• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resilience approach for heterogeneous distributed networked unmanned weapon systems

    2015-04-22 06:17:28JINYining晉一寧WUYanxuan吳炎烜FANNingjun范寧軍

    JIN Yi-ning(晉一寧), WU Yan-xuan(吳炎烜), FAN Ning-jun(范寧軍)

    (School of of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Resilience approach for heterogeneous distributed networked unmanned weapon systems

    JIN Yi-ning(晉一寧), WU Yan-xuan(吳炎烜), FAN Ning-jun(范寧軍)

    (School of of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units’ failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to achieve fault tolerance after weapon units’ failure due to attack or energy exhaustion. An improved genetic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.

    distributed heterogeneous network; unmanned weapon system; genetic algorithm; resilience

    With the development of communication, computer and network technologies, modern warfare gradually developed from a single-platform combat to a multi-platform network combat[1]. And a network-based combat is becoming an important tendency in the information warfare. Networked unmanned weapon system (NUWS) is a type of intelligent combat system illustrated in Fig.1. It uses the network connection to obtain multi-channel information and processing abilities (even the energy) from different weapon units to complete combat missions, such as battlefield reconnaissance, communication relay, targets attack, and damage assessment. NUWS usually executes missions by its large number of micro and small unmanned weapons units based on the network. After the failures of plenty of weapon units due to attack or energy exhaustion, the network is tore apart. In order to complete the combat tasks, how to restore the connectivity of the network in a certain degree becomes very important. And this is the resilienceproblem we focused on in this paper.

    Fig.1 Illustration of NUWS

    Currently, there is no public information about the NUWS resilience study, and the related studies are mainly concentrated in the wireless sensor networks (WSN) area. We classify the methods to achieve resilience in WSN into passive methods and active methods. The passive methods are redundancy methods[2-4]. And the active methods are relocating the existing nodes in the network[5-7]or adding extra relay nodes to form multi-hop network connectivity[8-11]. The redundancy methods realize fault-tolerance at the expense of high cost and energy consumption, while the weapon units in NUWS are much more expensive than the sensor nodes in WSN. Thus, it is impossible to deploy weapon units redundantly. Relocating methods are more suitable for small nodes failure scale as only local adjustment is needed. However, when large scale of weapon units are damaged in the battlefield, these methods require a global adjustment of the weapon units, which is inefficient and costly. Above all, the most efficient and low-cost resilience approach for NUWS is to add multiple extra weapon units to restore the network connectivity.

    The methods of adding relay nodes are mainly geometric methods, such as the MST-based (minimum spanning tree-based) algorithm[8-10]and CIDT (connectivity improvement using delaunay triangulation) algorithm[11]etc. They mainly focus on finding the least number of relay nodes needed to restore 100% connectivity in homogeneous WSN. However, in the application of NUWS, using a given limited number of relay weapon units to achieve a maximum level of connectivity is much more close to the real situation. Moreover, the geometric methods are not suitable for heterogeneous NUWS. The NUWS is a highly heterogeneous distributed system, which consists of different weapon units that use different communication devices and different communication radius. Therefore, the above methods are not suitable for solving the NUWS resilience problem. In this paper, genetic algorithm is going to be used to calculate and optimize the positions of the relay weapon units, with the purpose of restoring the connectivity of NUWS maximumly by a given limited number of relay weapon units and controlling the cost of implementation.

    1 Problem description and system modeling

    1.1 Problem description

    NUWS is a mobile autonomous combat network without infrastructure support, and the nodes in the network are micro and small unmanned weapon units, which can be employed in the water, on the land or in the sky. Compared with a centralized network, NUWS is a kind of distributed network, in which each weapon unit can only communicate directly with its adjacent units. This provides stronger survivability and invulnerability in harsh battlefield environments. However, due to the volume restriction, weapon units cannot provide enough energy for long-time work, and failures happen after running out of energy. Besides, weapon units may also fail as the results of enemy attack or harsh environments. In this case, the network connectivity has been greatly damaged, which may decrease the capability of NUWS, or even fail to complete the mission.

    Therefore the problem needs to be solved is described as follows. For a given area, after the failures of quite a few weapon units, the heterogeneous distributed NUWS becomes disconnected, the target is to calculate and optimize the positions for a given limited number of relay weapon units to restore the connectivity of NUWS maximally and take the implementation cost into consideration. The problem here is a non-deterministic polynomial complete (NPC) problem.

    1.2 System modeling

    In this paper, it is assumed that each weapon unit in NUWS is distributed randomly within a two-dimensional combat zone, and the damage probability of each unit obeys an exponential distribution and is independent from each other. NUWS is a highly heterogeneous network, and we are mainly focus on the communication heterogeneity in this paper. Each weapon unit has different communication radius. The remaining weapon units in NUWS after failure are called target units and are represented by the set UV={UV1,UV2,…,UVn}; the relay weapon units added into the damaged NUWS are represented by the set UR={UR1,UR2,…,URm}. Assuming that the communication radius of target units areRUVmin≤r(UVi)≤RUVmax, and all relay units have the same communication radiusr(URi)=RUR. Unidirectional communication link is proven to be costly[12], so bidirectional communication path is considered in this paper, along which communications existing in both directions. Thus, when and only when the Euclidean distance between two unitsi,j(i,j∈UV∪UR) is smaller than their communication radius, that isdij≤min (ri,rj), communication is established between them. NUWS is modeled as a undirected graphG=(UV∪UR,E), whereEis the set of all undirected communication links connecting two weapon units inG, the schematic diagram is shown in Fig.2. If and only ifdij≤min (ri,rj), the communication link is established andeij=eji=1.

    Fig.2 An example of the system model of NUWS

    2 Improved genetic algorithm

    As the problem here is a NPC problem, the computation increases exponentially with the growing number of weapon units in the NUWS, so it is difficult for numerical algorithms to find an optimal solution for this problem within a limited time. Therefore, the genetic algorithm (GA), a type of intelligent heuristic algorithm, is used here. The GA is based on the biological theory of natural selection and genetic mechanism. It has been proven to be a useful directed random search method for finding the global optima in complex problems with multi-dimensional, non-linear, discontinuous, and non-convex solution spaces. Furthermore, the search strategies and optimization calculations of GA do not depend on the gradient information. Besides, because of its inherent parallelism, GA can effectively handle large scale optimization problems.

    In the standard GA, the roulette selection strategy, fixed crossover probability and fixed mutation probability are often used. But the roulette selection strategy will easily cause premature convergences. The small mutation and crossover probabilities will cause a slow and premature convergence, while large probabilities will makethe algorithm fail to converge. Therefore, the GA is improved here to prevent premature convergences[13-14]by combining the elite individual reservation strategy and the roulette selection strategy, and using adaptive crossover and mutation probability. The improved GA is illustrated as follows.

    ① Encoding and initializing the population. Each chromosome in the population represents a potential location solution of m relay units. Every location is described by the values inxandycoordinates, which are encoded bylbits respectively. It is assumed that the combat zone is ad×dsquare area, the precision of encoding is

    (1)

    Thesizeofeverychromosomeism×2×lbits. Here,mis the number of relay units added into the NUWS. And the size of population is 60 here, which means it consists of 60 chromosomes. The initial set of population is generated randomly.

    ② Evaluation. The fitness function evaluates the performance of every chromosome. The aims of this algorithm are to realize resilience by recovering the NUWS’s connections and to control the implementation costs in a reasonable range. This is a multi-objective optimization problem, and the fitness function is designed to have two parts.

    The first part describes the performance of restoration, which is to connect the target units as much as possible by using a given limited number of the relay units. This can be described as

    (2)

    whereN′ is the number of target units in the largest connected component of network,Nis the number of target units in NUWS. The relay units are not included inN′ andN.

    The second part is the cost control problem, using the connection degree of relay units to evaluate. For instance, a relay unit is connected withKunits (including relay units and target units), so its connection degree isK. For the convenience of calculation, the connection degree calculation of each relay unit is transformed into the number calculation of edges. Thus, to minimize the cost is considered equal to minimize the increased number of edges. And

    ΔE=Eaf-Ebe

    (3)

    whereΔEisthenumberofincrementalcommunicationlinksafterdeployingtherelayunitsintheNUWS, EafandEberepresentthenumberofcommunicationlinksafterandbeforedeployingtherelayunitsrespectively,andEmaxisthenumberofallthepossiblelinksthatwillmakesthegraphastronglyconnectedgraph.

    So,thefitnessfunctionis

    (4)

    Hereωistheweight,andω=0.6.

    Throughthedesignedfitnessfunction,thecommunicationheterogeneousofNUWSissolved.

    ③Evolutionprocedure.Thepopulationevolvestowardbettersolutionsbyadoptinggeneticoperationsofselection,crossoverandmutationtogeneratethenewpopulation,andthenevaluateituntilmeetingthestoppingcriterion.

    Theeliteindividualreservationstrategyarecombinedwiththerouletteselectionstrategyhere.Thespecificprocedureisdescribedasfollows.Theparents,selectedbyarouletteselectionstrategyfromthelastgeneration,areintersectedandmutatedtogenerateoffspring.Andthenfindthebestandworstindividualwiththehighestandlowestscoreoffitnessevaluation.Ifthebestindividualintheoffspringisbetterthanthehistoricalbestindividual,thenewlybestoneisrecordedasthehistoricalbestone;otherwisethehistoricalbestoneiskept.Thereafter,thehistoricalbestindividualisusedtoreplacetheworstindividualintheoffspringtoformanewpopulation.Thus,thebestchromosomeispassedthroughthenewgeneration.

    TheadaptivecrossoverprobabilityPcandmutationprobabilityPmareappliedhere,whichare

    (5)

    (6)

    wherefis the larger fitness value of the two individuals going to be crossed,f′ is the fitness value of the individual going to be mutated,favgis the average fitness value of every generation, andfmaxis the fitness value of the largest one in this generation.

    In this way, the excellent genes have higher possibilities to be passed to the next generation. And the individuals with below-average fitness have larger crossover and mutation probabilities to increase the possibilities of elimination. Moreover, the outstanding individuals do not take dominate positions in the early stage of evolution, preventing from converging into local optima.

    ④ Stopping criterion. If the evolutionary generations reach to 500, the algorithm stops and outputs the individual with best fitness and its corresponding positions of the relay units as the optimal solution. Otherwise, the next step is to continue evolution.

    3 Simulation and results analysis

    Simulations are carried out with the proposed method and improved GA algorithm in MATLAB. The simulation parameters are explained in Tab.1. The restoration performance of the algorithm is evaluated by the connection rate using Eq. (2), and the cost of the implementation is evaluated by the connection degree of relay units.

    Tab.1 Parameters in simulation

    The NUWS works within a 200 m×200 m square. After failures of plenty weapon units, the NUWS becomes disconnected and divides into several partitions. There arenweapon units left. Considering of their communication heterogeneous, their communication radiuses are random distributed from 10 m to 70 m obeying a uniform distribution. Andmrelay units, whose communication radiuses arer(URi)=30 m, are added into the NUWS to maximally recover the connectivity. Thexandycoordinates of relay units are encoded with an 8 bit binary string respectively. So the accuracy of position encoding is 0.78 m according to Eq.(1), which is much less than the minimum communication radiusRUVmin=10 m in the NUWS, so this encoding length is appropriate. The size of population for the GA is 60, and the generation of evolutionary is 500 here.

    By changing the size of the network and the number of relay units, two sets of simulations in MATLAB are carried out to verify the resilience effectiveness of proposed improved GA. And the results are shown in Fig.3 and Fig.4, where the hollow circles represent the target units after damage and the asterisks indicate the added relay weapon units.

    The first group of simulation is 30 target units in the NUWS with different ratios of relay units, and the results are shown in Fig.3. There are 30 target units with different communication ranges randomly distributed in the square obeying uniform distribution and the connection rate is βb=0.500 0,whichisdescribedinFig.3a.Whenη=0.1 (m=3)relayunitsareaddedthatisshowninFig.3b,theNUWS’sconnectionratecanberecoveredtoβa=0.600 0.Whenη=0.2 (m=6)relayunitsareaddedthatisshowninFig.3c,theconnectionratecanberecoveredtoβa=0.866 7.AndinFig.3d,whenη=0.3(m=9)relayunitsareadded,theconnectionratecanberestoredtoβa=0.966 7.

    Fig.3 Connectivity before and after deployment of relay units with difference pairs of parameters(n=30)

    ItisrevealedfromFig.3,improvedGAcansignificantlyrepairthedamagedNUWS’sconnectivitybydeterminingandoptimizingthelocationsoflimitednumberofrelayunits.

    Thesecondgroupofsimulationis40targetunitsintheNUWSwithdifferentratiosofrelayunits,andtheresultsareshowninFig.4.

    Fig.4 Connectivity before and after deployment of relay units with difference pairs of parameters(n=40)

    ItisshownthatthecalculationtimeofGAgrowsfrom17.091sto28.583s.AlthoughthetimeriseswiththeincreasingnumberoftargetunitsandrelayunitsintheNUWS,itisstillacceptablewhenunder60s.

    Comparedthetwogroupsofsimulationabove,itisseenthatwhenn=30,themorerelayunitsareadded,themuchmorehighertheconnectionratesare.Butwhenn=40,theconnectionratesarenotsignificantlyraisedwhentheratioofrelayunitsisincreasedfromη=0.2toη=0.3.Toanalyzethisphenomenon,differentparametersofsimulationarecarriedoutfor100times,accordingtothestatisticaldata,theNUWS’saverageconnectionratesbeforeandafterdeploymentofrelayunitsareshowninFig.5.

    Fig.5 Average connectivity over 100 times with difference pairs of parameters

    ThehorizontalaxisinFig.5showstheaverageconnectionratebeforerestoration.Becauseoftherandomlydistributionofthetargetunits’positionsandtheircommunicationradius,theconnectionratesβbaredifferentevenwhenthenumberoftargetunitsintheNUWSisthesame.Whenn=30,theconnectionrateβbisdistributedintherange(0.2, 0.9),andwhenn=40, βbisdistributedintherange(0.2, 1.0).Theverticalaxisshowstheaverageconnectionrateβaafterrepairing,,andlineswithdifferentsymbolsindicatedifferentratiosofrelayunitsaddedintotheNUWS.ItisillustratedintheFig.5thattheapproachcansignificantlyreconnectthedamagedNUWSandincreasetheconnectionrate.Anditshowsthattheperformanceofconnectionrecoveryisrelatedwiththenumberofrelayunitsandthetargetunits,andtheconnectionrateβb.

    WhentheNUWS’sconnectionrateafterrestorationisβa≥0.900 0,theresilienceisconsideredtobeachievedandthefunctionoftheNUWSwillnotbeaffected.Thus,whentheratioofrelayunitsaddedintotheNUWSisη=0.3,theresilienceisobtained.

    Meanwhile,thestatisticsdatashowthattheconnectivitydegreeofrelayunitsafterdeploymentisnomorethan4,i.e. Kmax≤4.AndmostoftheconnectivitydegreesareK=2andK=3.Therefore,theimprovedGAproposedherenotonlyrepairedtheconnectionofNUWStosomeextent,butalsoithasprovidedacertainredundancyandenhancedresilience.Moreovertheconnectiondegreesarenotmorethan4,sotheimplementationcostislow.

    4 Conclusion

    TheresilienceproblemofdistributedheterogeneousNUWSisstudiedinthispaper.Apracticalapproach,addingrelayweaponunitsintotheNUWS,isproposedheretorestoretheconnectivitybetweentheremainingtargetunitsofNUWSafterthefailuresofplentyweaponunits.Thecommunicationrangedifferenceisconsideredasthemainheterogeneouscharacteristicsoftheweaponunitsinthispaper.TheGAisimprovedherebycombiningtheeliteindividualreservationstrategyandtherouletteselectionstrategy,andusingtheadaptivecrossoverandmutationprobabilitytopreventprematureconvergences.ThecodingandfitnessfunctionaredesignedforthismodifiedGA,whichisusedtodetermineandoptimizethepositionsofrelayunits.SimulationresultsinMatlabshowthattheproposedmethodhasagoodperformance,whichiscapableofmaximizingtheconnectivityoftheNUWSwithagivenlimitednumberofrelayunits.MeanwhiletheconnectiondegreeofrelayunitisK≤4fromthestatisticsdata,sotheimplementationcostislow.

    [1] Fu Xiaowei, Li Jinliang, Gao Xiaoguang. Modeling and analyzing of air-defense threat netting[J].Acta Armamentarii, 2013, 34(7): 904-909. (in Chinese)

    [2] Guo Wenzhong, Xiong Naixue, Athanasios V Vasilakos. Distributed k-connected fault-tolerant topology control algorithms with PSO in future autonomic sensor systems[J]. International Journal of Sensor Networks, 2012, 12(1): 53-62.

    [3] Taul Bari, Arunita Jaekel, Jin Jiang. Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements[J].Computer Communications, 2012, 35(3): 320-333.

    [4] Randles Martin, Lamb David, Odat E. Distributed redundancy and robustness in complex systems[J].Journal of Computer and System Sciences, 2011, 77(2): 293-304.

    [5] Ameer A Abbasi, Mohamed Younis, Kemal Akkaya. Movement-assisted connectivity restoration in wireless sensor and actor networks[J].IEEE Transactions on Parallel and Distributed Systems, 2009, 20(9): 1366-1379.

    [6] Kemal Akkaya, Fatih Senel, Aravind Thimmapuram. Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility[J].IEEE Transactions on Computers, 2010, 59(2): 258-271.

    [7] Cheng Xiuzhen, Du Dingzhu, Wang Lusheng. Relay sensor placement in wireless sensor networks[J].Wireless Networks, 2008, 14(3): 347-355.

    [8] Errol L Lloyd,Xue Guoliang. Relay node placement in wireless sensor networks[J].IEEE Transactions on Computers, 2007, 56(1): 134-138.

    [9] Lee Sookyoung, Mohamed Younis. Optimized relay node placement for connecting disjoint wireless sensor networks[J].Computer Networks, 2012, 56(12): 2788-2804.

    [10] Lee Sookyoung, Lee Meejeong. QRMSC: efficient QoS-aware relay node placement in wireless sensor networks using minimum Steiner tree on the convex hull[C]∥International Conference on Information Networking (ICOIN), 2013: 36-41.

    [11] Li Ning, Hou Jennifer C. Improving connectivity of wireless ad hoc networks[C]∥Mobile and Ubiquitous Systems: Networking and Services, 2005: 314-324.

    [12] Ravi Prakash. Unidirectional links prove costly in wireless ad hoc networks[C]∥DIALM’99 Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, 1999: 15-22.

    [13] Lei Yingjie, Zhang Shanwen, Li Xuwu. MATLAB genetic algorithm toolbox and its application[M].Xi’an: Xi’an University of Electronic Science and Technology Press, 2005: 11-31. (in Chinese)

    [14] Wang Xiaoping, Cao Liming. Genetic algorithms—theory, application and software implementation[M].Xi’an: Xi’an Jiaotong University Press, 2002: 73-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004- 0579.201524.0207

    E 837; TP 393 Document code: A Article ID: 1004- 0579(2015)02- 0180- 08

    Received 2013- 11- 05

    Supported by the Aviation Science Foundation of China(2013ZC72006)

    E-mail: alexwyx@bit.edu.cn

    亚洲成av片中文字幕在线观看 | 新久久久久国产一级毛片| 欧美 日韩 精品 国产| kizo精华| 亚洲成色77777| 男的添女的下面高潮视频| 蜜臀久久99精品久久宅男| 国产男女内射视频| 在线观看免费高清a一片| 免费看av在线观看网站| 又黄又爽又刺激的免费视频.| 日韩欧美一区视频在线观看| 黄色一级大片看看| 成人手机av| 欧美另类一区| 久久久久久久精品精品| 亚洲精品中文字幕在线视频| 国产探花极品一区二区| 最黄视频免费看| 国产成人av激情在线播放| 久久精品夜色国产| 久久狼人影院| 国产永久视频网站| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 亚洲,欧美,日韩| 这个男人来自地球电影免费观看 | 26uuu在线亚洲综合色| 综合色丁香网| 欧美3d第一页| 岛国毛片在线播放| 国产麻豆69| 久久 成人 亚洲| 香蕉精品网在线| 精品少妇黑人巨大在线播放| 午夜av观看不卡| 久久人人爽av亚洲精品天堂| 三上悠亚av全集在线观看| 国产探花极品一区二区| 国产麻豆69| 18禁在线无遮挡免费观看视频| 女的被弄到高潮叫床怎么办| 色94色欧美一区二区| 最新中文字幕久久久久| 亚洲色图综合在线观看| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱| 日产精品乱码卡一卡2卡三| 一级片'在线观看视频| av电影中文网址| 丝袜喷水一区| 天天操日日干夜夜撸| 国产精品人妻久久久影院| 日日撸夜夜添| 美女福利国产在线| 熟女人妻精品中文字幕| 18禁国产床啪视频网站| 女性生殖器流出的白浆| 国产精品国产三级国产av玫瑰| 久久99热这里只频精品6学生| av电影中文网址| 欧美成人午夜免费资源| 日本-黄色视频高清免费观看| 日韩大片免费观看网站| 下体分泌物呈黄色| 深夜精品福利| 草草在线视频免费看| 美女福利国产在线| 精品人妻一区二区三区麻豆| 国产免费一级a男人的天堂| 久久久国产一区二区| 人妻少妇偷人精品九色| 99国产精品免费福利视频| 波多野结衣一区麻豆| 啦啦啦中文免费视频观看日本| 如何舔出高潮| 国产精品久久久久久久电影| 成人国产av品久久久| 天堂俺去俺来也www色官网| 成年人午夜在线观看视频| www.熟女人妻精品国产 | 婷婷成人精品国产| 亚洲欧美中文字幕日韩二区| 亚洲国产欧美日韩在线播放| 人妻一区二区av| 男女边摸边吃奶| av福利片在线| 日韩伦理黄色片| 大话2 男鬼变身卡| 亚洲美女搞黄在线观看| 亚洲三级黄色毛片| 热99久久久久精品小说推荐| 亚洲久久久国产精品| 99国产综合亚洲精品| 在线天堂最新版资源| 精品人妻偷拍中文字幕| 草草在线视频免费看| 一级毛片电影观看| 9191精品国产免费久久| 精品少妇内射三级| 国语对白做爰xxxⅹ性视频网站| 日韩欧美精品免费久久| 高清欧美精品videossex| 中文乱码字字幕精品一区二区三区| 国产精品一区www在线观看| 亚洲国产色片| 热re99久久精品国产66热6| 久久精品国产亚洲av天美| videos熟女内射| 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区黑人 | 一级片免费观看大全| 午夜久久久在线观看| 国产精品99久久99久久久不卡 | 亚洲成人一二三区av| 捣出白浆h1v1| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 国产又爽黄色视频| 最近最新中文字幕大全免费视频 | 十八禁高潮呻吟视频| 九九在线视频观看精品| 日本猛色少妇xxxxx猛交久久| 日韩 亚洲 欧美在线| 欧美激情 高清一区二区三区| 国产精品成人在线| 精品一区在线观看国产| 国产欧美日韩一区二区三区在线| 免费高清在线观看日韩| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 亚洲国产精品999| 午夜av观看不卡| 中文字幕av电影在线播放| 韩国精品一区二区三区 | 精品一区二区三区视频在线| 国产伦理片在线播放av一区| 日韩中字成人| 曰老女人黄片| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 午夜久久久在线观看| 韩国高清视频一区二区三区| 亚洲人成77777在线视频| 国产成人91sexporn| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 91国产中文字幕| 亚洲精品av麻豆狂野| 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人添人人爽欧美一区卜| 97超碰精品成人国产| 飞空精品影院首页| av视频免费观看在线观看| 插逼视频在线观看| 蜜臀久久99精品久久宅男| 久久久久精品久久久久真实原创| 国产国语露脸激情在线看| 自拍欧美九色日韩亚洲蝌蚪91| 高清av免费在线| 搡老乐熟女国产| 国产视频首页在线观看| 男女边吃奶边做爰视频| 人人妻人人添人人爽欧美一区卜| 性色avwww在线观看| 欧美成人午夜精品| 丝袜喷水一区| 亚洲成人av在线免费| 天天操日日干夜夜撸| 色婷婷av一区二区三区视频| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 久久免费观看电影| 美国免费a级毛片| 赤兔流量卡办理| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区| 亚洲性久久影院| 国产成人91sexporn| 97精品久久久久久久久久精品| 在线天堂中文资源库| 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 欧美日本中文国产一区发布| 国产片内射在线| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看| 国产精品女同一区二区软件| 成人综合一区亚洲| 搡女人真爽免费视频火全软件| 曰老女人黄片| 岛国毛片在线播放| 亚洲av电影在线观看一区二区三区| 韩国精品一区二区三区 | 国内精品宾馆在线| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 欧美成人午夜免费资源| 欧美精品一区二区免费开放| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看 | 人妻一区二区av| 成人国语在线视频| 欧美亚洲日本最大视频资源| 久久99一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产av一区二区精品久久| 成人国产麻豆网| 嫩草影院入口| 国产在线一区二区三区精| 亚洲在久久综合| 女性生殖器流出的白浆| 亚洲欧美成人综合另类久久久| 国产1区2区3区精品| 亚洲欧美日韩另类电影网站| 80岁老熟妇乱子伦牲交| 视频在线观看一区二区三区| 又粗又硬又长又爽又黄的视频| 少妇猛男粗大的猛烈进出视频| 狂野欧美激情性bbbbbb| 国产精品久久久久久久久免| 免费黄网站久久成人精品| 热99久久久久精品小说推荐| 亚洲,欧美精品.| 高清黄色对白视频在线免费看| 波多野结衣一区麻豆| 97在线视频观看| 欧美日韩国产mv在线观看视频| 欧美精品亚洲一区二区| www日本在线高清视频| 丝袜在线中文字幕| 国产精品人妻久久久久久| 亚洲av国产av综合av卡| 中国国产av一级| 免费黄频网站在线观看国产| 久久久久精品久久久久真实原创| 999精品在线视频| 成人毛片60女人毛片免费| 免费观看无遮挡的男女| 亚洲成av片中文字幕在线观看 | 一边亲一边摸免费视频| 韩国高清视频一区二区三区| 九草在线视频观看| 免费观看a级毛片全部| 午夜视频国产福利| 久久这里有精品视频免费| 日本黄大片高清| 国产男人的电影天堂91| 精品一区二区三区视频在线| 久久国产精品男人的天堂亚洲 | 国产片内射在线| 我要看黄色一级片免费的| 久久精品久久久久久久性| 久久久精品免费免费高清| 寂寞人妻少妇视频99o| 欧美人与性动交α欧美精品济南到 | 高清欧美精品videossex| 亚洲欧美色中文字幕在线| 日本免费在线观看一区| 久久这里只有精品19| 校园人妻丝袜中文字幕| 激情视频va一区二区三区| 在线精品无人区一区二区三| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 男女下面插进去视频免费观看 | 久久久亚洲精品成人影院| 最后的刺客免费高清国语| 免费看光身美女| 精品一区在线观看国产| 人妻 亚洲 视频| 日日撸夜夜添| 亚洲伊人色综图| 国产 一区精品| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| 美女内射精品一级片tv| videosex国产| 欧美日韩视频高清一区二区三区二| h视频一区二区三区| 我的女老师完整版在线观看| 十八禁高潮呻吟视频| 欧美日韩精品成人综合77777| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| 久久久久国产网址| xxxhd国产人妻xxx| 亚洲第一av免费看| 国产 一区精品| 人妻人人澡人人爽人人| 纯流量卡能插随身wifi吗| 少妇的逼水好多| 国产免费现黄频在线看| 欧美精品国产亚洲| 内地一区二区视频在线| 日本黄大片高清| 亚洲成国产人片在线观看| 亚洲欧美日韩另类电影网站| 国产白丝娇喘喷水9色精品| 久久这里只有精品19| 国内精品宾馆在线| 亚洲美女搞黄在线观看| 免费av不卡在线播放| xxx大片免费视频| 国产成人aa在线观看| 深夜精品福利| 观看av在线不卡| 啦啦啦中文免费视频观看日本| 欧美3d第一页| 亚洲成色77777| 久久久久久伊人网av| 老司机影院成人| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看 | 中文字幕另类日韩欧美亚洲嫩草| 国产精品三级大全| 女的被弄到高潮叫床怎么办| 一区在线观看完整版| 久久人人爽人人片av| 伊人亚洲综合成人网| 国产亚洲精品久久久com| 色网站视频免费| 99久久综合免费| 黄色一级大片看看| 久久韩国三级中文字幕| 亚洲av电影在线进入| 国产免费视频播放在线视频| 精品酒店卫生间| 91在线精品国自产拍蜜月| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 国产成人精品一,二区| 香蕉国产在线看| 青春草亚洲视频在线观看| 天天躁夜夜躁狠狠久久av| av国产精品久久久久影院| 成年av动漫网址| 永久免费av网站大全| 精品一区在线观看国产| 黄色视频在线播放观看不卡| 国产探花极品一区二区| 欧美bdsm另类| 9191精品国产免费久久| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 日本猛色少妇xxxxx猛交久久| 欧美亚洲日本最大视频资源| 国产免费现黄频在线看| 精品午夜福利在线看| 亚洲五月色婷婷综合| 色5月婷婷丁香| 精品一区二区免费观看| 国产成人a∨麻豆精品| 青春草视频在线免费观看| 街头女战士在线观看网站| 大片免费播放器 马上看| 久久狼人影院| 多毛熟女@视频| 亚洲丝袜综合中文字幕| 男女高潮啪啪啪动态图| 午夜福利,免费看| 黄片播放在线免费| 国产一区二区激情短视频 | 成年人午夜在线观看视频| 满18在线观看网站| 水蜜桃什么品种好| 只有这里有精品99| 亚洲成人一二三区av| 制服诱惑二区| 欧美亚洲日本最大视频资源| 视频区图区小说| 乱人伦中国视频| 日本vs欧美在线观看视频| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 国产精品久久久av美女十八| 国产精品三级大全| 尾随美女入室| 久久 成人 亚洲| 人人妻人人澡人人爽人人夜夜| 大片免费播放器 马上看| 成人亚洲欧美一区二区av| 午夜福利影视在线免费观看| 国产免费一级a男人的天堂| 亚洲欧美中文字幕日韩二区| 免费高清在线观看视频在线观看| 国产精品久久久久久精品古装| 婷婷色综合大香蕉| 国产深夜福利视频在线观看| 一级毛片 在线播放| 国产日韩欧美在线精品| 一级毛片电影观看| 精品少妇黑人巨大在线播放| 99久久综合免费| 国产有黄有色有爽视频| 国内精品宾馆在线| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 国产精品久久久久久精品古装| 韩国av在线不卡| 男女午夜视频在线观看 | 大香蕉97超碰在线| 欧美最新免费一区二区三区| av国产精品久久久久影院| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一国产av| 男人爽女人下面视频在线观看| 久久这里有精品视频免费| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 国产精品嫩草影院av在线观看| 国产熟女欧美一区二区| 成人无遮挡网站| videosex国产| av一本久久久久| 最后的刺客免费高清国语| 久久久久久久久久成人| 97在线视频观看| 免费黄频网站在线观看国产| 日本vs欧美在线观看视频| 久久精品夜色国产| 大陆偷拍与自拍| 欧美精品av麻豆av| 亚洲三级黄色毛片| 亚洲av男天堂| 久久久久久人妻| 久久99精品国语久久久| 女性被躁到高潮视频| 亚洲经典国产精华液单| 日日爽夜夜爽网站| 国产精品不卡视频一区二区| 我的女老师完整版在线观看| 亚洲av综合色区一区| 22中文网久久字幕| 99久久综合免费| 久久久久久久久久成人| 国产男女内射视频| 精品人妻一区二区三区麻豆| 最新的欧美精品一区二区| 欧美国产精品va在线观看不卡| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| 亚洲av在线观看美女高潮| 只有这里有精品99| 人妻少妇偷人精品九色| 九九在线视频观看精品| 一二三四中文在线观看免费高清| 久热这里只有精品99| 午夜福利,免费看| 一本—道久久a久久精品蜜桃钙片| 亚洲av在线观看美女高潮| 香蕉国产在线看| a 毛片基地| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 性高湖久久久久久久久免费观看| 国产综合精华液| 国产淫语在线视频| 99久久中文字幕三级久久日本| 久久久久久久大尺度免费视频| 黑人巨大精品欧美一区二区蜜桃 | 一本—道久久a久久精品蜜桃钙片| 男人舔女人的私密视频| 五月伊人婷婷丁香| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 中文天堂在线官网| 女性被躁到高潮视频| 夫妻性生交免费视频一级片| 在线观看免费高清a一片| 九草在线视频观看| 国产av国产精品国产| 国产一区二区三区综合在线观看 | 婷婷色麻豆天堂久久| 久久久久久久大尺度免费视频| 18禁裸乳无遮挡动漫免费视频| 亚洲人成网站在线观看播放| 国产av国产精品国产| 日本-黄色视频高清免费观看| 少妇熟女欧美另类| 免费播放大片免费观看视频在线观看| 亚洲三级黄色毛片| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 青春草国产在线视频| 日韩制服骚丝袜av| 国产精品国产av在线观看| 国产1区2区3区精品| 国产福利在线免费观看视频| 999精品在线视频| 成人国语在线视频| 亚洲国产精品999| 丰满少妇做爰视频| 日韩一本色道免费dvd| 在线亚洲精品国产二区图片欧美| 在线观看三级黄色| 99国产精品免费福利视频| 亚洲精品国产av成人精品| 国产黄色免费在线视频| 高清在线视频一区二区三区| 男女国产视频网站| 夫妻性生交免费视频一级片| 少妇 在线观看| 人人妻人人澡人人看| 在线观看免费视频网站a站| 日本爱情动作片www.在线观看| 免费观看在线日韩| 韩国高清视频一区二区三区| 一级毛片 在线播放| 日韩在线高清观看一区二区三区| 99久久综合免费| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 亚洲精品美女久久av网站| 在现免费观看毛片| 婷婷色综合大香蕉| 成年女人在线观看亚洲视频| 91精品国产国语对白视频| 亚洲一码二码三码区别大吗| 18禁动态无遮挡网站| 黑人高潮一二区| 99re6热这里在线精品视频| 欧美 亚洲 国产 日韩一| 国产一区二区三区av在线| 在线观看一区二区三区激情| 午夜免费鲁丝| 成人毛片60女人毛片免费| 亚洲国产成人一精品久久久| 一级a做视频免费观看| 久久久久久久久久久免费av| 免费黄色在线免费观看| 草草在线视频免费看| 久久久欧美国产精品| 国产免费一区二区三区四区乱码| 国产精品国产三级专区第一集| 国产日韩欧美亚洲二区| 人人澡人人妻人| 欧美日韩一区二区视频在线观看视频在线| 国产成人aa在线观看| 大香蕉久久成人网| 男人舔女人的私密视频| 亚洲精品美女久久久久99蜜臀 | 精品国产乱码久久久久久小说| 男女午夜视频在线观看 | 日韩一区二区视频免费看| 人人澡人人妻人| 亚洲av电影在线进入| 9热在线视频观看99| 日本av免费视频播放| av黄色大香蕉| 精品久久国产蜜桃| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 插逼视频在线观看| 国产精品熟女久久久久浪| freevideosex欧美| 亚洲国产成人一精品久久久| 色婷婷av一区二区三区视频| 国产av一区二区精品久久| 日本av手机在线免费观看| 国产白丝娇喘喷水9色精品| 女性被躁到高潮视频| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 又粗又硬又长又爽又黄的视频| 亚洲,欧美精品.| 热re99久久国产66热| 国产成人精品久久久久久| 亚洲高清免费不卡视频| 狠狠婷婷综合久久久久久88av| 一二三四在线观看免费中文在 | 一本大道久久a久久精品| freevideosex欧美| 高清毛片免费看| 国产亚洲欧美精品永久| 日韩成人伦理影院| 18禁在线无遮挡免费观看视频| av.在线天堂| 亚洲精品成人av观看孕妇| 看非洲黑人一级黄片| 亚洲国产毛片av蜜桃av| 一级毛片电影观看| 国产欧美亚洲国产| 免费日韩欧美在线观看| 街头女战士在线观看网站| 国产乱人偷精品视频| 国产精品三级大全| 十八禁网站网址无遮挡| 午夜老司机福利剧场| 中文天堂在线官网| 国产一级毛片在线| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 9色porny在线观看| 国产白丝娇喘喷水9色精品| 黄网站色视频无遮挡免费观看| 一级片'在线观看视频| 黑丝袜美女国产一区| 国产成人欧美| 国产亚洲最大av| 欧美xxⅹ黑人| av线在线观看网站| xxxhd国产人妻xxx|