展”
    讀書感懷
    醫(yī)院內(nèi)的“塌方式”腐敗
    精品福利观看| 日韩强制内射视频| av.在线天堂| 91狼人影院| 久久久久久久久中文| 亚洲男人的天堂狠狠| 中文字幕人妻熟人妻熟丝袜美| 日本在线视频免费播放| 97超级碰碰碰精品色视频在线观看| 毛片一级片免费看久久久久 | 精品久久久久久久末码| 欧美一区二区国产精品久久精品| 国产国拍精品亚洲av在线观看| 久久亚洲精品不卡| 国产午夜精品久久久久久一区二区三区 | 麻豆久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 国内精品一区二区在线观看| 中文资源天堂在线| 国产精品亚洲美女久久久| 色5月婷婷丁香| 亚洲欧美日韩高清在线视频| 久久草成人影院| 免费看av在线观看网站| xxxwww97欧美| 精品人妻熟女av久视频| 亚洲欧美清纯卡通| 久久午夜亚洲精品久久| 男插女下体视频免费在线播放| 性色avwww在线观看| 97热精品久久久久久| 男女视频在线观看网站免费| 18禁在线播放成人免费| 亚洲av成人av| 国产男人的电影天堂91| 精品乱码久久久久久99久播| 亚洲精品成人久久久久久| 精品久久久久久,| 午夜a级毛片| 在线观看一区二区三区| 一a级毛片在线观看| 精品人妻视频免费看| 国产三级中文精品| www日本黄色视频网| 99久久精品热视频| 一进一出好大好爽视频| 男人舔女人下体高潮全视频| www.色视频.com| 国产91精品成人一区二区三区| 婷婷六月久久综合丁香| 午夜福利18| 亚洲精品亚洲一区二区| 最好的美女福利视频网| 成人三级黄色视频| 3wmmmm亚洲av在线观看| 精品久久久久久,| 最好的美女福利视频网| 美女免费视频网站| 一级a爱片免费观看的视频| 国产一区二区三区av在线 | 啦啦啦韩国在线观看视频| 免费在线观看日本一区| 久久久久国产精品人妻aⅴ院| 色哟哟哟哟哟哟| 97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| 我要搜黄色片| 欧美成人a在线观看| 亚洲欧美清纯卡通| 如何舔出高潮| 99精品在免费线老司机午夜| 波野结衣二区三区在线| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久精品电影| 噜噜噜噜噜久久久久久91| 日韩欧美精品免费久久| 三级毛片av免费| 午夜久久久久精精品| 国产免费男女视频| 麻豆久久精品国产亚洲av| 草草在线视频免费看| 美女xxoo啪啪120秒动态图| 日本欧美国产在线视频| 老司机福利观看| 中文字幕av在线有码专区| 日韩精品中文字幕看吧| 又紧又爽又黄一区二区| 亚洲经典国产精华液单| 久久精品91蜜桃| 欧美日韩综合久久久久久 | 99热网站在线观看| 国产精品免费一区二区三区在线| 国产精品一区二区三区四区久久| 国产精品自产拍在线观看55亚洲| 天美传媒精品一区二区| 99久久精品国产国产毛片| 老司机午夜福利在线观看视频| 又爽又黄a免费视频| 在线播放无遮挡| 999久久久精品免费观看国产| 亚洲成人精品中文字幕电影| 亚洲一级一片aⅴ在线观看| 国产一区二区激情短视频| 麻豆国产97在线/欧美| 成人特级av手机在线观看| 深爱激情五月婷婷| 69av精品久久久久久| 桃红色精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 欧美高清性xxxxhd video| 一本精品99久久精品77| 亚洲人成网站高清观看| 国产欧美日韩精品一区二区| 国产探花极品一区二区| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久久久毛片| 国产一区二区三区视频了| 91久久精品电影网| 亚洲欧美日韩无卡精品| 午夜a级毛片| 天堂√8在线中文| 国产精品女同一区二区软件 | 欧美一级a爱片免费观看看| 国产伦在线观看视频一区| 久久精品国产亚洲av涩爱 | 听说在线观看完整版免费高清| 琪琪午夜伦伦电影理论片6080| 欧美在线一区亚洲| 一区二区三区免费毛片| 美女cb高潮喷水在线观看| 嫁个100分男人电影在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久久久免| 国产在视频线在精品| 成人一区二区视频在线观看| 老司机深夜福利视频在线观看| 网址你懂的国产日韩在线| 国产高潮美女av| 悠悠久久av| 午夜影院日韩av| 国产男人的电影天堂91| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 免费观看的影片在线观看| 麻豆精品久久久久久蜜桃| 中文字幕人妻熟人妻熟丝袜美| 国产精品野战在线观看| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 精华霜和精华液先用哪个| 他把我摸到了高潮在线观看| 欧美性感艳星| 亚洲五月天丁香| aaaaa片日本免费| 午夜久久久久精精品| 波多野结衣巨乳人妻| 欧美激情国产日韩精品一区| 欧美不卡视频在线免费观看| 国产亚洲精品久久久久久毛片| 成人av一区二区三区在线看| 日本五十路高清| 久久中文看片网| 嫩草影院精品99| 亚洲人与动物交配视频| 国产精品野战在线观看| 2021天堂中文幕一二区在线观| 免费高清视频大片| 日本a在线网址| 国产精品美女特级片免费视频播放器| 又爽又黄a免费视频| 欧美日韩综合久久久久久 | 男女边吃奶边做爰视频| 午夜福利视频1000在线观看| 又爽又黄a免费视频| 亚洲中文字幕日韩| 天堂√8在线中文| 狂野欧美白嫩少妇大欣赏| 亚洲午夜理论影院| 国产一区二区三区av在线 | 国产爱豆传媒在线观看| 国产一区二区亚洲精品在线观看| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| 最后的刺客免费高清国语| 久久久久精品国产欧美久久久| 亚洲色图av天堂| 草草在线视频免费看| 亚洲无线在线观看| 久久久久九九精品影院| 校园春色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 午夜精品久久久久久毛片777| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| 99久久精品热视频| 最近最新免费中文字幕在线| 色av中文字幕| 老熟妇乱子伦视频在线观看| 欧美bdsm另类| 岛国在线免费视频观看| 又爽又黄无遮挡网站| 国产精品亚洲美女久久久| av国产免费在线观看| 嫩草影院入口| 国产av一区在线观看免费| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 午夜精品一区二区三区免费看| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 老司机福利观看| 老熟妇乱子伦视频在线观看| 日韩精品有码人妻一区| 欧美激情在线99| 亚洲精品456在线播放app | 日本色播在线视频| 欧美性感艳星| bbb黄色大片| 看片在线看免费视频| 身体一侧抽搐| 国产黄a三级三级三级人| 能在线免费观看的黄片| 真人做人爱边吃奶动态| 嫩草影视91久久| 久久精品综合一区二区三区| 成人性生交大片免费视频hd| 中文字幕久久专区| 国产熟女欧美一区二区| 高清日韩中文字幕在线| 免费观看的影片在线观看| 久久久久久久亚洲中文字幕| 久久热精品热| 欧美日韩乱码在线| 日韩欧美在线二视频| .国产精品久久| 亚洲最大成人av| 久久国产精品人妻蜜桃| 久久婷婷人人爽人人干人人爱| 国产中年淑女户外野战色| 国产亚洲精品久久久久久毛片| 免费看美女性在线毛片视频| 欧美潮喷喷水| 深夜精品福利| 国产在视频线在精品| 村上凉子中文字幕在线| av女优亚洲男人天堂| 精品福利观看| av视频在线观看入口| 麻豆一二三区av精品| 久久久久久久久大av| 性欧美人与动物交配| 国产女主播在线喷水免费视频网站 | 69av精品久久久久久| 看片在线看免费视频| 国产91精品成人一区二区三区| 91精品国产九色| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 伦理电影大哥的女人| 久久久久久大精品| 久久久精品大字幕| 免费不卡的大黄色大毛片视频在线观看 | 内地一区二区视频在线| av国产免费在线观看| 热99re8久久精品国产| 日本黄色视频三级网站网址| www.www免费av| 特级一级黄色大片| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 久久国内精品自在自线图片| 亚洲中文字幕日韩| 嫩草影院精品99| 亚洲美女搞黄在线观看 | 噜噜噜噜噜久久久久久91| xxxwww97欧美| 国产毛片a区久久久久| 久久久久久久久久黄片| 99热这里只有是精品在线观看| 国产精品1区2区在线观看.| 成年女人永久免费观看视频| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 色综合亚洲欧美另类图片| 午夜激情福利司机影院| 看免费成人av毛片| 亚洲av美国av| 一级黄片播放器| 免费看光身美女| 久久久久久伊人网av| 最近中文字幕高清免费大全6 | 亚洲欧美日韩卡通动漫| 久久久色成人| 可以在线观看毛片的网站| 波多野结衣高清无吗| 一级毛片久久久久久久久女| 九色国产91popny在线| 日韩人妻高清精品专区| 欧美zozozo另类| 黄色丝袜av网址大全| 麻豆久久精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 别揉我奶头 嗯啊视频| 国产精品综合久久久久久久免费| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看免费完整高清在 | 亚洲精华国产精华液的使用体验 | 偷拍熟女少妇极品色| 女的被弄到高潮叫床怎么办 | 狂野欧美激情性xxxx在线观看| 禁无遮挡网站| 又爽又黄无遮挡网站| 真人做人爱边吃奶动态| 日本-黄色视频高清免费观看| 久久久久久国产a免费观看| 高清在线国产一区| 亚洲真实伦在线观看| 国产亚洲av嫩草精品影院| 窝窝影院91人妻| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 国产亚洲av嫩草精品影院| 国产淫片久久久久久久久| 美女 人体艺术 gogo| 亚洲人与动物交配视频| xxxwww97欧美| 欧美成人免费av一区二区三区| 亚洲最大成人手机在线| 国产精品一区www在线观看 | 一个人看的www免费观看视频| 在线a可以看的网站| 日本黄色视频三级网站网址| 国产精品福利在线免费观看| 亚洲精品色激情综合| 国产精品三级大全| 深爱激情五月婷婷| 欧美在线一区亚洲| a在线观看视频网站| 别揉我奶头~嗯~啊~动态视频| 午夜激情福利司机影院| 欧美中文日本在线观看视频| 精品久久久久久成人av| 国产大屁股一区二区在线视频| 国内精品久久久久精免费| 久久久久久久久中文| 免费看光身美女| 国产精品亚洲一级av第二区| 日韩欧美 国产精品| 2021天堂中文幕一二区在线观| 黄片wwwwww| 一进一出好大好爽视频| 亚洲熟妇熟女久久| 国产精品女同一区二区软件 | a级一级毛片免费在线观看| av在线亚洲专区| av福利片在线观看| 免费在线观看影片大全网站| 日日啪夜夜撸| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 在线a可以看的网站| 免费观看人在逋| 如何舔出高潮| 99热这里只有是精品50| 欧美日本视频| 婷婷精品国产亚洲av| 我的老师免费观看完整版| 无遮挡黄片免费观看| 亚洲综合色惰| 噜噜噜噜噜久久久久久91| 一个人观看的视频www高清免费观看| 亚洲四区av| 干丝袜人妻中文字幕| 天堂影院成人在线观看| 少妇的逼水好多| 黄色日韩在线| 亚洲精品亚洲一区二区| 国产精品av视频在线免费观看| 色哟哟·www| 国产精品久久久久久av不卡| 亚洲成人久久爱视频| 日韩欧美在线二视频| 午夜视频国产福利| 黄色日韩在线| 欧美又色又爽又黄视频| 日韩中字成人| 国产成人福利小说| 99久久无色码亚洲精品果冻| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 中文字幕高清在线视频| 看免费成人av毛片| 大型黄色视频在线免费观看| 搡女人真爽免费视频火全软件 | 悠悠久久av| 午夜福利18| 变态另类丝袜制服| 91久久精品国产一区二区成人| 精品人妻熟女av久视频| 国产av一区在线观看免费| 中文资源天堂在线| 国产午夜福利久久久久久| 精品久久久久久,| 九色成人免费人妻av| 天天躁日日操中文字幕| 亚洲成a人片在线一区二区| 老女人水多毛片| 又黄又爽又免费观看的视频| 在线观看av片永久免费下载| 香蕉av资源在线| 日本a在线网址| 少妇人妻精品综合一区二区 | 国产高清三级在线| 日韩精品中文字幕看吧| 日韩欧美国产一区二区入口| 色综合亚洲欧美另类图片| 午夜亚洲福利在线播放| 熟女人妻精品中文字幕| 级片在线观看| 欧美激情久久久久久爽电影| 午夜福利在线在线| 亚洲熟妇中文字幕五十中出| 天天躁日日操中文字幕| 女人被狂操c到高潮| 午夜视频国产福利| 色哟哟哟哟哟哟| 久久精品国产清高在天天线| 日日干狠狠操夜夜爽| 亚洲人成伊人成综合网2020| 啦啦啦观看免费观看视频高清| 在线a可以看的网站| 少妇丰满av| 极品教师在线免费播放| 18禁黄网站禁片午夜丰满| 亚洲在线自拍视频| 女同久久另类99精品国产91| avwww免费| 最近中文字幕高清免费大全6 | xxxwww97欧美| 老司机福利观看| 国产免费男女视频| 亚洲美女黄片视频| 国产av不卡久久| 国产精品嫩草影院av在线观看 | 国产精品人妻久久久久久| 一进一出抽搐gif免费好疼| 亚州av有码| 久久国内精品自在自线图片| 免费在线观看日本一区| 免费av毛片视频| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 很黄的视频免费| 小说图片视频综合网站| 久久久精品欧美日韩精品| 国产久久久一区二区三区| ponron亚洲| 丝袜美腿在线中文| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 在现免费观看毛片| 国产精品98久久久久久宅男小说| 成人国产麻豆网| 在线观看午夜福利视频| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 亚洲av免费在线观看| 一本一本综合久久| 啦啦啦韩国在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产一区二区激情短视频| 欧美xxxx性猛交bbbb| 国产亚洲精品综合一区在线观看| 亚洲av中文av极速乱 | 黄色丝袜av网址大全| 日本成人三级电影网站| 在线免费观看的www视频| 久久久色成人| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 99九九线精品视频在线观看视频| 久久久国产成人精品二区| 搞女人的毛片| 一区福利在线观看| 最后的刺客免费高清国语| 天堂网av新在线| 成人国产一区最新在线观看| 嫩草影院精品99| 国产单亲对白刺激| 国产精品国产高清国产av| 亚洲综合色惰| 欧美色视频一区免费| 赤兔流量卡办理| 亚洲精品日韩av片在线观看| 啪啪无遮挡十八禁网站| 久久人妻av系列| 91久久精品电影网| 一级毛片久久久久久久久女| 欧美极品一区二区三区四区| 国产精品98久久久久久宅男小说| 99热只有精品国产| bbb黄色大片| 日韩国内少妇激情av| 一区二区三区免费毛片| 亚洲欧美日韩高清在线视频| 国内少妇人妻偷人精品xxx网站| 乱人视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 亚洲国产欧美人成| 国产69精品久久久久777片| 亚洲国产精品合色在线| 国产私拍福利视频在线观看| 久99久视频精品免费| 国产伦在线观看视频一区| 国产伦精品一区二区三区视频9| 亚洲av免费高清在线观看| 在线播放无遮挡| 黄色女人牲交| 亚洲人与动物交配视频| 又黄又爽又免费观看的视频| 久久久久久久久久黄片| 久久久久性生活片| 免费av不卡在线播放| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区| 男人狂女人下面高潮的视频| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 人妻久久中文字幕网| 国产免费一级a男人的天堂| 我要搜黄色片| 99热这里只有是精品50| 最好的美女福利视频网| 麻豆成人午夜福利视频| 自拍偷自拍亚洲精品老妇| 亚洲av电影不卡..在线观看| 日日撸夜夜添| 日本一本二区三区精品| АⅤ资源中文在线天堂| 亚洲午夜理论影院| 欧美激情在线99| 全区人妻精品视频| 久9热在线精品视频| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 亚洲aⅴ乱码一区二区在线播放| 日韩大尺度精品在线看网址| 美女免费视频网站| 精品欧美国产一区二区三| 久久精品国产亚洲av涩爱 | 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 欧美日韩中文字幕国产精品一区二区三区| 内地一区二区视频在线| 午夜免费成人在线视频| 99久久精品国产国产毛片| 看免费成人av毛片| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 国产一区二区三区av在线 | 欧美日本视频| 长腿黑丝高跟| 99久久成人亚洲精品观看| 国产午夜精品久久久久久一区二区三区 | 免费看日本二区| 国产乱人视频| 99久久精品国产国产毛片| 黄色配什么色好看| 听说在线观看完整版免费高清| 亚洲在线观看片| 黄色女人牲交| 91麻豆av在线| 亚洲精品在线观看二区| 国产亚洲精品久久久com| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 窝窝影院91人妻| 在线免费观看的www视频| 中文字幕免费在线视频6| 日本与韩国留学比较| 国产成人aa在线观看| 日本黄色视频三级网站网址| 啪啪无遮挡十八禁网站| 欧美人与善性xxx| a级毛片免费高清观看在线播放| 国产综合懂色| 日韩精品青青久久久久久| av女优亚洲男人天堂| 免费观看在线日韩| 欧美成人a在线观看| 国内精品一区二区在线观看| 国产精品女同一区二区软件 | 男女做爰动态图高潮gif福利片| 久久草成人影院| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产 | 女人十人毛片免费观看3o分钟| 亚洲性久久影院|