• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel scheme of high precision inertial measurement for high-speed rotating carriers

    2015-04-22 06:17:28WUQingya武慶雅JIAQingzhong賈慶忠SHANJiayuan單家元MENGXiuyun孟秀云
    關(guān)鍵詞:兩國間伙伴國互補(bǔ)性

    WU Qing-ya(武慶雅), JIA Qing-zhong(賈慶忠), SHAN Jia-yuan(單家元),MENG Xiu-yun(孟秀云)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering,Beijing Institute of Technology, Beijing 100081,China)

    ?

    Novel scheme of high precision inertial measurement for high-speed rotating carriers

    WU Qing-ya(武慶雅), JIA Qing-zhong(賈慶忠), SHAN Jia-yuan(單家元),MENG Xiu-yun(孟秀云)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering,Beijing Institute of Technology, Beijing 100081,China)

    In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (6A2G) was proposed in this paper. The available configurations have the problem of low measurement precision in a high dynamic environment due to channel coupling. The three channels were decoupled when calculating the angular velocity in the proposed configuration. The yawing and pitching angular velocity were directly measured by gyros, while only the rolling angular velocity was obtained by the GAMA-IMU indirectly from the rolling angular acceleration and quadratic component of rolling angular velocity. Then a single channel rolling angular velocity calculation model was established and the extended Kalman filter (EKF) was used to do state estimation. Simulations were carried out and results indicated that the calculation precision of the proposed 6A2G configuration could meet the demand of high precision measurement for a high-speed rotating carrier.

    high-speed rotating carrier; gyro aided multi-accelerometer; angular velocity calculation; extended kalman filter (EKF)

    A spinning carrier refers to a carrier rotating around its own lengthwise axis when flying. A carrier’s spin may bring many advantages[1]. On the other hand, it can also induce a series of problems, among which, high precision measurement of large rolling angular velocity is an important one. When the rolling angular velocity is too large for the gyro to measure directly, accelerometers are used instead to accomplish this task, which benefits from the lever-arm effect. The angular velocity calculation precision of this method mainly depends on the configuration of the inertial measurement unit (IMU), including gyro-free IMU (GF-IMU)[2-14]and gyro aided multi-accelerometer IMU (GAMA-IMU)[15-16].

    The most classic GF-IMU configurations are six-accelerometer (6A) cubic configuration[2], nine-accelerometer (9A) configuration[3-6]and twelve-accelerometer (12A) configuration[7-14]. Among these three configurations, the 6A configuration has low angular velocity calculation precision for error accumulation. The angular velocity calculation precision of the 9A configuration would decrease as the rolling angular rate getting higher due to the channel coupling, indicating that this configuration is not suitable for high-speed rotating carrier. So many accelerometers are used in the 12A configuration that it would result in high system costs, decreased system reliability and increased installation difficulty. Clearly, all the three classical configurations are not suitable for engineering application. As for the GAMA-IMU configuration, Wang Lei et al[15]proposed a four-accelerometer two-gyro (4A2G) configuration, which used few instruments but could not ensure the sign of the rolling angular rate. Mu Shuzhi et al[16]adopted seven, five and four accelerometers respectively to go with a two-axis gyro to form three different kinds of GAMA-IMU. The rolling angular rates were all calculated by mathematic analysis method, among which the division operation might induce gross error data. Besides, the GAMA-IMU with five and four accelerometers both could not insure the sign of the rolling angular rate.

    Aiming at the aforementioned problems, a GAMA-IMU with six accelerometers and two gyros (6A2G) were proposed in this paper. The yawing and pitching angular velocities were measured directly by gyros, while the angular information produced by the GAMA-IMU indirectly only concerns rolling angular velocity for channel decoupling. Then, the single channel state space model was established and the extended Kalman filter (EKF) algorithm was used to estimate the rolling angular velocity due to the nonlinear measurement equation. Simulation results indicated that the proposed configuration could be used on a carrier rotating at any high speed.

    1 Novel GAMA-IMU configuration

    The GAMA-IMU configuration proposed in this paper consists of six accelerometers and two gyros and all the sensors are fixed on bracket coincident with the body fixed coordinate system, as shown in Fig. 1. The body fixed coordinate system is defined to have the origin at the center of gravity with thex-axis pointed out the nose, and they- andz-axes pointing to the “up” and “right” respectively, when viewed from the rear.

    Gyros G1, G2 and accelerometers F1, F2 and F5 are installed at the origin of the carrier. G1 and G2 sense the angular velocities ony- andz-axes, the outputs of which are denoted asg1andg2respectively. For calculation convenience and without loss of generality, the other three accelerometers are of the same distance from the origin, denoted asd.

    Fig.1 6A2G IMU configuration

    The output of the accelerometer fixed at non-centroid of the body is the summation of the specific force at the center of mass and the acceleration induced by rotation. Let r denotes the installation position vector of the accelerometer andθdenotes its sensitive orientation vector, then the output of the accelerometer located at any position can be expressed as follows:

    (1)

    For the proposed 6A2G configuration, the installation position matrix of the accelerometer is

    (2)

    The sensitive direction matrix is

    (3)

    Letfi,i=1,…,6 denote the outputs of the six accelerometers respectively. According to Eqs.(1)-(3), information concerning the angular velocity can be obtained:

    (4)

    (5)

    (6)

    ωy=g1

    (7)

    ωz=g2

    (8)

    Substitute Eq. (8) into Eq. (5),we have

    (9)

    Intuitively,ωycan be obtained by dividing Eq.(6) by Eq.(8), which induces an illusion that gyro G1 is useless. Practically,ωzis so small that gross error datum would easily be created if it is the denominator in a division operation. Hence gyro G1 is essential for ensuring the measurement precision ofωy. Besides,f1is unused in Eqs.(4)-(8), but the accelerometer F1 is not redundant for it is used to measure linear acceleration ofx-axis.

    2 Rolling angular velocity calculation based on EKF

    ωyandωzcan be output directly by gyros, so we can get the complete angular velocity information ifωxis acquired. Based on Eqs.(4) (9), the two basic angular velocity calculation methods can be obtained, that is, the integration method and the evolution method. The way of integrating Eq.(4) directly to getωxis called the integration method. First getting its absolute value through taking the square root of Eq.(9), and then judging its sign according to the value calculated by the integration method is considered as the evolution method. The integration method will easily result in error accumulation, and the evolution method will induce misjudgement of the sign due to the inaccurate data calculated by the integration method, which are the reasons why a more extraordinary approach is needed to calculate the rolling angular velocity.

    The channels have been decoupled benefits from the proposed GAMA-IMU configuration when calculating the angular velocities, thus a single channel rolling angular velocity calculation model was established and filter theory was brought in to do state estimation. In fact, handling the problem in this way will not only simplify the system model, but also offer a chance for the 6A2G IMU to be applied on a high-speed rotating carrier.

    We firstly establish the single channel rolling angular velocity calculation state space model. Suppose the static error, dynamic error and installation error of the accelerometers and gyros have been calibrated and compensated. Only the random error is considered in this paper. Suppose the random error is Gaussian white noise with zero mean. The random errors of the six accelerometers are denoted as Δfi,i=1,…,6 respectively and that of gyro G2 is denoted as Δg2.

    Let the sampling interval beT, and the following equation can be obtained:

    (10)

    wherethesubscriptkdenotes the variable at timestepk. Consider the rolling angular acceleration calculated through Eq.(4) as input, denoted asu, and then we get

    Δf4,k-1-Δf5,k-1)

    (11)

    Substitute Eq.(11) into Eq. (10):

    Δf5,k-1-Δf2,k-1-Δf6,k-1)

    Considerx=ωxas state, and the state equation is

    xk=Φxk-1+Ψuk-1+Γwk-1

    (12a)

    whereΦ=1,Ψ=T,Γ=T/(2d),wk-1=Δf4,k-1+Δf5,k-1-Δf2,k-1-Δf6,k-1. The statistical characteristics ofwk-1are

    LetDi,i=2,…,6 denote the variance offi,i=2,…,6 respectively, andQk-1=D2+D3+D4+D6.

    Set the quadratic component of the rolling angular velocity calculated through Eq.(9) as observations and letfthrydenote the specific force without error, then we can get

    zk=h(xk)+vk

    (12b)

    whereRk=(D2+D3)/d2.

    We can see that the state equation is linear while the measurement equation is nonlinear. Due to the nonlinear measurement equation, the standard KF algorithm is no longer suitable for this situation and a nonlinear filtering approach is needed instead.

    EKF and unscented Kalman filter (UKF) are the two nonlinear filter algorithms most wildly used. Many researchers have proved that the two algorithms performs equally when the system model has little nonlinearity[17-18]. However, compared to UKF, EKF has much higher calculation efficiency, which makes it more suitable to solve the problem in this paper. Rolling angular velocity estimation steps based on EKF are as follows[19]:

    ① Initialization:

    The initial state and initial estimation error covariance can be set as

    ②Prediction:

    Theprioristateestimateandprioriestimationerrorcovarianceareupdatedas

    Pxx,k|k-1=ΦPk-1ΦT+ΓQk-1ΓT=Pk-1+T2Qk-1/4d2

    ③ Measurement update:

    The Jacobian of the measurement model is expressed as

    TheKalmangainisupdatedas

    Theposterioristateestimateandposterioriestimationerrorcovarianceareupdatedas

    Pk=(I-KkHk|k-1)Pxx,k|k-1

    3 Simulations and results analysis

    Simulations were carried out in three aspects. Firstly the performance on rolling angular velocity estimation of the 6A2G configuration was tested; then the necessity of gyro G1 was verified; lastly the proposed 6A2G configuration was contrasted with the 9A configuration to further validate its good performance on angular velocity calculation.

    Suppose the carrier’s rotational speed is 10 r/s. The sampling interval is chosen to be 1 ms and the flight time is set as 300 s. Consider different kinds of flight conditions during flight, such as climbing, flat flight, swerve and dive, and consider effect of earth rotation. Fig.2 shows a plot of the angular velocity profile.

    Fig.2 Angular velocity profile

    The shadow areas ofωyandωzin Fig.2 represent oscillation with a frequency ofωx/2π. Angular motion in one direction will trigger that with the same amplitude and frequency in the other on account of the carrier’s rotation.

    Suppose the random error of the accelerometer is 5×10-5gand the random error of the gyro is 10(°)/h. The contrast error curves when adopting the filter approach, the evolution approach and the integration approach to estimate the rolling angular velocity are shown in Fig.3.

    Fig.3 Angular velocity error of x-axis based on the three approaches

    Meanwhile, the standard deviations of the estimated errors of each angular velocity calculation approach are 4.611 2×10-5, 1.378 6×10-4and 2.737 3×10-3respectively. The results indicate that the integration method is not proficient in calculating the angular velocity, for it would induce error accumulation. The filter approach and evolution approach can both effectively estimate the angular velocity and keep the errors within small range without accumulation. The evolution method relies on the integration method to judge the sign, which may induce misjudgement as error accumulating. The reason why there is no gross error data produced by the evolution method is that the rotation speed is set to be relatively high, and the cumulate errors may count for nothing in mistaking the sign of the angular velocity calculated by the integration method. Even so, the precision of the evolution method is inferior to that of the filter method, whose performance has been as good as a gyro.

    In order to verify the necessity of gyro G1 in the proposed 6A2G configuration, the calculation error ofωygenerated from division computation was plotted in Fig. 4. It can be seen that the gross error data are large, indicating that the division method is not an advisable choice.ωyshould be measured by gyro G1 to ensure the accuracy.

    Fig.4 Angular velocity error of y-axis based on division

    In the precondition that the sampling interval remains unchanged, the rolling angular velocity calculation precision of the available configurations may decrease as the rotation speed increases owing to channel coupling. However, the 6A2G configuration proposed in this paper can achieve the effect that the calculation precision of rolling angular velocity increases as the rotation speed increases under a certain sampling interval. In order to verify the superiority of the proposed 6A2G configuration, comparison experiments were carried out between this configuration and the classical 9A configuration[6]. Three-channel angular velocity calculation modal of the 9A configuration is established in the same approach as that described in Section 2. The standard deviations of the estimated errors based on the filter approach under different rotation speeds of the two configurations are listed in Tab.1.

    Tab.1 Standard deviation of angular velocity estimated error based on 6A2G and 9A configuration

    1—six-accelerometer two-gyro configuration; 2—nine-accelerometer configuration

    It can be seen that the proposed 6A2G configuration behaves well on all the three channels. The measurement precision of yawing and pitching angular velocity barely changes for they are directly output by gyros. More than anything, the estimated error of rolling angular velocity decreases as the rotation speed increases, leading to a benefit that the configuration can be used on carrier rotating at any speed. The performance of 9A configuration is close to that of 6A2G configuration on the yawing and pitching channels, but the errors of rolling channel are much larger, and will grow larger with the increasing of rotation speed. Although the precision of yawing and pitching channel of the 9A configuration will increase a little bit as the rotation speed increases, it can’t fill the gap of low calculation precision of rolling angular velocity.

    貿(mào)易互補(bǔ)性指數(shù)。主要是衡量兩國間貿(mào)易互補(bǔ)程度,通常以一國特定產(chǎn)品出口的比較優(yōu)勢與其貿(mào)易伙伴國該產(chǎn)品進(jìn)口的比較劣勢的乘積來衡量。計算公式如下:

    4 Conclusions

    In this paper, a 6A2G IMU configuration is proposed to measure the angular velocity with high precision for a high-speed rotating carrier. The configuration has the three channels decoupled when calculating the angular velocity to solve the low calculation precision problem due to channel coupling. Based on it, a single channel state space model is established and the EKF algorithm is utilized to estimate the rolling angular velocity. Simulation results show that the proposed scheme can provide high precision measurement for a carrier rotating at high speed.

    The future work is to derive a whole set of navigation algorithms perfectly suitable for GFSINS (NGFSINS) to finally obtain the attitude, speed and location of the carrier, and the integrated navigation system should also be developed to improve navigation precision.

    [1] Li Xingcheng, Zhang Shuangbiao. Stability study of spiral motion based on calculated flight data[J]. Transactions of Beijing Institute of Technology, 2012, 32(12): 1223-1228.(in Chinese)

    [2] Jeng Heng Chen, Lee S C, Daniel B DeBra. Gyroscope free strap-down inertial measurement unit by six linear accelerometers[J]. Journal of Guidance, Control and Dynamics, 1994, 17(3): 286-290.

    [3] Wang Jinsong, Wang Qi, Sun Shenghe. Optimal technology for non-gyro micro inertial measuring unit[J]. Journal of Harbin Institute of Technology, 2002, 34(5): 632-635.(in Chinese)

    [4] Park S, Tan C W, Park J. A scheme for improving the performance of a gyroscope-free inertial measurement unit[J]. Sensors and Actuators A: Physical, 2005, 121: 410-420.

    [5] Chen T L, Park S. MEMS SoC: observer-based coplanar gyro-free inertial measurement unit[J]. Journal of Micromechanics and Microengineering, 2005, 15: 1664-1673.

    [7] Zhang Huixin, Wang Shichang, Yang Yunliang, et al. Method optimization for angular velocity calculating in inertial testing system composed with full accelerometers[J]. Journal of Chinese Inertial Technology, 2008, 16(6): 672-675.(in Chinese)

    [8] Buhmann A, Peters C, Cornils M, et al. A GPS aided full linear accelerometer based gyroscope-free navigation system[C]∥Proceedings of IEEE/ION PLANS 2006, San Diego, CA, 2006:622-629.

    [9] Parsa K, Lasky T A, Ravani B. Design and implementation of a mechatronic, all-accelerometer inertial measurement unit[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(6): 640-650.

    [10] Schopp P, Klingbeil L, Peters C, et al. Sensor fusion algorithm and calibration for a gyroscope-free IMU[J]. Procedia Chemistry, 2009, 1: 1323-1326.

    [11] Park S, Hong S K. Angular rate estimation using a distributed set of accelerometers[J]. Sensors, 2011, 11: 10444-10457

    [12] Cappa P, Patane F, Rossi S. Two calibration procedures for a gyroscope-free inertial measurement system based on a double-pendulum apparatus[J]. Measurement Science and Technology, 2008, 19: 1-9.

    [13] Edwan E, Knedlik S, Loffeld O. Constrained angular motion estimation in a gyro-free IMU[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 596-610.

    [14] Cardou P, Fournier G, Gagnon P. A nonlinear program for angular-velocity estimation from centripetal-acceleration measurements[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 932-944.

    [15] Wang Lei, Hao Yongping, Xiao Chang, et al. The simulation and experiment research of inertial navigation system used for shell in high dynamic environment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2): 4-8.(in Chinese)

    [16] Mu Shuzhi, Bu Xiongzhu, Li Yongxin, et al. Research on inertial measurement unit of high rotation vehicle[J]. Journal of Ballistics, 2006, 18(4): 85-88.(in Chinese)

    [17] Matthew Rhudy, Yu Gu, Jason Gross, et al. Sensitivity analysis of EKF and UKF in GPS/INS sensor fusion[C]∥AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, 2011: 1-15.

    [18] Zhao Sihao, Lu Mingquan, Feng Zhenming. Application of EKF and UKF in tightly-coupled integrated navigation system[J]. Systems Engineering and Electronics, 2009, 31(10): 2450-2454.(in Chinese)

    [19] Fu Mengyin, Deng Zhihong, Yan Liping. Kalman filtering theory and its application in the navigation system [M]. 2rd ed. Beijing: Science Press, 2010:160-171.(in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004- 0579.201524.0202

    V 249.322Document code: A Article ID: 1004- 0579(2015)02- 0151- 07

    Received 2013- 08- 23

    E-mail: bitjqzh96@163.com

    猜你喜歡
    兩國間伙伴國互補(bǔ)性
    未來30年,期待兩國間質(zhì)的飛躍
    金橋(2022年8期)2022-08-24 01:33:26
    中國OFDI對貿(mào)易伙伴國服務(wù)業(yè)集聚的影響研究
    本財年內(nèi)緬甸增加了10個新貿(mào)易伙伴國
    -- Китай" --" --верный шагк углублению энергетического сотрудничества">Обзор:: прокладкановой ветки нефтепровода""Россия
    -- Китай" --" --верный шагк углублению энергетического сотрудничества
    中亞信息(2016年8期)2016-12-06 05:35:41
    淺析自媒體與傳統(tǒng)媒體新聞傳播的互補(bǔ)性
    新聞傳播(2016年9期)2016-09-26 12:20:23
    企業(yè)外部互補(bǔ)性資產(chǎn)管理對象的選擇
    出版與印刷(2016年1期)2016-01-03 08:53:43
    春秋時期公族與士夫之族的互補(bǔ)性——以魯、晉兩國為例
    人間(2015年18期)2015-12-30 03:42:08
    蝸墻
    江南詩(2015年3期)2015-06-01 18:03:24
    蝸 墻
    江南詩(2015年3期)2015-06-01 04:29:36
    小句關(guān)系的多元解釋與研究方法的互補(bǔ)性
    国产成人精品无人区| 免费av中文字幕在线| av在线播放精品| 好男人视频免费观看在线| av一本久久久久| 免费看光身美女| 久久av网站| 亚洲无线观看免费| 国产白丝娇喘喷水9色精品| 一级毛片黄色毛片免费观看视频| 人妻一区二区av| 国产午夜精品一二区理论片| 国产高清三级在线| av专区在线播放| 国产不卡av网站在线观看| 欧美+日韩+精品| 女人久久www免费人成看片| 欧美最新免费一区二区三区| 久久人妻熟女aⅴ| 母亲3免费完整高清在线观看 | 免费久久久久久久精品成人欧美视频 | 黄色欧美视频在线观看| 亚洲,欧美,日韩| 九九在线视频观看精品| 91久久精品电影网| 欧美精品一区二区大全| 免费大片黄手机在线观看| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 另类亚洲欧美激情| 热99久久久久精品小说推荐| 亚洲国产精品999| 精品少妇黑人巨大在线播放| 熟女电影av网| 欧美bdsm另类| 中文精品一卡2卡3卡4更新| 91精品伊人久久大香线蕉| 免费观看的影片在线观看| 国产亚洲一区二区精品| av在线app专区| 午夜视频国产福利| 日日摸夜夜添夜夜添av毛片| 色94色欧美一区二区| 91aial.com中文字幕在线观看| 色婷婷av一区二区三区视频| 一边亲一边摸免费视频| 久久久精品94久久精品| 大片免费播放器 马上看| 在线观看www视频免费| 久久国产精品男人的天堂亚洲 | 国产色爽女视频免费观看| 国产亚洲av片在线观看秒播厂| 涩涩av久久男人的天堂| 国产深夜福利视频在线观看| 精品亚洲成国产av| 欧美精品高潮呻吟av久久| 日韩欧美一区视频在线观看| 99国产精品免费福利视频| 久久国产精品大桥未久av| 亚洲精品aⅴ在线观看| 日本av免费视频播放| 一本色道久久久久久精品综合| 男女国产视频网站| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 中文字幕制服av| 精品一品国产午夜福利视频| 女性生殖器流出的白浆| 久久久亚洲精品成人影院| 草草在线视频免费看| 日韩中文字幕视频在线看片| 亚洲人与动物交配视频| 亚洲无线观看免费| 亚洲美女黄色视频免费看| 欧美性感艳星| 18禁动态无遮挡网站| 大香蕉久久网| 草草在线视频免费看| 91精品国产国语对白视频| 18禁观看日本| 免费观看在线日韩| 成人影院久久| 18禁观看日本| 熟女电影av网| 搡老乐熟女国产| 人妻系列 视频| 亚洲无线观看免费| www.色视频.com| 一本大道久久a久久精品| 亚洲国产毛片av蜜桃av| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 999精品在线视频| 久久av网站| 成人黄色视频免费在线看| 亚洲精品av麻豆狂野| 久久久久久人妻| 免费高清在线观看日韩| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 午夜免费男女啪啪视频观看| 亚洲精品视频女| 亚洲av电影在线观看一区二区三区| 一级黄片播放器| 欧美+日韩+精品| 国产极品粉嫩免费观看在线 | 80岁老熟妇乱子伦牲交| 69精品国产乱码久久久| 中文字幕精品免费在线观看视频 | 国产成人精品无人区| 一级毛片电影观看| 亚洲成人一二三区av| 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 久久精品夜色国产| 人人妻人人澡人人爽人人夜夜| 亚洲综合色惰| 亚洲国产精品成人久久小说| 亚洲国产精品999| 精品久久久久久久久亚洲| 国产日韩一区二区三区精品不卡 | 亚洲美女搞黄在线观看| 日本91视频免费播放| 国产精品99久久久久久久久| 中文天堂在线官网| 国产一区二区在线观看日韩| 久久人人爽人人爽人人片va| 久久 成人 亚洲| 久久久久精品性色| 高清毛片免费看| 熟女av电影| 狠狠婷婷综合久久久久久88av| 国产精品一国产av| 国产男女内射视频| 99九九在线精品视频| 久久久精品区二区三区| 大又大粗又爽又黄少妇毛片口| 日韩熟女老妇一区二区性免费视频| 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 麻豆乱淫一区二区| tube8黄色片| 黄色一级大片看看| 亚洲欧美一区二区三区黑人 | 看非洲黑人一级黄片| 少妇被粗大猛烈的视频| 日韩av免费高清视频| 国产av国产精品国产| 丝袜美足系列| 99久久人妻综合| 亚洲精品美女久久av网站| 成人黄色视频免费在线看| 国产高清有码在线观看视频| 免费看av在线观看网站| av黄色大香蕉| 99精国产麻豆久久婷婷| 少妇人妻久久综合中文| 男男h啪啪无遮挡| 久久久久久人妻| 国产一区二区三区综合在线观看 | 日韩三级伦理在线观看| 天美传媒精品一区二区| 国产精品蜜桃在线观看| 国产精品99久久久久久久久| 成人黄色视频免费在线看| 成人18禁高潮啪啪吃奶动态图 | 80岁老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 七月丁香在线播放| 大片免费播放器 马上看| 丰满饥渴人妻一区二区三| av专区在线播放| 亚洲激情五月婷婷啪啪| av一本久久久久| 国产 精品1| 在线观看免费视频网站a站| 久久久久久久久久久久大奶| 亚洲精品国产色婷婷电影| 韩国av在线不卡| 国产色婷婷99| 亚洲经典国产精华液单| 一区二区三区精品91| 777米奇影视久久| 高清欧美精品videossex| 亚洲精品成人av观看孕妇| 日本欧美视频一区| 国产白丝娇喘喷水9色精品| 91国产中文字幕| 一级a做视频免费观看| 一级黄片播放器| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 男男h啪啪无遮挡| 成人综合一区亚洲| 91午夜精品亚洲一区二区三区| 亚洲精品久久午夜乱码| 18禁观看日本| 天堂中文最新版在线下载| 精品午夜福利在线看| 久久久久网色| 国产不卡av网站在线观看| 日韩伦理黄色片| 午夜老司机福利剧场| 精品一区二区三卡| 亚洲精品视频女| 中国国产av一级| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 久久久精品94久久精品| 久久99热6这里只有精品| 国产毛片在线视频| 国产一区二区三区av在线| 丝袜美足系列| 亚洲美女搞黄在线观看| 夜夜看夜夜爽夜夜摸| 久久久久视频综合| 99九九在线精品视频| 久久国产精品男人的天堂亚洲 | 国产女主播在线喷水免费视频网站| 国产精品免费大片| 欧美3d第一页| 久久久久国产网址| 26uuu在线亚洲综合色| av卡一久久| 亚洲少妇的诱惑av| 肉色欧美久久久久久久蜜桃| 精品久久蜜臀av无| 麻豆乱淫一区二区| 国产精品一区二区三区四区免费观看| 又大又黄又爽视频免费| 91精品伊人久久大香线蕉| 丝瓜视频免费看黄片| 精品熟女少妇av免费看| 国产精品三级大全| 麻豆乱淫一区二区| 久久久久久久久久成人| 69精品国产乱码久久久| av卡一久久| 欧美精品高潮呻吟av久久| 午夜福利网站1000一区二区三区| 中国三级夫妇交换| 五月天丁香电影| 国产精品国产av在线观看| 人妻夜夜爽99麻豆av| 爱豆传媒免费全集在线观看| 在线 av 中文字幕| 少妇的逼水好多| av免费观看日本| 99久久综合免费| 日韩视频在线欧美| 大香蕉久久成人网| 精品少妇内射三级| 精品亚洲成国产av| 国产一卡二卡三卡精品| 免费在线观看完整版高清| 日本av免费视频播放| 亚洲 欧美一区二区三区| 亚洲全国av大片| 99精国产麻豆久久婷婷| 亚洲精品乱久久久久久| 国产精品久久久久成人av| 国产xxxxx性猛交| 午夜福利在线观看吧| 高清在线国产一区| 午夜两性在线视频| 亚洲精品成人av观看孕妇| 一进一出好大好爽视频| 欧美日韩成人在线一区二区| 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 国产成人一区二区三区免费视频网站| 免费av中文字幕在线| 在线观看66精品国产| av视频免费观看在线观看| 午夜福利在线观看吧| 精品一区二区三区av网在线观看 | 精品亚洲成a人片在线观看| 人人妻人人澡人人爽人人夜夜| av片东京热男人的天堂| 又黄又粗又硬又大视频| 国产xxxxx性猛交| 一边摸一边抽搐一进一小说 | 日日夜夜操网爽| 亚洲国产成人一精品久久久| 老汉色av国产亚洲站长工具| bbb黄色大片| 搡老熟女国产l中国老女人| av在线播放免费不卡| 夜夜爽天天搞| 一级毛片电影观看| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 香蕉久久夜色| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 精品国内亚洲2022精品成人 | 我要看黄色一级片免费的| 丝袜喷水一区| 电影成人av| 国产精品免费大片| 下体分泌物呈黄色| 精品人妻在线不人妻| 久久精品亚洲av国产电影网| 50天的宝宝边吃奶边哭怎么回事| 天天躁夜夜躁狠狠躁躁| 性高湖久久久久久久久免费观看| 久久精品国产99精品国产亚洲性色 | 91国产中文字幕| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 精品久久久久久久毛片微露脸| 成人三级做爰电影| 无限看片的www在线观看| 考比视频在线观看| 久久精品亚洲av国产电影网| 国产av国产精品国产| 丁香六月天网| 国产福利在线免费观看视频| 欧美大码av| 嫩草影视91久久| 亚洲一码二码三码区别大吗| 久久久久精品国产欧美久久久| 一区二区三区激情视频| 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频| 少妇 在线观看| 国产精品九九99| 国产亚洲欧美精品永久| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 操美女的视频在线观看| 侵犯人妻中文字幕一二三四区| 亚洲久久久国产精品| 久久久国产成人免费| 久久国产亚洲av麻豆专区| 欧美+亚洲+日韩+国产| 久久99一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产视频一区二区在线看| 国产一区二区激情短视频| 首页视频小说图片口味搜索| 曰老女人黄片| 亚洲av美国av| 视频区图区小说| 欧美精品啪啪一区二区三区| 久久毛片免费看一区二区三区| 亚洲色图 男人天堂 中文字幕| 精品高清国产在线一区| 国产真人三级小视频在线观看| 欧美精品一区二区免费开放| 日日夜夜操网爽| 久久精品熟女亚洲av麻豆精品| 大香蕉久久成人网| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 国产黄频视频在线观看| 亚洲中文日韩欧美视频| 两个人免费观看高清视频| 超色免费av| 精品高清国产在线一区| 在线观看免费视频网站a站| av福利片在线| 老司机在亚洲福利影院| 捣出白浆h1v1| 国产麻豆69| 757午夜福利合集在线观看| 美女高潮喷水抽搐中文字幕| 少妇的丰满在线观看| 一级黄色大片毛片| 日韩视频一区二区在线观看| 大片电影免费在线观看免费| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 亚洲国产欧美在线一区| 中文字幕制服av| 亚洲人成电影观看| 亚洲成人手机| 久久久欧美国产精品| 国产精品美女特级片免费视频播放器 | 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 精品国产亚洲在线| 日韩欧美免费精品| 午夜免费鲁丝| 天天影视国产精品| tocl精华| 久久精品亚洲熟妇少妇任你| 亚洲第一青青草原| 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| 99精国产麻豆久久婷婷| 最近最新中文字幕大全电影3 | 国产亚洲午夜精品一区二区久久| 国产高清视频在线播放一区| 国产亚洲精品久久久久5区| 天堂8中文在线网| 国产日韩欧美亚洲二区| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费一区二区三区在线 | 搡老岳熟女国产| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机亚洲免费影院| 美女高潮喷水抽搐中文字幕| 色婷婷av一区二区三区视频| 国产亚洲av高清不卡| 午夜福利免费观看在线| 国产人伦9x9x在线观看| 久久久国产欧美日韩av| 99香蕉大伊视频| 国产精品国产高清国产av | 黄色视频,在线免费观看| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 高清黄色对白视频在线免费看| 99精品在免费线老司机午夜| 精品视频人人做人人爽| 中文欧美无线码| 久久精品亚洲熟妇少妇任你| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 自线自在国产av| 免费看十八禁软件| 精品久久久精品久久久| 99精品欧美一区二区三区四区| 国产单亲对白刺激| 国产精品久久久久久精品古装| 亚洲人成77777在线视频| 国产日韩一区二区三区精品不卡| 一个人免费看片子| 国产欧美日韩一区二区精品| 九色亚洲精品在线播放| 人人妻人人澡人人爽人人夜夜| av天堂久久9| 色在线成人网| 99香蕉大伊视频| 激情视频va一区二区三区| 天堂中文最新版在线下载| 91精品国产国语对白视频| 亚洲av美国av| 国产精品 欧美亚洲| 午夜免费成人在线视频| 高清毛片免费观看视频网站 | 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| av电影中文网址| 美女高潮到喷水免费观看| 国产一区二区 视频在线| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 婷婷成人精品国产| 久久精品成人免费网站| 欧美性长视频在线观看| 色94色欧美一区二区| 黄片播放在线免费| avwww免费| av又黄又爽大尺度在线免费看| 精品人妻1区二区| av福利片在线| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 国产精品偷伦视频观看了| 欧美日韩视频精品一区| 欧美性长视频在线观看| 国产一区二区三区综合在线观看| 高清在线国产一区| 亚洲少妇的诱惑av| 操出白浆在线播放| 超碰97精品在线观看| 一级片免费观看大全| 老司机深夜福利视频在线观看| 欧美日本中文国产一区发布| av一本久久久久| 国产xxxxx性猛交| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 中文欧美无线码| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 亚洲成人手机| 捣出白浆h1v1| 50天的宝宝边吃奶边哭怎么回事| 久热这里只有精品99| 一本色道久久久久久精品综合| 久久精品国产a三级三级三级| 欧美亚洲 丝袜 人妻 在线| 老司机深夜福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 久久中文看片网| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 日本撒尿小便嘘嘘汇集6| 成人av一区二区三区在线看| 免费看十八禁软件| 激情在线观看视频在线高清 | 亚洲中文av在线| 精品少妇久久久久久888优播| 他把我摸到了高潮在线观看 | 精品一品国产午夜福利视频| 夜夜夜夜夜久久久久| 丝瓜视频免费看黄片| 日本一区二区免费在线视频| 国产精品久久久久久精品古装| 俄罗斯特黄特色一大片| 少妇猛男粗大的猛烈进出视频| 久久久久精品人妻al黑| 亚洲色图综合在线观看| 91精品三级在线观看| 50天的宝宝边吃奶边哭怎么回事| 他把我摸到了高潮在线观看 | 久久精品aⅴ一区二区三区四区| 成人三级做爰电影| 国产xxxxx性猛交| 老司机福利观看| 在线观看一区二区三区激情| 十分钟在线观看高清视频www| 嫩草影视91久久| 黄色片一级片一级黄色片| 亚洲专区中文字幕在线| 18禁黄网站禁片午夜丰满| 999精品在线视频| 一区在线观看完整版| 免费在线观看影片大全网站| 夜夜爽天天搞| 国产精品免费视频内射| 啪啪无遮挡十八禁网站| 黄色视频在线播放观看不卡| 亚洲欧美一区二区三区黑人| 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 欧美人与性动交α欧美软件| 日韩视频一区二区在线观看| 亚洲成人手机| 日本黄色日本黄色录像| 日日夜夜操网爽| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 成人亚洲精品一区在线观看| 真人做人爱边吃奶动态| 人人妻人人爽人人添夜夜欢视频| 男女边摸边吃奶| 久久精品亚洲熟妇少妇任你| 最近最新中文字幕大全免费视频| 曰老女人黄片| 中国美女看黄片| 国产视频一区二区在线看| 91国产中文字幕| 久久久久久免费高清国产稀缺| 国产av又大| 中文亚洲av片在线观看爽 | 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 交换朋友夫妻互换小说| 国产精品免费视频内射| a在线观看视频网站| 黑人巨大精品欧美一区二区mp4| 欧美日韩成人在线一区二区| 动漫黄色视频在线观看| 成年人黄色毛片网站| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 国产一区二区三区视频了| 日本一区二区免费在线视频| 成人国产一区最新在线观看| 日本vs欧美在线观看视频| 国产在线观看jvid| 日本vs欧美在线观看视频| 91成人精品电影| 一本色道久久久久久精品综合| 美女午夜性视频免费| 男女高潮啪啪啪动态图| 少妇被粗大的猛进出69影院| 久久久久久久久免费视频了| 啦啦啦 在线观看视频| netflix在线观看网站| 丝袜美腿诱惑在线| 757午夜福利合集在线观看| 亚洲国产欧美一区二区综合| 午夜两性在线视频| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 日本撒尿小便嘘嘘汇集6| 国产成人系列免费观看| 国产激情久久老熟女| 午夜福利一区二区在线看| 丰满迷人的少妇在线观看| 捣出白浆h1v1| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 下体分泌物呈黄色| 亚洲人成电影观看| 男人舔女人的私密视频| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 91成年电影在线观看| 国产精品久久久久成人av| 男女边摸边吃奶| 国产高清视频在线播放一区| 亚洲免费av在线视频| 另类亚洲欧美激情| 国精品久久久久久国模美| 香蕉丝袜av| 国产视频一区二区在线看| 18禁黄网站禁片午夜丰满| 欧美av亚洲av综合av国产av| 久久ye,这里只有精品|