• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resilience approach for heterogeneous distributed networked unmanned weapon systems

    2015-04-22 06:17:28JINYining晉一寧WUYanxuan吳炎烜FANNingjun范寧軍

    JIN Yi-ning(晉一寧), WU Yan-xuan(吳炎烜), FAN Ning-jun(范寧軍)

    (School of of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Resilience approach for heterogeneous distributed networked unmanned weapon systems

    JIN Yi-ning(晉一寧), WU Yan-xuan(吳炎烜), FAN Ning-jun(范寧軍)

    (School of of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    Disconnection in the distributed heterogeneous networked unmanned weapon systems is caused by multiple weapon units’ failure. The technical routes were analyzed to achieve resilience in the disconnection situation. A heterogeneous distributed network model of networked unmanned weapon systems was established. And an approach of adding relay weapon units was proposed to achieve fault tolerance after weapon units’ failure due to attack or energy exhaustion. An improved genetic algorithm was proposed to determine and optimize the position of the relay weapon units. Simulation results in the MATLAB show that the improved resilience-based genetic algorithm can restore the network connection maximally when the number of relay units is limited, the network can keep on working after failure, and the implementation cost is controlled in a reasonable range.

    distributed heterogeneous network; unmanned weapon system; genetic algorithm; resilience

    With the development of communication, computer and network technologies, modern warfare gradually developed from a single-platform combat to a multi-platform network combat[1]. And a network-based combat is becoming an important tendency in the information warfare. Networked unmanned weapon system (NUWS) is a type of intelligent combat system illustrated in Fig.1. It uses the network connection to obtain multi-channel information and processing abilities (even the energy) from different weapon units to complete combat missions, such as battlefield reconnaissance, communication relay, targets attack, and damage assessment. NUWS usually executes missions by its large number of micro and small unmanned weapons units based on the network. After the failures of plenty of weapon units due to attack or energy exhaustion, the network is tore apart. In order to complete the combat tasks, how to restore the connectivity of the network in a certain degree becomes very important. And this is the resilienceproblem we focused on in this paper.

    Fig.1 Illustration of NUWS

    Currently, there is no public information about the NUWS resilience study, and the related studies are mainly concentrated in the wireless sensor networks (WSN) area. We classify the methods to achieve resilience in WSN into passive methods and active methods. The passive methods are redundancy methods[2-4]. And the active methods are relocating the existing nodes in the network[5-7]or adding extra relay nodes to form multi-hop network connectivity[8-11]. The redundancy methods realize fault-tolerance at the expense of high cost and energy consumption, while the weapon units in NUWS are much more expensive than the sensor nodes in WSN. Thus, it is impossible to deploy weapon units redundantly. Relocating methods are more suitable for small nodes failure scale as only local adjustment is needed. However, when large scale of weapon units are damaged in the battlefield, these methods require a global adjustment of the weapon units, which is inefficient and costly. Above all, the most efficient and low-cost resilience approach for NUWS is to add multiple extra weapon units to restore the network connectivity.

    The methods of adding relay nodes are mainly geometric methods, such as the MST-based (minimum spanning tree-based) algorithm[8-10]and CIDT (connectivity improvement using delaunay triangulation) algorithm[11]etc. They mainly focus on finding the least number of relay nodes needed to restore 100% connectivity in homogeneous WSN. However, in the application of NUWS, using a given limited number of relay weapon units to achieve a maximum level of connectivity is much more close to the real situation. Moreover, the geometric methods are not suitable for heterogeneous NUWS. The NUWS is a highly heterogeneous distributed system, which consists of different weapon units that use different communication devices and different communication radius. Therefore, the above methods are not suitable for solving the NUWS resilience problem. In this paper, genetic algorithm is going to be used to calculate and optimize the positions of the relay weapon units, with the purpose of restoring the connectivity of NUWS maximumly by a given limited number of relay weapon units and controlling the cost of implementation.

    1 Problem description and system modeling

    1.1 Problem description

    NUWS is a mobile autonomous combat network without infrastructure support, and the nodes in the network are micro and small unmanned weapon units, which can be employed in the water, on the land or in the sky. Compared with a centralized network, NUWS is a kind of distributed network, in which each weapon unit can only communicate directly with its adjacent units. This provides stronger survivability and invulnerability in harsh battlefield environments. However, due to the volume restriction, weapon units cannot provide enough energy for long-time work, and failures happen after running out of energy. Besides, weapon units may also fail as the results of enemy attack or harsh environments. In this case, the network connectivity has been greatly damaged, which may decrease the capability of NUWS, or even fail to complete the mission.

    Therefore the problem needs to be solved is described as follows. For a given area, after the failures of quite a few weapon units, the heterogeneous distributed NUWS becomes disconnected, the target is to calculate and optimize the positions for a given limited number of relay weapon units to restore the connectivity of NUWS maximally and take the implementation cost into consideration. The problem here is a non-deterministic polynomial complete (NPC) problem.

    1.2 System modeling

    In this paper, it is assumed that each weapon unit in NUWS is distributed randomly within a two-dimensional combat zone, and the damage probability of each unit obeys an exponential distribution and is independent from each other. NUWS is a highly heterogeneous network, and we are mainly focus on the communication heterogeneity in this paper. Each weapon unit has different communication radius. The remaining weapon units in NUWS after failure are called target units and are represented by the set UV={UV1,UV2,…,UVn}; the relay weapon units added into the damaged NUWS are represented by the set UR={UR1,UR2,…,URm}. Assuming that the communication radius of target units areRUVmin≤r(UVi)≤RUVmax, and all relay units have the same communication radiusr(URi)=RUR. Unidirectional communication link is proven to be costly[12], so bidirectional communication path is considered in this paper, along which communications existing in both directions. Thus, when and only when the Euclidean distance between two unitsi,j(i,j∈UV∪UR) is smaller than their communication radius, that isdij≤min (ri,rj), communication is established between them. NUWS is modeled as a undirected graphG=(UV∪UR,E), whereEis the set of all undirected communication links connecting two weapon units inG, the schematic diagram is shown in Fig.2. If and only ifdij≤min (ri,rj), the communication link is established andeij=eji=1.

    Fig.2 An example of the system model of NUWS

    2 Improved genetic algorithm

    As the problem here is a NPC problem, the computation increases exponentially with the growing number of weapon units in the NUWS, so it is difficult for numerical algorithms to find an optimal solution for this problem within a limited time. Therefore, the genetic algorithm (GA), a type of intelligent heuristic algorithm, is used here. The GA is based on the biological theory of natural selection and genetic mechanism. It has been proven to be a useful directed random search method for finding the global optima in complex problems with multi-dimensional, non-linear, discontinuous, and non-convex solution spaces. Furthermore, the search strategies and optimization calculations of GA do not depend on the gradient information. Besides, because of its inherent parallelism, GA can effectively handle large scale optimization problems.

    In the standard GA, the roulette selection strategy, fixed crossover probability and fixed mutation probability are often used. But the roulette selection strategy will easily cause premature convergences. The small mutation and crossover probabilities will cause a slow and premature convergence, while large probabilities will makethe algorithm fail to converge. Therefore, the GA is improved here to prevent premature convergences[13-14]by combining the elite individual reservation strategy and the roulette selection strategy, and using adaptive crossover and mutation probability. The improved GA is illustrated as follows.

    ① Encoding and initializing the population. Each chromosome in the population represents a potential location solution of m relay units. Every location is described by the values inxandycoordinates, which are encoded bylbits respectively. It is assumed that the combat zone is ad×dsquare area, the precision of encoding is

    (1)

    Thesizeofeverychromosomeism×2×lbits. Here,mis the number of relay units added into the NUWS. And the size of population is 60 here, which means it consists of 60 chromosomes. The initial set of population is generated randomly.

    ② Evaluation. The fitness function evaluates the performance of every chromosome. The aims of this algorithm are to realize resilience by recovering the NUWS’s connections and to control the implementation costs in a reasonable range. This is a multi-objective optimization problem, and the fitness function is designed to have two parts.

    The first part describes the performance of restoration, which is to connect the target units as much as possible by using a given limited number of the relay units. This can be described as

    (2)

    whereN′ is the number of target units in the largest connected component of network,Nis the number of target units in NUWS. The relay units are not included inN′ andN.

    The second part is the cost control problem, using the connection degree of relay units to evaluate. For instance, a relay unit is connected withKunits (including relay units and target units), so its connection degree isK. For the convenience of calculation, the connection degree calculation of each relay unit is transformed into the number calculation of edges. Thus, to minimize the cost is considered equal to minimize the increased number of edges. And

    ΔE=Eaf-Ebe

    (3)

    whereΔEisthenumberofincrementalcommunicationlinksafterdeployingtherelayunitsintheNUWS, EafandEberepresentthenumberofcommunicationlinksafterandbeforedeployingtherelayunitsrespectively,andEmaxisthenumberofallthepossiblelinksthatwillmakesthegraphastronglyconnectedgraph.

    So,thefitnessfunctionis

    (4)

    Hereωistheweight,andω=0.6.

    Throughthedesignedfitnessfunction,thecommunicationheterogeneousofNUWSissolved.

    ③Evolutionprocedure.Thepopulationevolvestowardbettersolutionsbyadoptinggeneticoperationsofselection,crossoverandmutationtogeneratethenewpopulation,andthenevaluateituntilmeetingthestoppingcriterion.

    Theeliteindividualreservationstrategyarecombinedwiththerouletteselectionstrategyhere.Thespecificprocedureisdescribedasfollows.Theparents,selectedbyarouletteselectionstrategyfromthelastgeneration,areintersectedandmutatedtogenerateoffspring.Andthenfindthebestandworstindividualwiththehighestandlowestscoreoffitnessevaluation.Ifthebestindividualintheoffspringisbetterthanthehistoricalbestindividual,thenewlybestoneisrecordedasthehistoricalbestone;otherwisethehistoricalbestoneiskept.Thereafter,thehistoricalbestindividualisusedtoreplacetheworstindividualintheoffspringtoformanewpopulation.Thus,thebestchromosomeispassedthroughthenewgeneration.

    TheadaptivecrossoverprobabilityPcandmutationprobabilityPmareappliedhere,whichare

    (5)

    (6)

    wherefis the larger fitness value of the two individuals going to be crossed,f′ is the fitness value of the individual going to be mutated,favgis the average fitness value of every generation, andfmaxis the fitness value of the largest one in this generation.

    In this way, the excellent genes have higher possibilities to be passed to the next generation. And the individuals with below-average fitness have larger crossover and mutation probabilities to increase the possibilities of elimination. Moreover, the outstanding individuals do not take dominate positions in the early stage of evolution, preventing from converging into local optima.

    ④ Stopping criterion. If the evolutionary generations reach to 500, the algorithm stops and outputs the individual with best fitness and its corresponding positions of the relay units as the optimal solution. Otherwise, the next step is to continue evolution.

    3 Simulation and results analysis

    Simulations are carried out with the proposed method and improved GA algorithm in MATLAB. The simulation parameters are explained in Tab.1. The restoration performance of the algorithm is evaluated by the connection rate using Eq. (2), and the cost of the implementation is evaluated by the connection degree of relay units.

    Tab.1 Parameters in simulation

    The NUWS works within a 200 m×200 m square. After failures of plenty weapon units, the NUWS becomes disconnected and divides into several partitions. There arenweapon units left. Considering of their communication heterogeneous, their communication radiuses are random distributed from 10 m to 70 m obeying a uniform distribution. Andmrelay units, whose communication radiuses arer(URi)=30 m, are added into the NUWS to maximally recover the connectivity. Thexandycoordinates of relay units are encoded with an 8 bit binary string respectively. So the accuracy of position encoding is 0.78 m according to Eq.(1), which is much less than the minimum communication radiusRUVmin=10 m in the NUWS, so this encoding length is appropriate. The size of population for the GA is 60, and the generation of evolutionary is 500 here.

    By changing the size of the network and the number of relay units, two sets of simulations in MATLAB are carried out to verify the resilience effectiveness of proposed improved GA. And the results are shown in Fig.3 and Fig.4, where the hollow circles represent the target units after damage and the asterisks indicate the added relay weapon units.

    The first group of simulation is 30 target units in the NUWS with different ratios of relay units, and the results are shown in Fig.3. There are 30 target units with different communication ranges randomly distributed in the square obeying uniform distribution and the connection rate is βb=0.500 0,whichisdescribedinFig.3a.Whenη=0.1 (m=3)relayunitsareaddedthatisshowninFig.3b,theNUWS’sconnectionratecanberecoveredtoβa=0.600 0.Whenη=0.2 (m=6)relayunitsareaddedthatisshowninFig.3c,theconnectionratecanberecoveredtoβa=0.866 7.AndinFig.3d,whenη=0.3(m=9)relayunitsareadded,theconnectionratecanberestoredtoβa=0.966 7.

    Fig.3 Connectivity before and after deployment of relay units with difference pairs of parameters(n=30)

    ItisrevealedfromFig.3,improvedGAcansignificantlyrepairthedamagedNUWS’sconnectivitybydeterminingandoptimizingthelocationsoflimitednumberofrelayunits.

    Thesecondgroupofsimulationis40targetunitsintheNUWSwithdifferentratiosofrelayunits,andtheresultsareshowninFig.4.

    Fig.4 Connectivity before and after deployment of relay units with difference pairs of parameters(n=40)

    ItisshownthatthecalculationtimeofGAgrowsfrom17.091sto28.583s.AlthoughthetimeriseswiththeincreasingnumberoftargetunitsandrelayunitsintheNUWS,itisstillacceptablewhenunder60s.

    Comparedthetwogroupsofsimulationabove,itisseenthatwhenn=30,themorerelayunitsareadded,themuchmorehighertheconnectionratesare.Butwhenn=40,theconnectionratesarenotsignificantlyraisedwhentheratioofrelayunitsisincreasedfromη=0.2toη=0.3.Toanalyzethisphenomenon,differentparametersofsimulationarecarriedoutfor100times,accordingtothestatisticaldata,theNUWS’saverageconnectionratesbeforeandafterdeploymentofrelayunitsareshowninFig.5.

    Fig.5 Average connectivity over 100 times with difference pairs of parameters

    ThehorizontalaxisinFig.5showstheaverageconnectionratebeforerestoration.Becauseoftherandomlydistributionofthetargetunits’positionsandtheircommunicationradius,theconnectionratesβbaredifferentevenwhenthenumberoftargetunitsintheNUWSisthesame.Whenn=30,theconnectionrateβbisdistributedintherange(0.2, 0.9),andwhenn=40, βbisdistributedintherange(0.2, 1.0).Theverticalaxisshowstheaverageconnectionrateβaafterrepairing,,andlineswithdifferentsymbolsindicatedifferentratiosofrelayunitsaddedintotheNUWS.ItisillustratedintheFig.5thattheapproachcansignificantlyreconnectthedamagedNUWSandincreasetheconnectionrate.Anditshowsthattheperformanceofconnectionrecoveryisrelatedwiththenumberofrelayunitsandthetargetunits,andtheconnectionrateβb.

    WhentheNUWS’sconnectionrateafterrestorationisβa≥0.900 0,theresilienceisconsideredtobeachievedandthefunctionoftheNUWSwillnotbeaffected.Thus,whentheratioofrelayunitsaddedintotheNUWSisη=0.3,theresilienceisobtained.

    Meanwhile,thestatisticsdatashowthattheconnectivitydegreeofrelayunitsafterdeploymentisnomorethan4,i.e. Kmax≤4.AndmostoftheconnectivitydegreesareK=2andK=3.Therefore,theimprovedGAproposedherenotonlyrepairedtheconnectionofNUWStosomeextent,butalsoithasprovidedacertainredundancyandenhancedresilience.Moreovertheconnectiondegreesarenotmorethan4,sotheimplementationcostislow.

    4 Conclusion

    TheresilienceproblemofdistributedheterogeneousNUWSisstudiedinthispaper.Apracticalapproach,addingrelayweaponunitsintotheNUWS,isproposedheretorestoretheconnectivitybetweentheremainingtargetunitsofNUWSafterthefailuresofplentyweaponunits.Thecommunicationrangedifferenceisconsideredasthemainheterogeneouscharacteristicsoftheweaponunitsinthispaper.TheGAisimprovedherebycombiningtheeliteindividualreservationstrategyandtherouletteselectionstrategy,andusingtheadaptivecrossoverandmutationprobabilitytopreventprematureconvergences.ThecodingandfitnessfunctionaredesignedforthismodifiedGA,whichisusedtodetermineandoptimizethepositionsofrelayunits.SimulationresultsinMatlabshowthattheproposedmethodhasagoodperformance,whichiscapableofmaximizingtheconnectivityoftheNUWSwithagivenlimitednumberofrelayunits.MeanwhiletheconnectiondegreeofrelayunitisK≤4fromthestatisticsdata,sotheimplementationcostislow.

    [1] Fu Xiaowei, Li Jinliang, Gao Xiaoguang. Modeling and analyzing of air-defense threat netting[J].Acta Armamentarii, 2013, 34(7): 904-909. (in Chinese)

    [2] Guo Wenzhong, Xiong Naixue, Athanasios V Vasilakos. Distributed k-connected fault-tolerant topology control algorithms with PSO in future autonomic sensor systems[J]. International Journal of Sensor Networks, 2012, 12(1): 53-62.

    [3] Taul Bari, Arunita Jaekel, Jin Jiang. Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements[J].Computer Communications, 2012, 35(3): 320-333.

    [4] Randles Martin, Lamb David, Odat E. Distributed redundancy and robustness in complex systems[J].Journal of Computer and System Sciences, 2011, 77(2): 293-304.

    [5] Ameer A Abbasi, Mohamed Younis, Kemal Akkaya. Movement-assisted connectivity restoration in wireless sensor and actor networks[J].IEEE Transactions on Parallel and Distributed Systems, 2009, 20(9): 1366-1379.

    [6] Kemal Akkaya, Fatih Senel, Aravind Thimmapuram. Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility[J].IEEE Transactions on Computers, 2010, 59(2): 258-271.

    [7] Cheng Xiuzhen, Du Dingzhu, Wang Lusheng. Relay sensor placement in wireless sensor networks[J].Wireless Networks, 2008, 14(3): 347-355.

    [8] Errol L Lloyd,Xue Guoliang. Relay node placement in wireless sensor networks[J].IEEE Transactions on Computers, 2007, 56(1): 134-138.

    [9] Lee Sookyoung, Mohamed Younis. Optimized relay node placement for connecting disjoint wireless sensor networks[J].Computer Networks, 2012, 56(12): 2788-2804.

    [10] Lee Sookyoung, Lee Meejeong. QRMSC: efficient QoS-aware relay node placement in wireless sensor networks using minimum Steiner tree on the convex hull[C]∥International Conference on Information Networking (ICOIN), 2013: 36-41.

    [11] Li Ning, Hou Jennifer C. Improving connectivity of wireless ad hoc networks[C]∥Mobile and Ubiquitous Systems: Networking and Services, 2005: 314-324.

    [12] Ravi Prakash. Unidirectional links prove costly in wireless ad hoc networks[C]∥DIALM’99 Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, 1999: 15-22.

    [13] Lei Yingjie, Zhang Shanwen, Li Xuwu. MATLAB genetic algorithm toolbox and its application[M].Xi’an: Xi’an University of Electronic Science and Technology Press, 2005: 11-31. (in Chinese)

    [14] Wang Xiaoping, Cao Liming. Genetic algorithms—theory, application and software implementation[M].Xi’an: Xi’an Jiaotong University Press, 2002: 73-74. (in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004- 0579.201524.0207

    E 837; TP 393 Document code: A Article ID: 1004- 0579(2015)02- 0180- 08

    Received 2013- 11- 05

    Supported by the Aviation Science Foundation of China(2013ZC72006)

    E-mail: alexwyx@bit.edu.cn

    亚洲欧美中文字幕日韩二区| 九色成人免费人妻av| 日韩不卡一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线| 不卡视频在线观看欧美| 18+在线观看网站| 在线精品无人区一区二区三| 亚洲无线观看免费| 精品人妻在线不人妻| av专区在线播放| 国产精品人妻久久久久久| 精品人妻在线不人妻| 一区二区日韩欧美中文字幕 | av福利片在线| 在线观看免费日韩欧美大片 | 国产精品熟女久久久久浪| 欧美日韩国产mv在线观看视频| 高清不卡的av网站| 午夜免费鲁丝| 丰满乱子伦码专区| 日韩av免费高清视频| 亚洲美女视频黄频| www.色视频.com| 欧美人与性动交α欧美精品济南到 | 在现免费观看毛片| 2021少妇久久久久久久久久久| 男男h啪啪无遮挡| 男男h啪啪无遮挡| 午夜老司机福利剧场| 国产免费视频播放在线视频| 精品少妇内射三级| 国内精品宾馆在线| 午夜激情av网站| 午夜激情福利司机影院| 亚洲国产精品成人久久小说| 五月天丁香电影| 国产片特级美女逼逼视频| 夜夜骑夜夜射夜夜干| 最后的刺客免费高清国语| 水蜜桃什么品种好| 成人黄色视频免费在线看| 最黄视频免费看| 亚洲国产av影院在线观看| av在线观看视频网站免费| 欧美精品人与动牲交sv欧美| 一级,二级,三级黄色视频| 精品人妻偷拍中文字幕| 欧美三级亚洲精品| 欧美激情 高清一区二区三区| 另类亚洲欧美激情| 男人添女人高潮全过程视频| 精品亚洲成a人片在线观看| 久久久a久久爽久久v久久| 亚洲av成人精品一区久久| 亚洲少妇的诱惑av| 18禁观看日本| 黑人巨大精品欧美一区二区蜜桃 | 美女国产高潮福利片在线看| 久久 成人 亚洲| 搡老乐熟女国产| 黑人欧美特级aaaaaa片| 国产精品一区二区在线不卡| 各种免费的搞黄视频| 中文精品一卡2卡3卡4更新| 18禁裸乳无遮挡动漫免费视频| 最黄视频免费看| 美女主播在线视频| 日本午夜av视频| 亚洲熟女精品中文字幕| 亚洲av国产av综合av卡| 2022亚洲国产成人精品| av在线观看视频网站免费| 欧美精品一区二区免费开放| 超色免费av| 亚洲欧美精品自产自拍| 人成视频在线观看免费观看| 91午夜精品亚洲一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区免费开放| 3wmmmm亚洲av在线观看| 又大又黄又爽视频免费| av免费在线看不卡| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 亚洲欧洲精品一区二区精品久久久 | 欧美xxxx性猛交bbbb| 亚洲国产色片| 最近2019中文字幕mv第一页| 在线观看www视频免费| 中文字幕免费在线视频6| 国产在线一区二区三区精| 久久久久久人妻| 久久久久久久国产电影| 狠狠精品人妻久久久久久综合| 久久精品国产a三级三级三级| av黄色大香蕉| 久久久a久久爽久久v久久| 日本欧美视频一区| 久久毛片免费看一区二区三区| 国产伦理片在线播放av一区| 黄色配什么色好看| av有码第一页| 免费看光身美女| 国产免费现黄频在线看| 狠狠婷婷综合久久久久久88av| 亚洲精品aⅴ在线观看| 国产成人精品无人区| 国产精品国产三级专区第一集| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区视频9| 亚洲国产欧美在线一区| 爱豆传媒免费全集在线观看| 777米奇影视久久| 国产高清国产精品国产三级| 亚洲精品av麻豆狂野| 精品卡一卡二卡四卡免费| 2021少妇久久久久久久久久久| 亚洲精品第二区| 如何舔出高潮| 免费少妇av软件| 在线播放无遮挡| 伦精品一区二区三区| 欧美日本中文国产一区发布| 国产成人精品在线电影| 大话2 男鬼变身卡| 91午夜精品亚洲一区二区三区| 国产欧美日韩综合在线一区二区| 精品午夜福利在线看| 久久人人爽av亚洲精品天堂| 中文字幕av电影在线播放| 最近手机中文字幕大全| 最近2019中文字幕mv第一页| 91精品国产九色| 久久久久久人妻| 丝袜喷水一区| 91精品一卡2卡3卡4卡| 欧美最新免费一区二区三区| 国产探花极品一区二区| 一本—道久久a久久精品蜜桃钙片| 极品人妻少妇av视频| av免费在线看不卡| 国产精品女同一区二区软件| 好男人视频免费观看在线| 丰满少妇做爰视频| 午夜激情福利司机影院| 中文字幕人妻熟人妻熟丝袜美| 另类亚洲欧美激情| 精品酒店卫生间| 成人毛片a级毛片在线播放| 制服诱惑二区| 日韩大片免费观看网站| 狂野欧美激情性xxxx在线观看| 青青草视频在线视频观看| 亚洲av免费高清在线观看| 九色亚洲精品在线播放| 亚洲精品456在线播放app| 国产亚洲av片在线观看秒播厂| 免费看不卡的av| 人人妻人人澡人人爽人人夜夜| 制服丝袜香蕉在线| 只有这里有精品99| 美女主播在线视频| 99热网站在线观看| 国产视频首页在线观看| xxxhd国产人妻xxx| 在线 av 中文字幕| 欧美成人精品欧美一级黄| 在线观看人妻少妇| 亚洲在久久综合| 99视频精品全部免费 在线| 国产女主播在线喷水免费视频网站| 黄片无遮挡物在线观看| 女人精品久久久久毛片| 天堂8中文在线网| 美女国产高潮福利片在线看| 精品人妻一区二区三区麻豆| 久久亚洲国产成人精品v| 天堂中文最新版在线下载| 久久99蜜桃精品久久| 91aial.com中文字幕在线观看| 最新中文字幕久久久久| 国产欧美另类精品又又久久亚洲欧美| av在线播放精品| 国产精品久久久久久精品电影小说| 国产亚洲一区二区精品| 久久久久久人妻| 国产成人一区二区在线| 制服丝袜香蕉在线| 少妇人妻 视频| 国产高清国产精品国产三级| 亚洲精品国产av成人精品| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 波野结衣二区三区在线| 国产黄频视频在线观看| xxx大片免费视频| av在线播放精品| 简卡轻食公司| 亚洲精品国产av蜜桃| 男人添女人高潮全过程视频| 亚洲经典国产精华液单| 国产极品天堂在线| 国产精品免费大片| 人人妻人人添人人爽欧美一区卜| videossex国产| 三级国产精品片| 一级爰片在线观看| 精品人妻熟女毛片av久久网站| 亚洲av日韩在线播放| 日韩伦理黄色片| 免费久久久久久久精品成人欧美视频 | 蜜桃国产av成人99| 91成人精品电影| 99re6热这里在线精品视频| 大陆偷拍与自拍| 在线观看免费日韩欧美大片 | 香蕉精品网在线| 午夜福利视频在线观看免费| 熟女av电影| 久久99一区二区三区| 欧美人与性动交α欧美精品济南到 | 日日撸夜夜添| 日本猛色少妇xxxxx猛交久久| 一区二区三区四区激情视频| 国产老妇伦熟女老妇高清| 日韩 亚洲 欧美在线| 自线自在国产av| 精品人妻在线不人妻| 波野结衣二区三区在线| 只有这里有精品99| 爱豆传媒免费全集在线观看| 激情五月婷婷亚洲| 男男h啪啪无遮挡| a级毛色黄片| 高清在线视频一区二区三区| 国产伦理片在线播放av一区| 我的老师免费观看完整版| 亚洲精品日韩av片在线观看| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 久久久久久久大尺度免费视频| 日韩视频在线欧美| 岛国毛片在线播放| 男的添女的下面高潮视频| 成人手机av| 五月玫瑰六月丁香| 国产高清有码在线观看视频| 人人妻人人爽人人添夜夜欢视频| 看免费成人av毛片| 国产永久视频网站| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 人妻人人澡人人爽人人| 嘟嘟电影网在线观看| 少妇被粗大的猛进出69影院 | 香蕉精品网在线| 国产色婷婷99| 性高湖久久久久久久久免费观看| 日韩人妻高清精品专区| 久久久久久久久大av| 午夜免费鲁丝| 国产 精品1| 丝袜喷水一区| 久久女婷五月综合色啪小说| 国产黄频视频在线观看| 久久久久人妻精品一区果冻| 亚洲精品第二区| 国产日韩欧美在线精品| av有码第一页| 亚洲精品乱码久久久久久按摩| 激情五月婷婷亚洲| 久久ye,这里只有精品| 九色成人免费人妻av| 国产综合精华液| 一二三四中文在线观看免费高清| 国产亚洲一区二区精品| 日韩视频在线欧美| 欧美日韩综合久久久久久| 成人黄色视频免费在线看| 亚洲av福利一区| 99久久综合免费| 欧美日韩亚洲高清精品| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| av福利片在线| 国精品久久久久久国模美| 欧美丝袜亚洲另类| 少妇精品久久久久久久| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 中国国产av一级| 51国产日韩欧美| 久久精品熟女亚洲av麻豆精品| 国产av精品麻豆| 日韩不卡一区二区三区视频在线| 精品少妇久久久久久888优播| 久久精品久久久久久久性| 国产精品人妻久久久久久| 22中文网久久字幕| 大码成人一级视频| 午夜91福利影院| 欧美3d第一页| 另类亚洲欧美激情| 天天躁夜夜躁狠狠久久av| 亚洲精品乱久久久久久| av国产久精品久网站免费入址| 免费黄网站久久成人精品| 欧美激情极品国产一区二区三区 | 视频在线观看一区二区三区| 国产一区亚洲一区在线观看| 高清欧美精品videossex| 久久久国产欧美日韩av| 插逼视频在线观看| 亚洲伊人久久精品综合| 卡戴珊不雅视频在线播放| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看 | 你懂的网址亚洲精品在线观看| 草草在线视频免费看| av在线播放精品| 美女视频免费永久观看网站| 国产成人一区二区在线| 亚洲精品视频女| 久久ye,这里只有精品| 国产片特级美女逼逼视频| 精品亚洲乱码少妇综合久久| 国产精品.久久久| 少妇人妻 视频| 亚洲国产最新在线播放| 日日啪夜夜爽| 亚洲欧美一区二区三区黑人 | 97在线人人人人妻| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 中文字幕精品免费在线观看视频 | 久久久国产欧美日韩av| 国产成人精品在线电影| 亚洲国产av影院在线观看| 亚洲欧美清纯卡通| 亚洲av在线观看美女高潮| 日本黄色日本黄色录像| 搡女人真爽免费视频火全软件| 好男人视频免费观看在线| 免费黄网站久久成人精品| 99精国产麻豆久久婷婷| 亚洲精品色激情综合| 亚洲国产精品成人久久小说| 精品人妻在线不人妻| 91久久精品电影网| 国国产精品蜜臀av免费| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 中文欧美无线码| 丝袜美足系列| 特大巨黑吊av在线直播| 久久精品人人爽人人爽视色| 国产欧美日韩综合在线一区二区| 亚洲婷婷狠狠爱综合网| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 久久久国产一区二区| 99热全是精品| 国产精品99久久久久久久久| 亚洲欧洲国产日韩| 国产精品久久久久成人av| tube8黄色片| 成人毛片60女人毛片免费| 伦理电影免费视频| 亚洲成人手机| 香蕉精品网在线| 亚洲精品美女久久av网站| 少妇人妻 视频| 国产亚洲精品久久久com| 精品久久久噜噜| 插逼视频在线观看| 男女边吃奶边做爰视频| 国产乱来视频区| 人人妻人人爽人人添夜夜欢视频| 亚洲精品日韩av片在线观看| 好男人视频免费观看在线| av线在线观看网站| 狠狠婷婷综合久久久久久88av| 男女边吃奶边做爰视频| 妹子高潮喷水视频| 成年人免费黄色播放视频| 亚洲一级一片aⅴ在线观看| 久久久久国产精品人妻一区二区| 熟女av电影| 一区在线观看完整版| 久久午夜福利片| 丝袜喷水一区| 91久久精品电影网| 天堂8中文在线网| tube8黄色片| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 国产乱人偷精品视频| 天堂中文最新版在线下载| 亚洲怡红院男人天堂| 91久久精品国产一区二区成人| 精品久久久噜噜| 亚洲熟女精品中文字幕| av电影中文网址| 日韩一区二区视频免费看| av免费观看日本| 女性被躁到高潮视频| 人妻制服诱惑在线中文字幕| 七月丁香在线播放| 麻豆乱淫一区二区| 人人妻人人澡人人爽人人夜夜| 日本猛色少妇xxxxx猛交久久| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| av天堂久久9| 精品亚洲成a人片在线观看| 男女边摸边吃奶| 99九九在线精品视频| 熟女av电影| 国产成人免费观看mmmm| 水蜜桃什么品种好| 伦理电影大哥的女人| 色哟哟·www| 久久久久久久大尺度免费视频| 国产女主播在线喷水免费视频网站| 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 欧美人与性动交α欧美精品济南到 | 亚洲色图综合在线观看| 大又大粗又爽又黄少妇毛片口| 欧美精品一区二区免费开放| 免费观看的影片在线观看| 日韩成人伦理影院| 黑人高潮一二区| 国产欧美日韩一区二区三区在线 | 美女国产高潮福利片在线看| 波野结衣二区三区在线| 欧美国产精品一级二级三级| 高清在线视频一区二区三区| 国产极品天堂在线| 99久久精品国产国产毛片| 国产一区二区三区综合在线观看 | 国产男人的电影天堂91| 如何舔出高潮| 精品人妻偷拍中文字幕| 性色avwww在线观看| 高清视频免费观看一区二区| 亚州av有码| 精品99又大又爽又粗少妇毛片| 2022亚洲国产成人精品| 国产精品久久久久成人av| 国产一区二区三区综合在线观看 | 黑人猛操日本美女一级片| 伊人久久国产一区二区| 日本av免费视频播放| 女性被躁到高潮视频| 国产成人精品在线电影| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 精品人妻一区二区三区麻豆| 亚洲一区二区三区欧美精品| 99久久精品国产国产毛片| 99国产精品免费福利视频| 免费av中文字幕在线| av在线老鸭窝| 日韩不卡一区二区三区视频在线| 亚洲精品456在线播放app| 中文欧美无线码| 久久精品夜色国产| 久久99一区二区三区| 日韩免费高清中文字幕av| 久久国产精品大桥未久av| 少妇猛男粗大的猛烈进出视频| 久久毛片免费看一区二区三区| 国产亚洲欧美精品永久| 亚洲av在线观看美女高潮| 人人妻人人澡人人看| 韩国高清视频一区二区三区| 这个男人来自地球电影免费观看 | 中文字幕免费在线视频6| 国产黄色免费在线视频| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| 91精品国产国语对白视频| 大香蕉久久网| 色视频在线一区二区三区| 亚洲国产精品999| 一级片'在线观看视频| 免费黄频网站在线观看国产| 制服诱惑二区| 啦啦啦啦在线视频资源| 亚洲av中文av极速乱| 女性被躁到高潮视频| 国产成人精品在线电影| 男男h啪啪无遮挡| 免费看光身美女| 精品少妇久久久久久888优播| 蜜桃在线观看..| 伦理电影免费视频| 在线观看免费视频网站a站| 99久久中文字幕三级久久日本| 国产在线一区二区三区精| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| 久久99精品国语久久久| 最近的中文字幕免费完整| 美女大奶头黄色视频| 亚洲精品第二区| 哪个播放器可以免费观看大片| 美女主播在线视频| 妹子高潮喷水视频| 国产精品一国产av| 久久久久久久大尺度免费视频| 国产极品粉嫩免费观看在线 | 热99久久久久精品小说推荐| 亚洲综合色网址| 国产亚洲精品第一综合不卡 | 亚洲综合色惰| 老熟女久久久| 一区在线观看完整版| 另类精品久久| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 久久精品人人爽人人爽视色| 91在线精品国自产拍蜜月| kizo精华| 男女国产视频网站| 日韩一区二区视频免费看| 2018国产大陆天天弄谢| 在线观看一区二区三区激情| 久久久久久久久大av| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| 国产精品一二三区在线看| 汤姆久久久久久久影院中文字幕| 简卡轻食公司| 三级国产精品欧美在线观看| 亚洲国产最新在线播放| 伦理电影大哥的女人| 日日爽夜夜爽网站| 久久鲁丝午夜福利片| 亚洲精品久久午夜乱码| 久久精品国产亚洲av涩爱| 亚洲情色 制服丝袜| 国产精品人妻久久久久久| 国产精品欧美亚洲77777| 蜜桃在线观看..| 大片电影免费在线观看免费| 蜜桃国产av成人99| 人成视频在线观看免费观看| 曰老女人黄片| 日韩av在线免费看完整版不卡| 亚洲欧美日韩另类电影网站| 免费高清在线观看视频在线观看| 水蜜桃什么品种好| 亚洲精品乱码久久久久久按摩| 亚洲精品成人av观看孕妇| 这个男人来自地球电影免费观看 | 久久人人爽人人片av| 国产女主播在线喷水免费视频网站| 国内精品宾馆在线| 日本免费在线观看一区| 午夜老司机福利剧场| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 亚洲中文av在线| 18禁在线无遮挡免费观看视频| 国产男女超爽视频在线观看| 午夜老司机福利剧场| 午夜福利在线观看免费完整高清在| a级毛片黄视频| 久久热精品热| 秋霞在线观看毛片| 免费人妻精品一区二区三区视频| 一级黄片播放器| 国产精品成人在线| 嘟嘟电影网在线观看| 看非洲黑人一级黄片| 午夜精品国产一区二区电影| 国产熟女午夜一区二区三区 | 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 亚洲欧美一区二区三区黑人 | 在线看a的网站| 日本欧美国产在线视频| 两个人的视频大全免费| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| 大香蕉97超碰在线| 日本黄大片高清| 丝袜美足系列| 九九在线视频观看精品| 国内精品宾馆在线| 成年美女黄网站色视频大全免费 | 久久久国产精品麻豆| 91精品伊人久久大香线蕉| 成人亚洲欧美一区二区av| 老司机亚洲免费影院| 亚洲精品aⅴ在线观看| 日韩免费高清中文字幕av| 永久网站在线| a级毛片黄视频| 91午夜精品亚洲一区二区三区| 秋霞在线观看毛片| 街头女战士在线观看网站| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 久久久久久久大尺度免费视频| 日韩精品有码人妻一区| 在线亚洲精品国产二区图片欧美 | 一边摸一边做爽爽视频免费|