• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Processing the rig test data of an air filling twin-tube shock absorber

    2015-04-22 06:17:30DONGMingming董明明DONGMingming董明明LUOZhenxing駱振興ZHAOYongfei趙永飛

    DONG Ming-ming(董明明), DONG Ming-ming(董明明),LUO Zhen-xing(駱振興), ZHAO Yong-fei(趙永飛)

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Changan Auto Global R & D Institute, Chongqing 401120, China)

    ?

    Processing the rig test data of an air filling twin-tube shock absorber

    DONG Ming-ming(董明明), DONG Ming-ming(董明明)2,LUO Zhen-xing(駱振興)1, ZHAO Yong-fei(趙永飛)1

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Changan Auto Global R & D Institute, Chongqing 401120, China)

    A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.

    air filling shock absorber; force-stroke curve; rig test data; forces separation

    Shock absorber performance is crucial to the vehicle suspension behaviors for handling and ride comfort[1]. Pressure air helps “twin-tube” damper with simple structure and high reliability to conquer the “filling defects by lack of oil” when working at high-frequency excitation[2].

    Many sophisticated shock absorber models have been established for research on dynamic performance. Besinger et al.[3]and Mollica et al.[4], established a precise shock absorber dynamic model to analyze the nonlinear vibration characteristics. Simms et al.[5-6]studied dynamic behaviors by computer simulation and rig test. Herr et al.[7], introduced computational fluid dynamics (CFD) method to study the dynamic performance. Neural network approach was introduced by Fash J W[8]to work out accurate characteristics of the damper. Duym et al. and Cossalter[9-10]developed a physical model with hysteretic behavior. Lion et al.[11]developed a model to depict nonlinear force-velocity behavior characteristics. However, no study of forces separation analysis has been carried on for the difficulties of forces coupling. In this paper, a separation method is proposed for shock absorber design and improvement according to the characteristics of each force and is validated by rig test.

    1 Model of shock absorber

    The outer tube of air filling twin-tube shock absorber filled with pressure air which can accelerate the oil flow during restore stroke to improve the high speed performance and decrease the foaming, is widely used in modern cars. The air filling twin-tube shock absorber is shown in Fig.1. Fig.2 shows how the shock absorber is installed on the test rig. The upper end is connected with a fixed force sensor while the lower end with the test rig, whose displace is measured by the displacement sensor. All these data are collected by data acquisition card and inputted into computer.

    Fig.1 Sketch of air filling twin-tube shock absorber

    Fig.2 Sketch of installing shock absorber on test rig

    From Fig.2, the output force of the force sensor is composed of three parts[12]:

    Fa=Fc+Fg+Ff

    (1)

    whereFais the output force,Fcis hydraulic damping force,Fgis elastic force caused by pressure air,Ffis friction force between piston with inner tube and piston rod with seal in guide. The equivalent model can be expressed in Fig.3.

    Fig.3 Equivalent model of shock absorber

    2 Rig test of shock absorber

    During the shock absorber performance test, the excitation is sinusoidal with amplitude of 50 mm. To achieved different test velocity, ordinary as: 0.16,0.32,0.52,0.64 m/s, different excitation frequencies are needed:

    (2)

    Fig.4 Shock absorber force-stroke curve

    For ordinary damper, the damping force is proportional to the excitation speed on the lower end, and the restore stroke damping coefficient is larger than compress stroke, which makes the stroke-damping force curve consist of two semiellipses with the same major axis, as shown in Fig.4a. The air filling damper can be regarded as a damper and a gas spring in parallel. The displacement force curve is shown in Fig.4b (Pulling force is positive and compression force is negative).

    3 Forces characteristics analysis

    The force data are derived from the rig test, which is the sum of damping force, gas rebound force and friction force. To meet the realistic requirement, a high accurate calculation method to separate these three is in great need.

    3.1 Air elastic force

    Air elastic force can be expressed as

    Fg=p(Al-Au)=pAr

    (3)

    whereAlis area of piston,Auis upper area of piston,Aris sectional area of piston rod,pis air pressure. Using the static equilibrium position as the origin ofx, the length of the gas column isx0. So the volume of the air is

    V0=Atx0

    (4)

    whereAtis the sectional area of the air column. When the length of damper changesx(extension is positive), the air volume can be calcualted as

    V=V0+Arx

    (5)

    For low pressure air (≤0.4 MPa) in the shock absorber, the ideal gas equation is introduced to calculate the pressure change.

    (6)

    whereγiisgaspolytropicexponent.Incommontestconditions,itisabout1.3.), pais standard atmospheric pressure, and p0is air pressure of static equilibrium position.

    To enhance the accuracy of forces separation, the parameters except for polytropic exponent can be identified by statistic test in which the rebound force data is measured at different lengths of shock absorber statically so that the hydraulic force and friction is zero. With the rebound force values at different shock absorber lengths, the pressure can be calculated by isothermal process as

    (p0+pa)V0=(p+pa)(V0+Arx)

    (7)

    The gas pressure can be calculated as

    (8)

    UsingtwovectorFiandxitoexpresstheforcedataanddisplacementdataofncomponents.ThepressurevectorpicanbecalculatedfromEq. (8).WithEq. (7),usingleastsquaremethod,theparameterV0canbeobtained.

    (9)

    WithV0and the structure parameters, the oil column of the damper can be calculated.

    3.2 Friction force

    The friction of the damper is quite complex and varies with working velocities due to different lubrication conditions. More sophisticate model of shock absorber can be referred to Ref.[13]. Since the friction force is small compared to other ones, it will be regarded as a constant under certain test frequency (Varied with different test frequencies). The friction can be expressed as

    (10)

    wherefiis magnitude of friction (scalar).

    Thepolytropicexponentdependsontheheatexchangeconditions,sodifferenttestfrequencieshavedifferentpolytropicexponents.Withcertainpolytropicexponent,theairpressureonlydependsonvelocity,whichisinthemonotropicfunctionofthedamperlengthandhasnothingtodowiththepistonrelativevelocity.

    (11)

    3.3Dampingforce

    Thehydraulicdampingsolelydependsontherelativevelocityofthepiston,regardlessofthepistonposition.

    (12)

    4 Data separation

    Differentcharactersofdampingforce,airreboundforceandfrictioncanbeappliedtoseperateeachforcefromothers.Thedisplacementissinusoidalformwitharbitraryphaseandcanbewrittenas[14]

    xi=X0cos [2πfλ(i-1)Δt+φ]

    (13)

    wherefλis test frequency,Δtissampleinterval, X0isdisplacementamplitude,andφisphase.Tomakeeverydisplacement-forcecurveunderdifferentfrequencieshavethesamedatalength,Δtcanbeexpressedas

    Δt=Tλ/N=1/(Nfλ)

    (14)

    whereNis sample point number. Eq. (14) can be rewritten as

    xi=X0cos[2πfλ(i-1)Δt+φ]=

    (15)

    Phaseφcanbeobtainedbynon-linearfitting,andthedisplacedatacanbetransferredintoastandardcosine.Withthesameprocedure,wegetthenewforcevectorF′itoensurethecorrespondenceoftheelementsintwovectors.

    (16)

    Thevelocityvectorcanbecalculated

    (17)

    whereτ=N/4. For vehicle shock absorber, hydraulic damping forces in compress and restore strokes are different. In compress stroke, the damping force can be expressed as

    (18)

    Theminusinfrontofcp1is to ensurecp1>0 andcp2>0. For restore stroke, the damping force is

    (19)

    Sothewholetestdatacanbedividedintocompressstrokeandrestorestroke.

    (20)

    whereS=N/2.

    (21)

    (22)

    Subscriptpdenotes compress stroke, while subscriptrrestore stroke. Fore compress stroke:

    Fpi=Fpci+Fpgi+Fpfi

    (23)

    According to Eqs.(6) (10) (18), the vector forms of different forces can be calculated as

    (24)

    (25)

    (26)

    where γj,cp1,cp2andFpfjareunknownparametersneedtobecalculated, jistestnumber, iisseriesnumberinvector.Sincetheairreboundforceisnonlinear,linearizationisusedtoavoidsolvingnonlinearequationset.Moretestsprovethatpolytropicexponentisdependedontestfrequency,closingto1.3incommontestfrequencieswithdifferencelessthan0.05.Soitcanbeexpressedas

    γj=1.3+εj

    (27)

    with εjbeinglessthan0.05.ThenonlinearpartinEq. (24)canbeexpressedas

    (28)

    (29)

    (30)

    Thereboundforcecanberewrittenas

    (31)

    Stillsophisticateinappearance,thereboundforcehasalreadybeenconvertedintolinearfunctionofεj.Leastsquaremethodcanbeintroducedtocalcualteothersunknownparameterstoachievetheseparationofeachforce.

    (32)

    Rewrite Eq.(32) by known parameters:

    Fpgi=αi+εjβi

    (33)

    where αiandβicanbeworkedoutbyypi,sotheforceequationcanbeexpressedas

    (34)

    Introduce a new matrixAas

    (35)

    We can transform Eq.(34) as

    (36)

    PremultiplyATtobothsidesofEq.(36)

    (37)

    The least squares solution of these parameters can be finally work out as

    (38)

    Thesameprocedurecanbeusedinrestorestroke.

    5 Validation of the result with experiment

    An air filling shock absorber is adopted for the validation. The test rig is provided by MTS Co. The statistic test is carried out to identify the parameters shown in Fig.5. Four different exciting velocities, 0.16 m/s, 0.32 m/s, 0.52 m/s and 0.64 m/s, are used to obtain the displacement-force curves. The data is used as the input of separation calculation. Then the absorber’s pressure air is released by drilling a hole in the outer tube. The tests are carried out with these exciting velocities as above to obtain the force data without air rebound force. The comparison of different test speeds data without pressure air with the calculation results with air rebound force is carried out as shown in Figs.6-9.

    Fig.5 Displacement-force curves

    Fig.6 Test data and calculation data at speed of 0.64 m/s

    Fig.7 Test data and calculation data at speed of 0.52 m/s

    Fig.8 Test data and calculation data at speed of 0.32 m/s

    Fig.9 Test data and calculation data at speed of 0.16 m/s

    6 Conclusion

    Based on the different characteristics of damping force, air rebound force and friction force, a separation method is proposed. The calculation result is quite close to the test data, which make it usable for engineering application. The difference between calculation and test data may be caused by “filling defects because of the lack of oil”.

    [1] Cao Dongpu, Song Xubin. Editors’ perspectives: road vehicle suspension design, dynamics, and control[J]. Vehicle System Dynamics, 2011, 49(1): 3-28.

    [2] Tan Cao, Liu BaoJi, Yu Defu. Suspension air filling twin-tube shock absorber external characteristic research report[J]. Journal of China Ordnance, 1997(2): 47-54. (in Chinese).

    [3] Besinger F H, Cebon D J, Cole D J. Damper models for heavy vehicle-ride dynamics[J]. Vehicle System Dynamics, 1995, 24(1), 35-64.

    [4] Mollica R, Youcef-Toumi K. A nonlinear dynamic model of a monotube shock absorber[C]∥Proceedings of the American Control Conference, Albuquerque, NM, USA, 1997.

    [5] Smlms A, Crolza D. The influence of damper properties on vehicle dynamic behavior, SAE Paper, 2002-01-0319[R]. Warrendale, PA, USA: Society of Automotive Engineering, 2002.

    [6] Liu Yanqing, Zhang Jianwu. Nonlinear dynamic responses of twin-tube hydraulic shock absorber[J]. Mechanics Research Communications, 2002(29):359-365. (in Chinese).

    [7] Herr F, Mallin T, Lane J, et al. Flow analysis and modeling of shock absorbers[C]∥Proceedings of the 1998 ASME international mechanical engineering congress and exposition, Anaheim, CA, New York, 1998.

    [8] Fash J W. Modeling of shock absorber behavior using artificial neural networks SAE Paper 940248[R]. Warrendale, PA, USA: Society of Automotive Engineering, 1994.

    [9] Duym S, Stiens R, Reybrouck K. Evaluation of shock absorber models[J]. Vehicle System Dynamics, 1997(27): 109-127.

    [10] Cossalter V, Doria A, Pegoraro R, et al. On the non-linear behavior of motorcycle shock absorbers[J]. Journal of Automobile Engineering, 2010, 224(1): 15-27.

    [11] Lion A, Loose S. A thermomechanically coupled model for automotive shock absorbers: theory, experiments and vehicle simulations on test tracks[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2002, 37(4):241-261.

    [12] Dixon J C. The shock absorber handbook[M]. New York: John Wiley and Sons, Ltd, 2007: 257-258.

    [13] Czop P, Stawik D. A high-frequency first-principle model of a shock absorber and servo-hydraulic tester[J]. Mechanical Systems and Signal Processing, 2011, 6(25): 1937-1955.

    [14] Kruse A, Eickhoff M, Tischer A. Analysis of dynamic behavior of twin-tube vehicle shock absorbers[J]. SAE International Journal of Passenger Cars: Mechanical Systems, 2009, 2(1): 447-453.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0210

    U 463.33+5.1 Document code: A Article ID: 1004- 0579(2015)02- 0201- 06

    Received 2013- 11- 05

    E-mail: vdmm@bit.edu.cn

    国产成人福利小说| 狂野欧美激情性xxxx| 叶爱在线成人免费视频播放| 无遮挡黄片免费观看| 成年版毛片免费区| 亚洲欧美日韩高清在线视频| 两人在一起打扑克的视频| 午夜免费激情av| 国产精品日韩av在线免费观看| 精品国产三级普通话版| 亚洲成人久久性| 亚洲自偷自拍图片 自拍| 最近最新中文字幕大全电影3| 午夜激情欧美在线| 久久天躁狠狠躁夜夜2o2o| 亚洲av日韩精品久久久久久密| 少妇丰满av| 亚洲国产高清在线一区二区三| 不卡av一区二区三区| 成人一区二区视频在线观看| 精品午夜福利视频在线观看一区| 免费在线观看亚洲国产| 久久精品91无色码中文字幕| 亚洲中文av在线| 午夜免费观看网址| 男人舔奶头视频| 又黄又粗又硬又大视频| 精品国内亚洲2022精品成人| 欧美成人免费av一区二区三区| 久久久国产成人免费| 99久久无色码亚洲精品果冻| 国产亚洲欧美在线一区二区| 国产精品一及| 美女免费视频网站| 欧美三级亚洲精品| 久久久久免费精品人妻一区二区| 国产精品一区二区免费欧美| 夜夜夜夜夜久久久久| 亚洲色图 男人天堂 中文字幕| 亚洲av电影在线进入| 国产蜜桃级精品一区二区三区| www.自偷自拍.com| h日本视频在线播放| 男女那种视频在线观看| 国产精品久久视频播放| 亚洲九九香蕉| 在线永久观看黄色视频| 欧美又色又爽又黄视频| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久人妻蜜臀av| 国产精品一区二区免费欧美| 精品日产1卡2卡| 精品无人区乱码1区二区| 精品欧美国产一区二区三| 国产黄色小视频在线观看| www国产在线视频色| 俄罗斯特黄特色一大片| 琪琪午夜伦伦电影理论片6080| av国产免费在线观看| 亚洲精品在线美女| 老司机深夜福利视频在线观看| 国产久久久一区二区三区| www国产在线视频色| 丝袜人妻中文字幕| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲欧美在线一区二区| 一a级毛片在线观看| 一区福利在线观看| 日本黄色视频三级网站网址| netflix在线观看网站| 国产成人av激情在线播放| 夜夜躁狠狠躁天天躁| 久久久久精品国产欧美久久久| 狂野欧美激情性xxxx| 欧美日韩一级在线毛片| 国模一区二区三区四区视频 | 亚洲狠狠婷婷综合久久图片| 日韩欧美三级三区| 麻豆成人av在线观看| 亚洲avbb在线观看| 十八禁人妻一区二区| 男女之事视频高清在线观看| 成人特级av手机在线观看| 九九久久精品国产亚洲av麻豆 | 神马国产精品三级电影在线观看| 麻豆久久精品国产亚洲av| 三级国产精品欧美在线观看 | 国内毛片毛片毛片毛片毛片| 偷拍熟女少妇极品色| 黄频高清免费视频| 欧美激情在线99| 欧美黑人巨大hd| 亚洲欧美日韩卡通动漫| 在线观看午夜福利视频| 午夜精品在线福利| 女生性感内裤真人,穿戴方法视频| 久久精品aⅴ一区二区三区四区| 丰满的人妻完整版| 国产精品,欧美在线| 日本精品一区二区三区蜜桃| 久久久久久久午夜电影| 一个人免费在线观看电影 | 成人18禁在线播放| 久久午夜综合久久蜜桃| 亚洲人成网站高清观看| 窝窝影院91人妻| 亚洲自偷自拍图片 自拍| 国产精品98久久久久久宅男小说| 亚洲av成人精品一区久久| 天堂网av新在线| 欧美日韩国产亚洲二区| 老司机深夜福利视频在线观看| 国产亚洲精品一区二区www| 熟妇人妻久久中文字幕3abv| 成人永久免费在线观看视频| 波多野结衣巨乳人妻| 国产亚洲精品av在线| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久久免费视频| xxx96com| 99久久精品一区二区三区| av中文乱码字幕在线| 久久久久久人人人人人| 亚洲国产高清在线一区二区三| 日韩欧美 国产精品| 亚洲 国产 在线| 人人妻,人人澡人人爽秒播| 此物有八面人人有两片| 久久久久久九九精品二区国产| 午夜两性在线视频| 免费在线观看影片大全网站| 12—13女人毛片做爰片一| 精品一区二区三区视频在线观看免费| 国产精品亚洲一级av第二区| 免费在线观看影片大全网站| 日韩欧美国产一区二区入口| 人人妻,人人澡人人爽秒播| 2021天堂中文幕一二区在线观| 国产精品香港三级国产av潘金莲| 午夜免费观看网址| АⅤ资源中文在线天堂| 亚洲av日韩精品久久久久久密| 淫秽高清视频在线观看| 性色av乱码一区二区三区2| 99国产精品一区二区蜜桃av| 天天躁日日操中文字幕| 久久久久国内视频| 欧美成人一区二区免费高清观看 | 一级毛片精品| 99久久99久久久精品蜜桃| 成人永久免费在线观看视频| 国产黄片美女视频| 亚洲熟女毛片儿| 身体一侧抽搐| 成人国产一区最新在线观看| 日韩成人在线观看一区二区三区| 少妇丰满av| 日本免费a在线| 国产成人av教育| 国产综合懂色| 国产成人精品久久二区二区免费| 香蕉久久夜色| 国产乱人伦免费视频| 日韩中文字幕欧美一区二区| 午夜视频精品福利| 国产乱人视频| 亚洲成人中文字幕在线播放| 国产av不卡久久| 极品教师在线免费播放| 欧美激情在线99| a在线观看视频网站| 国产欧美日韩一区二区精品| 国产69精品久久久久777片 | 免费av不卡在线播放| 亚洲国产高清在线一区二区三| 日本免费一区二区三区高清不卡| 国产三级在线视频| av欧美777| 男女床上黄色一级片免费看| 国产精品精品国产色婷婷| 欧美激情在线99| 黄片大片在线免费观看| 久9热在线精品视频| 欧美黄色淫秽网站| 日韩欧美在线二视频| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 无遮挡黄片免费观看| 国产精品日韩av在线免费观看| or卡值多少钱| 亚洲五月天丁香| 成年女人毛片免费观看观看9| 高清在线国产一区| 成人精品一区二区免费| 国产乱人伦免费视频| 午夜福利在线观看免费完整高清在 | 给我免费播放毛片高清在线观看| 一级作爱视频免费观看| e午夜精品久久久久久久| 亚洲男人的天堂狠狠| 一本精品99久久精品77| 欧美最黄视频在线播放免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久久电影 | 久久香蕉精品热| 嫩草影视91久久| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 精品国产乱子伦一区二区三区| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久 | 精品国产乱子伦一区二区三区| 无限看片的www在线观看| 欧美日韩黄片免| 热99在线观看视频| 亚洲狠狠婷婷综合久久图片| 国产成人影院久久av| 成人鲁丝片一二三区免费| 国产成人av激情在线播放| 色老头精品视频在线观看| 国产爱豆传媒在线观看| 国产成年人精品一区二区| 岛国在线免费视频观看| 欧美日韩一级在线毛片| 中文在线观看免费www的网站| 欧美乱码精品一区二区三区| 国产精品久久久久久久电影 | 好男人电影高清在线观看| 色吧在线观看| 亚洲欧美日韩高清专用| 日韩大尺度精品在线看网址| 亚洲中文字幕日韩| 国产真人三级小视频在线观看| 19禁男女啪啪无遮挡网站| 男插女下体视频免费在线播放| 成人亚洲精品av一区二区| 亚洲欧美精品综合一区二区三区| 国产精品一区二区三区四区久久| 国产美女午夜福利| 搡老熟女国产l中国老女人| 天天躁狠狠躁夜夜躁狠狠躁| 少妇裸体淫交视频免费看高清| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 国产精品久久视频播放| 国产成人av激情在线播放| 免费在线观看影片大全网站| 精品国产美女av久久久久小说| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 日韩欧美国产一区二区入口| 91av网站免费观看| 成人鲁丝片一二三区免费| 熟妇人妻久久中文字幕3abv| 搡老岳熟女国产| 欧美在线一区亚洲| 精品99又大又爽又粗少妇毛片 | 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩无卡精品| 国产成人精品无人区| 久久热在线av| 身体一侧抽搐| 午夜福利免费观看在线| 欧美日韩福利视频一区二区| 波多野结衣巨乳人妻| 神马国产精品三级电影在线观看| 偷拍熟女少妇极品色| www国产在线视频色| 亚洲最大成人中文| 久久久成人免费电影| 一边摸一边抽搐一进一小说| 精品久久久久久成人av| 国产精品一区二区精品视频观看| 国产伦精品一区二区三区视频9 | 亚洲成人久久爱视频| 国产成人aa在线观看| 狂野欧美激情性xxxx| 99国产精品99久久久久| 日韩人妻高清精品专区| 日本精品一区二区三区蜜桃| 嫩草影院入口| 欧美另类亚洲清纯唯美| 特级一级黄色大片| 国产又色又爽无遮挡免费看| 国产伦人伦偷精品视频| 99热这里只有精品一区 | 久久精品夜夜夜夜夜久久蜜豆| 99国产精品一区二区蜜桃av| 亚洲欧洲精品一区二区精品久久久| 亚洲成人免费电影在线观看| 麻豆国产97在线/欧美| 欧美色欧美亚洲另类二区| 欧美日韩瑟瑟在线播放| 国产一区二区在线观看日韩 | 久久久久久久久免费视频了| 国产极品精品免费视频能看的| 床上黄色一级片| 18禁黄网站禁片午夜丰满| 看免费av毛片| 亚洲中文字幕日韩| 久久精品aⅴ一区二区三区四区| 99久久无色码亚洲精品果冻| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器 | 9191精品国产免费久久| 亚洲成人中文字幕在线播放| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 激情在线观看视频在线高清| 成人三级黄色视频| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| av天堂在线播放| 99国产综合亚洲精品| 久久这里只有精品19| 亚洲中文日韩欧美视频| 亚洲 国产 在线| 国产黄色小视频在线观看| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 午夜a级毛片| 99在线视频只有这里精品首页| 欧美日韩瑟瑟在线播放| 亚洲激情在线av| 99在线视频只有这里精品首页| 国产精品野战在线观看| 免费在线观看影片大全网站| 免费高清视频大片| 成年人黄色毛片网站| 免费观看精品视频网站| 人妻夜夜爽99麻豆av| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| 欧美高清成人免费视频www| 亚洲国产看品久久| 久久天躁狠狠躁夜夜2o2o| 最近最新中文字幕大全电影3| 欧美三级亚洲精品| 97超视频在线观看视频| 毛片女人毛片| 最近最新中文字幕大全电影3| 九九在线视频观看精品| 久久中文看片网| 真人一进一出gif抽搐免费| 看免费av毛片| 午夜福利18| 男插女下体视频免费在线播放| 少妇的逼水好多| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 精品99又大又爽又粗少妇毛片 | 国产激情欧美一区二区| 999精品在线视频| 哪里可以看免费的av片| 亚洲欧美激情综合另类| 欧美日本视频| 人人妻人人澡欧美一区二区| 国内毛片毛片毛片毛片毛片| 欧美中文日本在线观看视频| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品久久久com| 国产高清三级在线| 欧美日韩黄片免| 床上黄色一级片| 熟女人妻精品中文字幕| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 国产综合懂色| 欧美又色又爽又黄视频| cao死你这个sao货| 精品99又大又爽又粗少妇毛片 | 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 免费大片18禁| 国产成人欧美在线观看| 曰老女人黄片| 久久天堂一区二区三区四区| 欧美成人一区二区免费高清观看 | 成人av一区二区三区在线看| 国产av不卡久久| 三级毛片av免费| 又黄又粗又硬又大视频| 国产男靠女视频免费网站| 久久中文字幕一级| 欧美3d第一页| 黄色成人免费大全| 亚洲国产欧美人成| 少妇的丰满在线观看| 一二三四在线观看免费中文在| 国产高清视频在线观看网站| 黄色片一级片一级黄色片| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆| 99riav亚洲国产免费| 两个人看的免费小视频| 国产野战对白在线观看| 婷婷精品国产亚洲av| 久久久久久久久久黄片| 国产成人av教育| 欧美乱色亚洲激情| 国产精品久久久人人做人人爽| 麻豆国产av国片精品| 韩国av一区二区三区四区| 在线永久观看黄色视频| 好男人在线观看高清免费视频| 国产亚洲精品综合一区在线观看| 亚洲国产精品sss在线观看| 久久久久国内视频| 美女被艹到高潮喷水动态| 热99在线观看视频| 国产成人aa在线观看| 亚洲av五月六月丁香网| 亚洲av成人av| 欧美成人免费av一区二区三区| 亚洲电影在线观看av| 国产精品av久久久久免费| 国产又黄又爽又无遮挡在线| 一级a爱片免费观看的视频| a在线观看视频网站| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| av天堂在线播放| 黄片大片在线免费观看| 国产伦一二天堂av在线观看| 一进一出好大好爽视频| 午夜激情欧美在线| 在线观看免费视频日本深夜| 女生性感内裤真人,穿戴方法视频| 成人三级做爰电影| 亚洲中文字幕一区二区三区有码在线看 | www日本黄色视频网| 午夜精品在线福利| 好看av亚洲va欧美ⅴa在| 国产伦精品一区二区三区视频9 | 在线a可以看的网站| 日本 av在线| 国产精品美女特级片免费视频播放器 | 亚洲 欧美 日韩 在线 免费| 国产精品女同一区二区软件 | 国产在线精品亚洲第一网站| 免费看a级黄色片| 午夜福利在线观看吧| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 亚洲人成电影免费在线| 婷婷亚洲欧美| 亚洲熟妇熟女久久| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 亚洲精华国产精华精| 在线国产一区二区在线| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 51午夜福利影视在线观看| 免费一级毛片在线播放高清视频| 宅男免费午夜| 中文字幕精品亚洲无线码一区| 亚洲专区国产一区二区| 午夜亚洲福利在线播放| 成人欧美大片| 免费av毛片视频| 亚洲欧美精品综合久久99| 大型黄色视频在线免费观看| 啪啪无遮挡十八禁网站| 丁香六月欧美| 黄色女人牲交| 国产亚洲欧美98| 悠悠久久av| 午夜福利视频1000在线观看| 99国产精品一区二区三区| 国产午夜精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区高清视频在线| 国产精品久久视频播放| 香蕉久久夜色| 亚洲av成人av| 中文字幕最新亚洲高清| 国产一区在线观看成人免费| 亚洲成人久久爱视频| 精品国产超薄肉色丝袜足j| 亚洲aⅴ乱码一区二区在线播放| 9191精品国产免费久久| 深夜精品福利| 日本三级黄在线观看| 日韩免费av在线播放| 国产精品久久视频播放| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 欧美大码av| 男女下面进入的视频免费午夜| 国产日本99.免费观看| 色哟哟哟哟哟哟| a级毛片在线看网站| 无限看片的www在线观看| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| 一级a爱片免费观看的视频| 性欧美人与动物交配| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说| 亚洲自偷自拍图片 自拍| 麻豆国产97在线/欧美| 在线播放国产精品三级| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 国产亚洲精品久久久久久毛片| 男女之事视频高清在线观看| 看片在线看免费视频| 黄片小视频在线播放| 人妻久久中文字幕网| av天堂在线播放| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 欧美日韩乱码在线| 久久久久免费精品人妻一区二区| 琪琪午夜伦伦电影理论片6080| 久久午夜综合久久蜜桃| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 精品电影一区二区在线| 两性夫妻黄色片| 亚洲电影在线观看av| 免费看十八禁软件| 亚洲欧美精品综合一区二区三区| 免费搜索国产男女视频| 在线十欧美十亚洲十日本专区| 少妇裸体淫交视频免费看高清| 91在线观看av| 我要搜黄色片| 亚洲成av人片在线播放无| av福利片在线观看| 成人特级av手机在线观看| 久久久精品大字幕| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 国产精品影院久久| 18禁黄网站禁片午夜丰满| 两个人的视频大全免费| 亚洲国产色片| 我的老师免费观看完整版| 久久久色成人| 99久久久亚洲精品蜜臀av| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看 | 国产精华一区二区三区| 精品国产超薄肉色丝袜足j| 美女cb高潮喷水在线观看 | 免费搜索国产男女视频| 色老头精品视频在线观看| 国产精品 国内视频| h日本视频在线播放| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 日日干狠狠操夜夜爽| 老熟妇乱子伦视频在线观看| 亚洲黑人精品在线| 免费av不卡在线播放| 久久亚洲真实| 曰老女人黄片| av视频在线观看入口| 国产精品一区二区三区四区免费观看 | 首页视频小说图片口味搜索| 日本五十路高清| 国产日本99.免费观看| 亚洲真实伦在线观看| 老司机午夜十八禁免费视频| 嫩草影视91久久| 无人区码免费观看不卡| 久久精品人妻少妇| bbb黄色大片| 成人国产一区最新在线观看| 国产成人aa在线观看| 午夜福利在线在线| 成年免费大片在线观看| 亚洲乱码一区二区免费版| 亚洲欧美激情综合另类| 午夜影院日韩av| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 国产真人三级小视频在线观看| 校园春色视频在线观看| 草草在线视频免费看| 高清在线国产一区| 久久精品国产清高在天天线| 中文字幕最新亚洲高清| 亚洲,欧美精品.| 两个人看的免费小视频| 天堂动漫精品| 国产1区2区3区精品| or卡值多少钱| 久久久久免费精品人妻一区二区| av在线天堂中文字幕| 韩国av一区二区三区四区| 国内毛片毛片毛片毛片毛片| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 超碰成人久久| 一个人观看的视频www高清免费观看 | 亚洲人成网站高清观看| 变态另类丝袜制服| 亚洲 欧美一区二区三区| 亚洲无线在线观看| 国产亚洲精品一区二区www| 国产黄色小视频在线观看| 国产精品一区二区精品视频观看|