• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Processing the rig test data of an air filling twin-tube shock absorber

    2015-04-22 06:17:30DONGMingming董明明DONGMingming董明明LUOZhenxing駱振興ZHAOYongfei趙永飛

    DONG Ming-ming(董明明), DONG Ming-ming(董明明),LUO Zhen-xing(駱振興), ZHAO Yong-fei(趙永飛)

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Changan Auto Global R & D Institute, Chongqing 401120, China)

    ?

    Processing the rig test data of an air filling twin-tube shock absorber

    DONG Ming-ming(董明明), DONG Ming-ming(董明明)2,LUO Zhen-xing(駱振興)1, ZHAO Yong-fei(趙永飛)1

    (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;2.Changan Auto Global R & D Institute, Chongqing 401120, China)

    A separation method is proposed to design and improve shock absorber according to the characteristics of each force. The method is validated by rig test. The force data measured during rig test is the resultant force of damping force, rebound force produced by pressed air, and friction force. Different characters of damping force, air rebound force and friction force can be applied to seperate each force from others. A massive produced air filling shock absorber is adopted for the validation. The statistic test is used to get the displacement-force curves. The data are used as the input of separation calculation. Then the tests are carried out again to obtain the force data without air rebound force. The force without air rebound is compared to the data derived from the former tests with the separation method. The result shows that this method can separate the damping force and the air elastic force.

    air filling shock absorber; force-stroke curve; rig test data; forces separation

    Shock absorber performance is crucial to the vehicle suspension behaviors for handling and ride comfort[1]. Pressure air helps “twin-tube” damper with simple structure and high reliability to conquer the “filling defects by lack of oil” when working at high-frequency excitation[2].

    Many sophisticated shock absorber models have been established for research on dynamic performance. Besinger et al.[3]and Mollica et al.[4], established a precise shock absorber dynamic model to analyze the nonlinear vibration characteristics. Simms et al.[5-6]studied dynamic behaviors by computer simulation and rig test. Herr et al.[7], introduced computational fluid dynamics (CFD) method to study the dynamic performance. Neural network approach was introduced by Fash J W[8]to work out accurate characteristics of the damper. Duym et al. and Cossalter[9-10]developed a physical model with hysteretic behavior. Lion et al.[11]developed a model to depict nonlinear force-velocity behavior characteristics. However, no study of forces separation analysis has been carried on for the difficulties of forces coupling. In this paper, a separation method is proposed for shock absorber design and improvement according to the characteristics of each force and is validated by rig test.

    1 Model of shock absorber

    The outer tube of air filling twin-tube shock absorber filled with pressure air which can accelerate the oil flow during restore stroke to improve the high speed performance and decrease the foaming, is widely used in modern cars. The air filling twin-tube shock absorber is shown in Fig.1. Fig.2 shows how the shock absorber is installed on the test rig. The upper end is connected with a fixed force sensor while the lower end with the test rig, whose displace is measured by the displacement sensor. All these data are collected by data acquisition card and inputted into computer.

    Fig.1 Sketch of air filling twin-tube shock absorber

    Fig.2 Sketch of installing shock absorber on test rig

    From Fig.2, the output force of the force sensor is composed of three parts[12]:

    Fa=Fc+Fg+Ff

    (1)

    whereFais the output force,Fcis hydraulic damping force,Fgis elastic force caused by pressure air,Ffis friction force between piston with inner tube and piston rod with seal in guide. The equivalent model can be expressed in Fig.3.

    Fig.3 Equivalent model of shock absorber

    2 Rig test of shock absorber

    During the shock absorber performance test, the excitation is sinusoidal with amplitude of 50 mm. To achieved different test velocity, ordinary as: 0.16,0.32,0.52,0.64 m/s, different excitation frequencies are needed:

    (2)

    Fig.4 Shock absorber force-stroke curve

    For ordinary damper, the damping force is proportional to the excitation speed on the lower end, and the restore stroke damping coefficient is larger than compress stroke, which makes the stroke-damping force curve consist of two semiellipses with the same major axis, as shown in Fig.4a. The air filling damper can be regarded as a damper and a gas spring in parallel. The displacement force curve is shown in Fig.4b (Pulling force is positive and compression force is negative).

    3 Forces characteristics analysis

    The force data are derived from the rig test, which is the sum of damping force, gas rebound force and friction force. To meet the realistic requirement, a high accurate calculation method to separate these three is in great need.

    3.1 Air elastic force

    Air elastic force can be expressed as

    Fg=p(Al-Au)=pAr

    (3)

    whereAlis area of piston,Auis upper area of piston,Aris sectional area of piston rod,pis air pressure. Using the static equilibrium position as the origin ofx, the length of the gas column isx0. So the volume of the air is

    V0=Atx0

    (4)

    whereAtis the sectional area of the air column. When the length of damper changesx(extension is positive), the air volume can be calcualted as

    V=V0+Arx

    (5)

    For low pressure air (≤0.4 MPa) in the shock absorber, the ideal gas equation is introduced to calculate the pressure change.

    (6)

    whereγiisgaspolytropicexponent.Incommontestconditions,itisabout1.3.), pais standard atmospheric pressure, and p0is air pressure of static equilibrium position.

    To enhance the accuracy of forces separation, the parameters except for polytropic exponent can be identified by statistic test in which the rebound force data is measured at different lengths of shock absorber statically so that the hydraulic force and friction is zero. With the rebound force values at different shock absorber lengths, the pressure can be calculated by isothermal process as

    (p0+pa)V0=(p+pa)(V0+Arx)

    (7)

    The gas pressure can be calculated as

    (8)

    UsingtwovectorFiandxitoexpresstheforcedataanddisplacementdataofncomponents.ThepressurevectorpicanbecalculatedfromEq. (8).WithEq. (7),usingleastsquaremethod,theparameterV0canbeobtained.

    (9)

    WithV0and the structure parameters, the oil column of the damper can be calculated.

    3.2 Friction force

    The friction of the damper is quite complex and varies with working velocities due to different lubrication conditions. More sophisticate model of shock absorber can be referred to Ref.[13]. Since the friction force is small compared to other ones, it will be regarded as a constant under certain test frequency (Varied with different test frequencies). The friction can be expressed as

    (10)

    wherefiis magnitude of friction (scalar).

    Thepolytropicexponentdependsontheheatexchangeconditions,sodifferenttestfrequencieshavedifferentpolytropicexponents.Withcertainpolytropicexponent,theairpressureonlydependsonvelocity,whichisinthemonotropicfunctionofthedamperlengthandhasnothingtodowiththepistonrelativevelocity.

    (11)

    3.3Dampingforce

    Thehydraulicdampingsolelydependsontherelativevelocityofthepiston,regardlessofthepistonposition.

    (12)

    4 Data separation

    Differentcharactersofdampingforce,airreboundforceandfrictioncanbeappliedtoseperateeachforcefromothers.Thedisplacementissinusoidalformwitharbitraryphaseandcanbewrittenas[14]

    xi=X0cos [2πfλ(i-1)Δt+φ]

    (13)

    wherefλis test frequency,Δtissampleinterval, X0isdisplacementamplitude,andφisphase.Tomakeeverydisplacement-forcecurveunderdifferentfrequencieshavethesamedatalength,Δtcanbeexpressedas

    Δt=Tλ/N=1/(Nfλ)

    (14)

    whereNis sample point number. Eq. (14) can be rewritten as

    xi=X0cos[2πfλ(i-1)Δt+φ]=

    (15)

    Phaseφcanbeobtainedbynon-linearfitting,andthedisplacedatacanbetransferredintoastandardcosine.Withthesameprocedure,wegetthenewforcevectorF′itoensurethecorrespondenceoftheelementsintwovectors.

    (16)

    Thevelocityvectorcanbecalculated

    (17)

    whereτ=N/4. For vehicle shock absorber, hydraulic damping forces in compress and restore strokes are different. In compress stroke, the damping force can be expressed as

    (18)

    Theminusinfrontofcp1is to ensurecp1>0 andcp2>0. For restore stroke, the damping force is

    (19)

    Sothewholetestdatacanbedividedintocompressstrokeandrestorestroke.

    (20)

    whereS=N/2.

    (21)

    (22)

    Subscriptpdenotes compress stroke, while subscriptrrestore stroke. Fore compress stroke:

    Fpi=Fpci+Fpgi+Fpfi

    (23)

    According to Eqs.(6) (10) (18), the vector forms of different forces can be calculated as

    (24)

    (25)

    (26)

    where γj,cp1,cp2andFpfjareunknownparametersneedtobecalculated, jistestnumber, iisseriesnumberinvector.Sincetheairreboundforceisnonlinear,linearizationisusedtoavoidsolvingnonlinearequationset.Moretestsprovethatpolytropicexponentisdependedontestfrequency,closingto1.3incommontestfrequencieswithdifferencelessthan0.05.Soitcanbeexpressedas

    γj=1.3+εj

    (27)

    with εjbeinglessthan0.05.ThenonlinearpartinEq. (24)canbeexpressedas

    (28)

    (29)

    (30)

    Thereboundforcecanberewrittenas

    (31)

    Stillsophisticateinappearance,thereboundforcehasalreadybeenconvertedintolinearfunctionofεj.Leastsquaremethodcanbeintroducedtocalcualteothersunknownparameterstoachievetheseparationofeachforce.

    (32)

    Rewrite Eq.(32) by known parameters:

    Fpgi=αi+εjβi

    (33)

    where αiandβicanbeworkedoutbyypi,sotheforceequationcanbeexpressedas

    (34)

    Introduce a new matrixAas

    (35)

    We can transform Eq.(34) as

    (36)

    PremultiplyATtobothsidesofEq.(36)

    (37)

    The least squares solution of these parameters can be finally work out as

    (38)

    Thesameprocedurecanbeusedinrestorestroke.

    5 Validation of the result with experiment

    An air filling shock absorber is adopted for the validation. The test rig is provided by MTS Co. The statistic test is carried out to identify the parameters shown in Fig.5. Four different exciting velocities, 0.16 m/s, 0.32 m/s, 0.52 m/s and 0.64 m/s, are used to obtain the displacement-force curves. The data is used as the input of separation calculation. Then the absorber’s pressure air is released by drilling a hole in the outer tube. The tests are carried out with these exciting velocities as above to obtain the force data without air rebound force. The comparison of different test speeds data without pressure air with the calculation results with air rebound force is carried out as shown in Figs.6-9.

    Fig.5 Displacement-force curves

    Fig.6 Test data and calculation data at speed of 0.64 m/s

    Fig.7 Test data and calculation data at speed of 0.52 m/s

    Fig.8 Test data and calculation data at speed of 0.32 m/s

    Fig.9 Test data and calculation data at speed of 0.16 m/s

    6 Conclusion

    Based on the different characteristics of damping force, air rebound force and friction force, a separation method is proposed. The calculation result is quite close to the test data, which make it usable for engineering application. The difference between calculation and test data may be caused by “filling defects because of the lack of oil”.

    [1] Cao Dongpu, Song Xubin. Editors’ perspectives: road vehicle suspension design, dynamics, and control[J]. Vehicle System Dynamics, 2011, 49(1): 3-28.

    [2] Tan Cao, Liu BaoJi, Yu Defu. Suspension air filling twin-tube shock absorber external characteristic research report[J]. Journal of China Ordnance, 1997(2): 47-54. (in Chinese).

    [3] Besinger F H, Cebon D J, Cole D J. Damper models for heavy vehicle-ride dynamics[J]. Vehicle System Dynamics, 1995, 24(1), 35-64.

    [4] Mollica R, Youcef-Toumi K. A nonlinear dynamic model of a monotube shock absorber[C]∥Proceedings of the American Control Conference, Albuquerque, NM, USA, 1997.

    [5] Smlms A, Crolza D. The influence of damper properties on vehicle dynamic behavior, SAE Paper, 2002-01-0319[R]. Warrendale, PA, USA: Society of Automotive Engineering, 2002.

    [6] Liu Yanqing, Zhang Jianwu. Nonlinear dynamic responses of twin-tube hydraulic shock absorber[J]. Mechanics Research Communications, 2002(29):359-365. (in Chinese).

    [7] Herr F, Mallin T, Lane J, et al. Flow analysis and modeling of shock absorbers[C]∥Proceedings of the 1998 ASME international mechanical engineering congress and exposition, Anaheim, CA, New York, 1998.

    [8] Fash J W. Modeling of shock absorber behavior using artificial neural networks SAE Paper 940248[R]. Warrendale, PA, USA: Society of Automotive Engineering, 1994.

    [9] Duym S, Stiens R, Reybrouck K. Evaluation of shock absorber models[J]. Vehicle System Dynamics, 1997(27): 109-127.

    [10] Cossalter V, Doria A, Pegoraro R, et al. On the non-linear behavior of motorcycle shock absorbers[J]. Journal of Automobile Engineering, 2010, 224(1): 15-27.

    [11] Lion A, Loose S. A thermomechanically coupled model for automotive shock absorbers: theory, experiments and vehicle simulations on test tracks[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility,2002, 37(4):241-261.

    [12] Dixon J C. The shock absorber handbook[M]. New York: John Wiley and Sons, Ltd, 2007: 257-258.

    [13] Czop P, Stawik D. A high-frequency first-principle model of a shock absorber and servo-hydraulic tester[J]. Mechanical Systems and Signal Processing, 2011, 6(25): 1937-1955.

    [14] Kruse A, Eickhoff M, Tischer A. Analysis of dynamic behavior of twin-tube vehicle shock absorbers[J]. SAE International Journal of Passenger Cars: Mechanical Systems, 2009, 2(1): 447-453.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0210

    U 463.33+5.1 Document code: A Article ID: 1004- 0579(2015)02- 0201- 06

    Received 2013- 11- 05

    E-mail: vdmm@bit.edu.cn

    亚洲国产精品合色在线| 最近在线观看免费完整版| 亚洲国产精品成人综合色| 九九热线精品视视频播放| 90打野战视频偷拍视频| 综合色av麻豆| av在线天堂中文字幕| 日本a在线网址| 欧美性猛交╳xxx乱大交人| 国产亚洲av高清不卡| 看黄色毛片网站| 国产成人啪精品午夜网站| 久久这里只有精品19| 可以在线观看的亚洲视频| 国产日本99.免费观看| 国产精品美女特级片免费视频播放器 | 啦啦啦韩国在线观看视频| 国产精品九九99| 免费观看人在逋| 性色av乱码一区二区三区2| 欧美xxxx黑人xx丫x性爽| 黄色片一级片一级黄色片| 精品午夜福利视频在线观看一区| 首页视频小说图片口味搜索| 97超级碰碰碰精品色视频在线观看| 久久亚洲真实| 久久久色成人| 久久久久性生活片| 亚洲avbb在线观看| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 久久这里只有精品19| 亚洲av中文字字幕乱码综合| 久久久久久人人人人人| 国产一区二区激情短视频| 精品欧美国产一区二区三| 国产久久久一区二区三区| 国内精品一区二区在线观看| 男女做爰动态图高潮gif福利片| а√天堂www在线а√下载| 日本黄色片子视频| 国产毛片a区久久久久| 神马国产精品三级电影在线观看| 听说在线观看完整版免费高清| 日韩有码中文字幕| 一本综合久久免费| 色噜噜av男人的天堂激情| 99国产精品一区二区蜜桃av| 欧美大码av| 香蕉久久夜色| 亚洲欧美日韩无卡精品| 夜夜爽天天搞| 久久久久久久久免费视频了| 日本黄大片高清| 色吧在线观看| 1024手机看黄色片| 韩国av一区二区三区四区| 国产三级中文精品| 国产一区二区在线av高清观看| 最近在线观看免费完整版| 啦啦啦韩国在线观看视频| 日韩欧美 国产精品| 久久精品影院6| 麻豆国产av国片精品| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 哪里可以看免费的av片| 亚洲成a人片在线一区二区| 9191精品国产免费久久| 波多野结衣高清无吗| 综合色av麻豆| xxxwww97欧美| 国产精品永久免费网站| 国产在线精品亚洲第一网站| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| 在线观看午夜福利视频| 看片在线看免费视频| 亚洲天堂国产精品一区在线| 99视频精品全部免费 在线 | 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 久久久久亚洲av毛片大全| 成在线人永久免费视频| 99热这里只有精品一区 | 久久久国产精品麻豆| 国产日本99.免费观看| 韩国av一区二区三区四区| 久久国产乱子伦精品免费另类| 一夜夜www| 特大巨黑吊av在线直播| 亚洲熟女毛片儿| 美女高潮喷水抽搐中文字幕| 国产成人影院久久av| www.熟女人妻精品国产| 成人av一区二区三区在线看| 舔av片在线| 美女高潮的动态| 又黄又爽又免费观看的视频| 亚洲av免费在线观看| 黄片大片在线免费观看| 亚洲国产欧美网| 久久久国产欧美日韩av| 中国美女看黄片| 欧美一级a爱片免费观看看| 每晚都被弄得嗷嗷叫到高潮| 91av网站免费观看| 色尼玛亚洲综合影院| 国产精品久久久久久久电影 | 69av精品久久久久久| 欧美国产日韩亚洲一区| 亚洲成人免费电影在线观看| 久久久国产精品麻豆| 成人鲁丝片一二三区免费| 在线十欧美十亚洲十日本专区| 最新中文字幕久久久久 | 天天一区二区日本电影三级| 国产精品,欧美在线| 在线观看午夜福利视频| 亚洲在线观看片| 午夜福利高清视频| 欧美成人性av电影在线观看| 国产成人欧美在线观看| 99精品在免费线老司机午夜| 日韩精品中文字幕看吧| 人妻夜夜爽99麻豆av| 18禁黄网站禁片免费观看直播| 天堂√8在线中文| 色播亚洲综合网| 首页视频小说图片口味搜索| 午夜日韩欧美国产| 免费av不卡在线播放| 日韩欧美精品v在线| 哪里可以看免费的av片| 在线观看午夜福利视频| 欧美另类亚洲清纯唯美| 观看免费一级毛片| 在线观看66精品国产| 亚洲乱码一区二区免费版| 99热只有精品国产| 色播亚洲综合网| 国产单亲对白刺激| 真人做人爱边吃奶动态| 欧美三级亚洲精品| 色综合亚洲欧美另类图片| 欧美黑人欧美精品刺激| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 99在线人妻在线中文字幕| av片东京热男人的天堂| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 国产av一区在线观看免费| 老汉色∧v一级毛片| 最近视频中文字幕2019在线8| 91麻豆av在线| 一进一出抽搐gif免费好疼| 国产欧美日韩精品亚洲av| 亚洲成av人片免费观看| 欧美一级毛片孕妇| 国产高清videossex| 日韩国内少妇激情av| 好男人电影高清在线观看| 色吧在线观看| 日韩av在线大香蕉| 精品无人区乱码1区二区| 成人一区二区视频在线观看| 麻豆成人av在线观看| 最新美女视频免费是黄的| 怎么达到女性高潮| 亚洲精品一卡2卡三卡4卡5卡| 免费看a级黄色片| 久久香蕉国产精品| av女优亚洲男人天堂 | 国产av不卡久久| xxxwww97欧美| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 国产高清三级在线| 午夜福利高清视频| 日本 欧美在线| 久久久精品大字幕| 男女下面进入的视频免费午夜| 毛片女人毛片| 天天一区二区日本电影三级| 深夜精品福利| 欧美成人免费av一区二区三区| 精品不卡国产一区二区三区| 免费大片18禁| 怎么达到女性高潮| 国内揄拍国产精品人妻在线| 99久久国产精品久久久| 欧美日韩综合久久久久久 | 精品久久久久久成人av| 日本免费一区二区三区高清不卡| 男女视频在线观看网站免费| 真人做人爱边吃奶动态| 欧美午夜高清在线| 一级作爱视频免费观看| av天堂中文字幕网| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 在线观看免费午夜福利视频| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 欧美一级毛片孕妇| 97碰自拍视频| 最近在线观看免费完整版| 亚洲国产精品合色在线| 麻豆国产97在线/欧美| 精品日产1卡2卡| 日韩欧美 国产精品| 欧美激情在线99| 丁香六月欧美| 国产精品av视频在线免费观看| 欧美日韩福利视频一区二区| 欧美日韩综合久久久久久 | 亚洲 欧美一区二区三区| 欧美日本亚洲视频在线播放| 成人av在线播放网站| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 国产精品 欧美亚洲| 又粗又爽又猛毛片免费看| 嫩草影院入口| 搞女人的毛片| 国产三级黄色录像| 日本三级黄在线观看| 久久精品人妻少妇| 久久九九热精品免费| 无限看片的www在线观看| 国产高清视频在线观看网站| 亚洲国产精品久久男人天堂| 日韩欧美精品v在线| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 国产成人福利小说| 91老司机精品| 亚洲激情在线av| av片东京热男人的天堂| 18禁观看日本| 1024手机看黄色片| 色老头精品视频在线观看| 免费电影在线观看免费观看| 少妇的丰满在线观看| 黄色 视频免费看| 夜夜爽天天搞| 亚洲国产精品合色在线| 免费大片18禁| 久久精品国产综合久久久| 99精品欧美一区二区三区四区| 中出人妻视频一区二区| 伊人久久大香线蕉亚洲五| 亚洲精华国产精华精| 久久久久免费精品人妻一区二区| 一二三四社区在线视频社区8| 精品午夜福利视频在线观看一区| 久久人人精品亚洲av| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费 | 老司机午夜十八禁免费视频| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 色综合婷婷激情| 美女黄网站色视频| 老司机福利观看| 日韩人妻高清精品专区| 久久性视频一级片| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站| 亚洲在线自拍视频| 免费电影在线观看免费观看| 日本在线视频免费播放| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 熟女电影av网| 精品久久久久久久末码| 欧美日韩瑟瑟在线播放| 久久久精品欧美日韩精品| 国产精品一区二区免费欧美| 1024香蕉在线观看| 国产精品 欧美亚洲| 久久国产乱子伦精品免费另类| 操出白浆在线播放| 亚洲精品在线美女| 99riav亚洲国产免费| 亚洲国产精品合色在线| 日本a在线网址| 欧美高清成人免费视频www| 中文字幕人妻丝袜一区二区| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 亚洲人与动物交配视频| 老汉色∧v一级毛片| 久久久久国内视频| 亚洲欧美精品综合一区二区三区| 一个人观看的视频www高清免费观看 | 黄色 视频免费看| 久久久久国内视频| 国产亚洲av高清不卡| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 听说在线观看完整版免费高清| 可以在线观看毛片的网站| 黄片小视频在线播放| 少妇的丰满在线观看| 午夜福利在线观看免费完整高清在 | 亚洲,欧美精品.| 亚洲欧美日韩高清专用| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 在线a可以看的网站| 我要搜黄色片| 无限看片的www在线观看| 亚洲av电影在线进入| 免费观看精品视频网站| 亚洲av成人av| 久久久国产成人精品二区| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| АⅤ资源中文在线天堂| 最新在线观看一区二区三区| 精品福利观看| 亚洲熟妇熟女久久| 女人被狂操c到高潮| 精品不卡国产一区二区三区| 久久久久久久午夜电影| 99久国产av精品| 三级国产精品欧美在线观看 | 亚洲av片天天在线观看| 九九久久精品国产亚洲av麻豆 | 99久久综合精品五月天人人| 一区二区三区激情视频| 最近最新中文字幕大全免费视频| 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看| 观看免费一级毛片| 亚洲,欧美精品.| svipshipincom国产片| 欧美av亚洲av综合av国产av| 国产视频内射| 国产野战对白在线观看| 日本黄色片子视频| 亚洲国产精品sss在线观看| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 999久久久国产精品视频| 好男人在线观看高清免费视频| 欧美三级亚洲精品| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 18禁观看日本| 老司机午夜十八禁免费视频| 久久人人精品亚洲av| av片东京热男人的天堂| 丁香欧美五月| 色av中文字幕| 色噜噜av男人的天堂激情| 亚洲第一欧美日韩一区二区三区| 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx| 精品久久久久久,| 亚洲人成电影免费在线| 午夜福利高清视频| 最近在线观看免费完整版| 精品国产亚洲在线| 好男人在线观看高清免费视频| 色哟哟哟哟哟哟| 精品一区二区三区视频在线 | 九九久久精品国产亚洲av麻豆 | 动漫黄色视频在线观看| 禁无遮挡网站| 国产高潮美女av| 亚洲国产色片| 好男人电影高清在线观看| 无人区码免费观看不卡| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 一区二区三区高清视频在线| 狂野欧美白嫩少妇大欣赏| 久久精品人妻少妇| 美女高潮的动态| 亚洲国产精品999在线| 精品午夜福利视频在线观看一区| 国产伦精品一区二区三区视频9 | 一级毛片高清免费大全| 午夜福利免费观看在线| 欧美乱色亚洲激情| cao死你这个sao货| 在线观看免费视频日本深夜| 午夜精品在线福利| 97碰自拍视频| 成年女人毛片免费观看观看9| 精华霜和精华液先用哪个| 久久草成人影院| 中文字幕人成人乱码亚洲影| 日本在线视频免费播放| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| a级毛片a级免费在线| 久久久久免费精品人妻一区二区| 狠狠狠狠99中文字幕| h日本视频在线播放| 欧美xxxx黑人xx丫x性爽| 熟女电影av网| 在线观看免费午夜福利视频| 国产野战对白在线观看| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 极品教师在线免费播放| 婷婷亚洲欧美| 免费观看的影片在线观看| 国产高潮美女av| x7x7x7水蜜桃| 国产又色又爽无遮挡免费看| 最新美女视频免费是黄的| 长腿黑丝高跟| 欧美日本视频| 两个人视频免费观看高清| 国产精品98久久久久久宅男小说| 香蕉国产在线看| 18禁观看日本| 亚洲第一欧美日韩一区二区三区| 在线永久观看黄色视频| 天堂网av新在线| 久久久国产精品麻豆| 久久精品亚洲精品国产色婷小说| a级毛片在线看网站| 成年女人看的毛片在线观看| 国产成人aa在线观看| 亚洲精品一区av在线观看| 色综合欧美亚洲国产小说| 日本 av在线| 国产高清三级在线| 露出奶头的视频| 欧美绝顶高潮抽搐喷水| 亚洲精品久久国产高清桃花| 久久久久久人人人人人| 欧美3d第一页| 91九色精品人成在线观看| 男女之事视频高清在线观看| 黄色日韩在线| 麻豆成人午夜福利视频| av中文乱码字幕在线| 91麻豆av在线| 欧美黄色片欧美黄色片| 亚洲国产欧美网| 最近最新中文字幕大全免费视频| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线 | 久久中文字幕一级| 国产精品一区二区三区四区免费观看 | 禁无遮挡网站| 久久久久亚洲av毛片大全| 欧美成人免费av一区二区三区| 久久天堂一区二区三区四区| 国产伦精品一区二区三区四那| 俄罗斯特黄特色一大片| 在线观看66精品国产| 精品一区二区三区视频在线 | 免费看美女性在线毛片视频| 一二三四在线观看免费中文在| 国产欧美日韩一区二区精品| 亚洲乱码一区二区免费版| 法律面前人人平等表现在哪些方面| 丰满人妻一区二区三区视频av | 亚洲va日本ⅴa欧美va伊人久久| 欧美xxxx黑人xx丫x性爽| 一区二区三区高清视频在线| 久久草成人影院| 18禁国产床啪视频网站| 看片在线看免费视频| 亚洲欧美一区二区三区黑人| 动漫黄色视频在线观看| 夜夜夜夜夜久久久久| avwww免费| 夜夜躁狠狠躁天天躁| 一个人免费在线观看的高清视频| 色老头精品视频在线观看| 成年人黄色毛片网站| 人人妻,人人澡人人爽秒播| 99热这里只有精品一区 | 黄色丝袜av网址大全| 九色成人免费人妻av| 国产免费男女视频| 桃红色精品国产亚洲av| 午夜福利在线在线| 色尼玛亚洲综合影院| 久久香蕉国产精品| 亚洲午夜精品一区,二区,三区| 成年人黄色毛片网站| 午夜影院日韩av| 亚洲精品色激情综合| 韩国av一区二区三区四区| 亚洲五月天丁香| 国产爱豆传媒在线观看| 亚洲av电影不卡..在线观看| АⅤ资源中文在线天堂| www日本在线高清视频| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 国产久久久一区二区三区| 亚洲精品粉嫩美女一区| 国产精品乱码一区二三区的特点| 成年人黄色毛片网站| 午夜影院日韩av| 中文在线观看免费www的网站| 国产精品爽爽va在线观看网站| 国产乱人伦免费视频| av女优亚洲男人天堂 | 99热这里只有是精品50| 日韩欧美免费精品| 久久香蕉精品热| 国产日本99.免费观看| 免费av毛片视频| 亚洲av成人一区二区三| 亚洲精品久久国产高清桃花| av天堂在线播放| 黄色丝袜av网址大全| 综合色av麻豆| 一级黄色大片毛片| aaaaa片日本免费| 九九久久精品国产亚洲av麻豆 | 亚洲精品色激情综合| 又黄又粗又硬又大视频| 男人和女人高潮做爰伦理| 亚洲国产精品999在线| 国产成人av激情在线播放| 国内毛片毛片毛片毛片毛片| 动漫黄色视频在线观看| 亚洲第一欧美日韩一区二区三区| 免费高清视频大片| 成人国产综合亚洲| 国产真实乱freesex| 男人舔女人下体高潮全视频| 亚洲av中文字字幕乱码综合| 嫩草影院入口| av天堂在线播放| 久久午夜综合久久蜜桃| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩高清在线视频| 国产伦人伦偷精品视频| 两个人的视频大全免费| 一卡2卡三卡四卡精品乱码亚洲| 老汉色av国产亚洲站长工具| 手机成人av网站| 国产成人av教育| 久久久成人免费电影| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡欧美一区二区| 男女那种视频在线观看| 日本免费a在线| 国产极品精品免费视频能看的| 首页视频小说图片口味搜索| 亚洲熟妇中文字幕五十中出| 手机成人av网站| 中文字幕精品亚洲无线码一区| 亚洲激情在线av| 国产精品99久久久久久久久| 香蕉国产在线看| 国产不卡一卡二| 天堂av国产一区二区熟女人妻| 欧美xxxx黑人xx丫x性爽| 最好的美女福利视频网| 久久久精品大字幕| 久久久久久久精品吃奶| 伊人久久大香线蕉亚洲五| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 999久久久精品免费观看国产| 91麻豆av在线| 视频区欧美日本亚洲| 熟女电影av网| 中出人妻视频一区二区| 久久精品综合一区二区三区| 亚洲人成网站在线播放欧美日韩| 很黄的视频免费| 丰满人妻一区二区三区视频av | 亚洲无线观看免费| 两性夫妻黄色片| 男女下面进入的视频免费午夜| 午夜日韩欧美国产| 又大又爽又粗| 日韩欧美精品v在线| 91老司机精品| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 成年女人毛片免费观看观看9| 国产一区二区激情短视频| 国产视频一区二区在线看| 国产单亲对白刺激| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播放欧美日韩| 国产v大片淫在线免费观看| 久久久久久久午夜电影| 一区二区三区激情视频| 精品久久久久久成人av| 99国产综合亚洲精品| 国产极品精品免费视频能看的| 国产精品久久电影中文字幕| 黄色视频,在线免费观看| 亚洲成人久久性| 中文字幕最新亚洲高清|