• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel scheme of high precision inertial measurement for high-speed rotating carriers

    2015-04-22 06:17:28WUQingya武慶雅JIAQingzhong賈慶忠SHANJiayuan單家元MENGXiuyun孟秀云
    關(guān)鍵詞:兩國間伙伴國互補(bǔ)性

    WU Qing-ya(武慶雅), JIA Qing-zhong(賈慶忠), SHAN Jia-yuan(單家元),MENG Xiu-yun(孟秀云)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering,Beijing Institute of Technology, Beijing 100081,China)

    ?

    Novel scheme of high precision inertial measurement for high-speed rotating carriers

    WU Qing-ya(武慶雅), JIA Qing-zhong(賈慶忠), SHAN Jia-yuan(單家元),MENG Xiu-yun(孟秀云)

    (Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education, School of Aerospace Engineering,Beijing Institute of Technology, Beijing 100081,China)

    In order to satisfy the requirement of high precision measurement in a high dynamic environment, a kind of gyro aided multi-accelerometer inertial measurement unit (GAMA-IMU) with six accelerometers and two gyros (6A2G) was proposed in this paper. The available configurations have the problem of low measurement precision in a high dynamic environment due to channel coupling. The three channels were decoupled when calculating the angular velocity in the proposed configuration. The yawing and pitching angular velocity were directly measured by gyros, while only the rolling angular velocity was obtained by the GAMA-IMU indirectly from the rolling angular acceleration and quadratic component of rolling angular velocity. Then a single channel rolling angular velocity calculation model was established and the extended Kalman filter (EKF) was used to do state estimation. Simulations were carried out and results indicated that the calculation precision of the proposed 6A2G configuration could meet the demand of high precision measurement for a high-speed rotating carrier.

    high-speed rotating carrier; gyro aided multi-accelerometer; angular velocity calculation; extended kalman filter (EKF)

    A spinning carrier refers to a carrier rotating around its own lengthwise axis when flying. A carrier’s spin may bring many advantages[1]. On the other hand, it can also induce a series of problems, among which, high precision measurement of large rolling angular velocity is an important one. When the rolling angular velocity is too large for the gyro to measure directly, accelerometers are used instead to accomplish this task, which benefits from the lever-arm effect. The angular velocity calculation precision of this method mainly depends on the configuration of the inertial measurement unit (IMU), including gyro-free IMU (GF-IMU)[2-14]and gyro aided multi-accelerometer IMU (GAMA-IMU)[15-16].

    The most classic GF-IMU configurations are six-accelerometer (6A) cubic configuration[2], nine-accelerometer (9A) configuration[3-6]and twelve-accelerometer (12A) configuration[7-14]. Among these three configurations, the 6A configuration has low angular velocity calculation precision for error accumulation. The angular velocity calculation precision of the 9A configuration would decrease as the rolling angular rate getting higher due to the channel coupling, indicating that this configuration is not suitable for high-speed rotating carrier. So many accelerometers are used in the 12A configuration that it would result in high system costs, decreased system reliability and increased installation difficulty. Clearly, all the three classical configurations are not suitable for engineering application. As for the GAMA-IMU configuration, Wang Lei et al[15]proposed a four-accelerometer two-gyro (4A2G) configuration, which used few instruments but could not ensure the sign of the rolling angular rate. Mu Shuzhi et al[16]adopted seven, five and four accelerometers respectively to go with a two-axis gyro to form three different kinds of GAMA-IMU. The rolling angular rates were all calculated by mathematic analysis method, among which the division operation might induce gross error data. Besides, the GAMA-IMU with five and four accelerometers both could not insure the sign of the rolling angular rate.

    Aiming at the aforementioned problems, a GAMA-IMU with six accelerometers and two gyros (6A2G) were proposed in this paper. The yawing and pitching angular velocities were measured directly by gyros, while the angular information produced by the GAMA-IMU indirectly only concerns rolling angular velocity for channel decoupling. Then, the single channel state space model was established and the extended Kalman filter (EKF) algorithm was used to estimate the rolling angular velocity due to the nonlinear measurement equation. Simulation results indicated that the proposed configuration could be used on a carrier rotating at any high speed.

    1 Novel GAMA-IMU configuration

    The GAMA-IMU configuration proposed in this paper consists of six accelerometers and two gyros and all the sensors are fixed on bracket coincident with the body fixed coordinate system, as shown in Fig. 1. The body fixed coordinate system is defined to have the origin at the center of gravity with thex-axis pointed out the nose, and they- andz-axes pointing to the “up” and “right” respectively, when viewed from the rear.

    Gyros G1, G2 and accelerometers F1, F2 and F5 are installed at the origin of the carrier. G1 and G2 sense the angular velocities ony- andz-axes, the outputs of which are denoted asg1andg2respectively. For calculation convenience and without loss of generality, the other three accelerometers are of the same distance from the origin, denoted asd.

    Fig.1 6A2G IMU configuration

    The output of the accelerometer fixed at non-centroid of the body is the summation of the specific force at the center of mass and the acceleration induced by rotation. Let r denotes the installation position vector of the accelerometer andθdenotes its sensitive orientation vector, then the output of the accelerometer located at any position can be expressed as follows:

    (1)

    For the proposed 6A2G configuration, the installation position matrix of the accelerometer is

    (2)

    The sensitive direction matrix is

    (3)

    Letfi,i=1,…,6 denote the outputs of the six accelerometers respectively. According to Eqs.(1)-(3), information concerning the angular velocity can be obtained:

    (4)

    (5)

    (6)

    ωy=g1

    (7)

    ωz=g2

    (8)

    Substitute Eq. (8) into Eq. (5),we have

    (9)

    Intuitively,ωycan be obtained by dividing Eq.(6) by Eq.(8), which induces an illusion that gyro G1 is useless. Practically,ωzis so small that gross error datum would easily be created if it is the denominator in a division operation. Hence gyro G1 is essential for ensuring the measurement precision ofωy. Besides,f1is unused in Eqs.(4)-(8), but the accelerometer F1 is not redundant for it is used to measure linear acceleration ofx-axis.

    2 Rolling angular velocity calculation based on EKF

    ωyandωzcan be output directly by gyros, so we can get the complete angular velocity information ifωxis acquired. Based on Eqs.(4) (9), the two basic angular velocity calculation methods can be obtained, that is, the integration method and the evolution method. The way of integrating Eq.(4) directly to getωxis called the integration method. First getting its absolute value through taking the square root of Eq.(9), and then judging its sign according to the value calculated by the integration method is considered as the evolution method. The integration method will easily result in error accumulation, and the evolution method will induce misjudgement of the sign due to the inaccurate data calculated by the integration method, which are the reasons why a more extraordinary approach is needed to calculate the rolling angular velocity.

    The channels have been decoupled benefits from the proposed GAMA-IMU configuration when calculating the angular velocities, thus a single channel rolling angular velocity calculation model was established and filter theory was brought in to do state estimation. In fact, handling the problem in this way will not only simplify the system model, but also offer a chance for the 6A2G IMU to be applied on a high-speed rotating carrier.

    We firstly establish the single channel rolling angular velocity calculation state space model. Suppose the static error, dynamic error and installation error of the accelerometers and gyros have been calibrated and compensated. Only the random error is considered in this paper. Suppose the random error is Gaussian white noise with zero mean. The random errors of the six accelerometers are denoted as Δfi,i=1,…,6 respectively and that of gyro G2 is denoted as Δg2.

    Let the sampling interval beT, and the following equation can be obtained:

    (10)

    wherethesubscriptkdenotes the variable at timestepk. Consider the rolling angular acceleration calculated through Eq.(4) as input, denoted asu, and then we get

    Δf4,k-1-Δf5,k-1)

    (11)

    Substitute Eq.(11) into Eq. (10):

    Δf5,k-1-Δf2,k-1-Δf6,k-1)

    Considerx=ωxas state, and the state equation is

    xk=Φxk-1+Ψuk-1+Γwk-1

    (12a)

    whereΦ=1,Ψ=T,Γ=T/(2d),wk-1=Δf4,k-1+Δf5,k-1-Δf2,k-1-Δf6,k-1. The statistical characteristics ofwk-1are

    LetDi,i=2,…,6 denote the variance offi,i=2,…,6 respectively, andQk-1=D2+D3+D4+D6.

    Set the quadratic component of the rolling angular velocity calculated through Eq.(9) as observations and letfthrydenote the specific force without error, then we can get

    zk=h(xk)+vk

    (12b)

    whereRk=(D2+D3)/d2.

    We can see that the state equation is linear while the measurement equation is nonlinear. Due to the nonlinear measurement equation, the standard KF algorithm is no longer suitable for this situation and a nonlinear filtering approach is needed instead.

    EKF and unscented Kalman filter (UKF) are the two nonlinear filter algorithms most wildly used. Many researchers have proved that the two algorithms performs equally when the system model has little nonlinearity[17-18]. However, compared to UKF, EKF has much higher calculation efficiency, which makes it more suitable to solve the problem in this paper. Rolling angular velocity estimation steps based on EKF are as follows[19]:

    ① Initialization:

    The initial state and initial estimation error covariance can be set as

    ②Prediction:

    Theprioristateestimateandprioriestimationerrorcovarianceareupdatedas

    Pxx,k|k-1=ΦPk-1ΦT+ΓQk-1ΓT=Pk-1+T2Qk-1/4d2

    ③ Measurement update:

    The Jacobian of the measurement model is expressed as

    TheKalmangainisupdatedas

    Theposterioristateestimateandposterioriestimationerrorcovarianceareupdatedas

    Pk=(I-KkHk|k-1)Pxx,k|k-1

    3 Simulations and results analysis

    Simulations were carried out in three aspects. Firstly the performance on rolling angular velocity estimation of the 6A2G configuration was tested; then the necessity of gyro G1 was verified; lastly the proposed 6A2G configuration was contrasted with the 9A configuration to further validate its good performance on angular velocity calculation.

    Suppose the carrier’s rotational speed is 10 r/s. The sampling interval is chosen to be 1 ms and the flight time is set as 300 s. Consider different kinds of flight conditions during flight, such as climbing, flat flight, swerve and dive, and consider effect of earth rotation. Fig.2 shows a plot of the angular velocity profile.

    Fig.2 Angular velocity profile

    The shadow areas ofωyandωzin Fig.2 represent oscillation with a frequency ofωx/2π. Angular motion in one direction will trigger that with the same amplitude and frequency in the other on account of the carrier’s rotation.

    Suppose the random error of the accelerometer is 5×10-5gand the random error of the gyro is 10(°)/h. The contrast error curves when adopting the filter approach, the evolution approach and the integration approach to estimate the rolling angular velocity are shown in Fig.3.

    Fig.3 Angular velocity error of x-axis based on the three approaches

    Meanwhile, the standard deviations of the estimated errors of each angular velocity calculation approach are 4.611 2×10-5, 1.378 6×10-4and 2.737 3×10-3respectively. The results indicate that the integration method is not proficient in calculating the angular velocity, for it would induce error accumulation. The filter approach and evolution approach can both effectively estimate the angular velocity and keep the errors within small range without accumulation. The evolution method relies on the integration method to judge the sign, which may induce misjudgement as error accumulating. The reason why there is no gross error data produced by the evolution method is that the rotation speed is set to be relatively high, and the cumulate errors may count for nothing in mistaking the sign of the angular velocity calculated by the integration method. Even so, the precision of the evolution method is inferior to that of the filter method, whose performance has been as good as a gyro.

    In order to verify the necessity of gyro G1 in the proposed 6A2G configuration, the calculation error ofωygenerated from division computation was plotted in Fig. 4. It can be seen that the gross error data are large, indicating that the division method is not an advisable choice.ωyshould be measured by gyro G1 to ensure the accuracy.

    Fig.4 Angular velocity error of y-axis based on division

    In the precondition that the sampling interval remains unchanged, the rolling angular velocity calculation precision of the available configurations may decrease as the rotation speed increases owing to channel coupling. However, the 6A2G configuration proposed in this paper can achieve the effect that the calculation precision of rolling angular velocity increases as the rotation speed increases under a certain sampling interval. In order to verify the superiority of the proposed 6A2G configuration, comparison experiments were carried out between this configuration and the classical 9A configuration[6]. Three-channel angular velocity calculation modal of the 9A configuration is established in the same approach as that described in Section 2. The standard deviations of the estimated errors based on the filter approach under different rotation speeds of the two configurations are listed in Tab.1.

    Tab.1 Standard deviation of angular velocity estimated error based on 6A2G and 9A configuration

    1—six-accelerometer two-gyro configuration; 2—nine-accelerometer configuration

    It can be seen that the proposed 6A2G configuration behaves well on all the three channels. The measurement precision of yawing and pitching angular velocity barely changes for they are directly output by gyros. More than anything, the estimated error of rolling angular velocity decreases as the rotation speed increases, leading to a benefit that the configuration can be used on carrier rotating at any speed. The performance of 9A configuration is close to that of 6A2G configuration on the yawing and pitching channels, but the errors of rolling channel are much larger, and will grow larger with the increasing of rotation speed. Although the precision of yawing and pitching channel of the 9A configuration will increase a little bit as the rotation speed increases, it can’t fill the gap of low calculation precision of rolling angular velocity.

    貿(mào)易互補(bǔ)性指數(shù)。主要是衡量兩國間貿(mào)易互補(bǔ)程度,通常以一國特定產(chǎn)品出口的比較優(yōu)勢與其貿(mào)易伙伴國該產(chǎn)品進(jìn)口的比較劣勢的乘積來衡量。計算公式如下:

    4 Conclusions

    In this paper, a 6A2G IMU configuration is proposed to measure the angular velocity with high precision for a high-speed rotating carrier. The configuration has the three channels decoupled when calculating the angular velocity to solve the low calculation precision problem due to channel coupling. Based on it, a single channel state space model is established and the EKF algorithm is utilized to estimate the rolling angular velocity. Simulation results show that the proposed scheme can provide high precision measurement for a carrier rotating at high speed.

    The future work is to derive a whole set of navigation algorithms perfectly suitable for GFSINS (NGFSINS) to finally obtain the attitude, speed and location of the carrier, and the integrated navigation system should also be developed to improve navigation precision.

    [1] Li Xingcheng, Zhang Shuangbiao. Stability study of spiral motion based on calculated flight data[J]. Transactions of Beijing Institute of Technology, 2012, 32(12): 1223-1228.(in Chinese)

    [2] Jeng Heng Chen, Lee S C, Daniel B DeBra. Gyroscope free strap-down inertial measurement unit by six linear accelerometers[J]. Journal of Guidance, Control and Dynamics, 1994, 17(3): 286-290.

    [3] Wang Jinsong, Wang Qi, Sun Shenghe. Optimal technology for non-gyro micro inertial measuring unit[J]. Journal of Harbin Institute of Technology, 2002, 34(5): 632-635.(in Chinese)

    [4] Park S, Tan C W, Park J. A scheme for improving the performance of a gyroscope-free inertial measurement unit[J]. Sensors and Actuators A: Physical, 2005, 121: 410-420.

    [5] Chen T L, Park S. MEMS SoC: observer-based coplanar gyro-free inertial measurement unit[J]. Journal of Micromechanics and Microengineering, 2005, 15: 1664-1673.

    [7] Zhang Huixin, Wang Shichang, Yang Yunliang, et al. Method optimization for angular velocity calculating in inertial testing system composed with full accelerometers[J]. Journal of Chinese Inertial Technology, 2008, 16(6): 672-675.(in Chinese)

    [8] Buhmann A, Peters C, Cornils M, et al. A GPS aided full linear accelerometer based gyroscope-free navigation system[C]∥Proceedings of IEEE/ION PLANS 2006, San Diego, CA, 2006:622-629.

    [9] Parsa K, Lasky T A, Ravani B. Design and implementation of a mechatronic, all-accelerometer inertial measurement unit[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(6): 640-650.

    [10] Schopp P, Klingbeil L, Peters C, et al. Sensor fusion algorithm and calibration for a gyroscope-free IMU[J]. Procedia Chemistry, 2009, 1: 1323-1326.

    [11] Park S, Hong S K. Angular rate estimation using a distributed set of accelerometers[J]. Sensors, 2011, 11: 10444-10457

    [12] Cappa P, Patane F, Rossi S. Two calibration procedures for a gyroscope-free inertial measurement system based on a double-pendulum apparatus[J]. Measurement Science and Technology, 2008, 19: 1-9.

    [13] Edwan E, Knedlik S, Loffeld O. Constrained angular motion estimation in a gyro-free IMU[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 596-610.

    [14] Cardou P, Fournier G, Gagnon P. A nonlinear program for angular-velocity estimation from centripetal-acceleration measurements[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 932-944.

    [15] Wang Lei, Hao Yongping, Xiao Chang, et al. The simulation and experiment research of inertial navigation system used for shell in high dynamic environment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2): 4-8.(in Chinese)

    [16] Mu Shuzhi, Bu Xiongzhu, Li Yongxin, et al. Research on inertial measurement unit of high rotation vehicle[J]. Journal of Ballistics, 2006, 18(4): 85-88.(in Chinese)

    [17] Matthew Rhudy, Yu Gu, Jason Gross, et al. Sensitivity analysis of EKF and UKF in GPS/INS sensor fusion[C]∥AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, 2011: 1-15.

    [18] Zhao Sihao, Lu Mingquan, Feng Zhenming. Application of EKF and UKF in tightly-coupled integrated navigation system[J]. Systems Engineering and Electronics, 2009, 31(10): 2450-2454.(in Chinese)

    [19] Fu Mengyin, Deng Zhihong, Yan Liping. Kalman filtering theory and its application in the navigation system [M]. 2rd ed. Beijing: Science Press, 2010:160-171.(in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004- 0579.201524.0202

    V 249.322Document code: A Article ID: 1004- 0579(2015)02- 0151- 07

    Received 2013- 08- 23

    E-mail: bitjqzh96@163.com

    猜你喜歡
    兩國間伙伴國互補(bǔ)性
    未來30年,期待兩國間質(zhì)的飛躍
    金橋(2022年8期)2022-08-24 01:33:26
    中國OFDI對貿(mào)易伙伴國服務(wù)業(yè)集聚的影響研究
    本財年內(nèi)緬甸增加了10個新貿(mào)易伙伴國
    -- Китай" --" --верный шагк углублению энергетического сотрудничества">Обзор:: прокладкановой ветки нефтепровода""Россия
    -- Китай" --" --верный шагк углублению энергетического сотрудничества
    中亞信息(2016年8期)2016-12-06 05:35:41
    淺析自媒體與傳統(tǒng)媒體新聞傳播的互補(bǔ)性
    新聞傳播(2016年9期)2016-09-26 12:20:23
    企業(yè)外部互補(bǔ)性資產(chǎn)管理對象的選擇
    出版與印刷(2016年1期)2016-01-03 08:53:43
    春秋時期公族與士夫之族的互補(bǔ)性——以魯、晉兩國為例
    人間(2015年18期)2015-12-30 03:42:08
    蝸墻
    江南詩(2015年3期)2015-06-01 18:03:24
    蝸 墻
    江南詩(2015年3期)2015-06-01 04:29:36
    小句關(guān)系的多元解釋與研究方法的互補(bǔ)性
    国产高清有码在线观看视频| 亚洲在线观看片| 插逼视频在线观看| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 久久精品国产亚洲av涩爱| 又爽又黄无遮挡网站| 日韩大片免费观看网站 | 乱码一卡2卡4卡精品| 久久久精品94久久精品| 免费看光身美女| 亚洲欧美清纯卡通| 国产免费福利视频在线观看| 中文在线观看免费www的网站| 18禁在线播放成人免费| 观看免费一级毛片| 天美传媒精品一区二区| 天堂中文最新版在线下载 | 国产精品日韩av在线免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩无卡精品| 嫩草影院入口| 日韩欧美在线乱码| 日本色播在线视频| 国产色爽女视频免费观看| 高清日韩中文字幕在线| 国产色婷婷99| 色综合站精品国产| 人体艺术视频欧美日本| 午夜激情欧美在线| 日本与韩国留学比较| 成人亚洲精品av一区二区| 亚洲自偷自拍三级| 三级国产精品片| 中文欧美无线码| 欧美另类亚洲清纯唯美| 欧美一区二区亚洲| 国产精品久久电影中文字幕| 床上黄色一级片| 又爽又黄a免费视频| 久久久久久伊人网av| 国产伦一二天堂av在线观看| 99九九线精品视频在线观看视频| 亚洲av日韩在线播放| 亚洲成人久久爱视频| 波多野结衣高清无吗| 又爽又黄a免费视频| 91精品伊人久久大香线蕉| 国产成人午夜福利电影在线观看| 建设人人有责人人尽责人人享有的 | 成人亚洲精品av一区二区| 国产精品美女特级片免费视频播放器| 边亲边吃奶的免费视频| 别揉我奶头 嗯啊视频| 热99在线观看视频| 国产成年人精品一区二区| 九九在线视频观看精品| 亚洲欧美精品综合久久99| 五月玫瑰六月丁香| 欧美性感艳星| 国产精品综合久久久久久久免费| 男人狂女人下面高潮的视频| 色吧在线观看| 国产激情偷乱视频一区二区| 69av精品久久久久久| av专区在线播放| av播播在线观看一区| 少妇人妻精品综合一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 纵有疾风起免费观看全集完整版 | 午夜精品在线福利| 人妻制服诱惑在线中文字幕| av在线播放精品| 插逼视频在线观看| 欧美丝袜亚洲另类| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久噜噜| 岛国在线免费视频观看| 亚洲精品亚洲一区二区| 国产伦精品一区二区三区四那| 国产老妇伦熟女老妇高清| 日本wwww免费看| 免费无遮挡裸体视频| 国产av一区在线观看免费| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 99在线人妻在线中文字幕| 亚洲成人av在线免费| 少妇人妻精品综合一区二区| 淫秽高清视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品一二三区在线看| 久久99蜜桃精品久久| 免费av不卡在线播放| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 丝袜喷水一区| 淫秽高清视频在线观看| 神马国产精品三级电影在线观看| 两个人的视频大全免费| 欧美激情久久久久久爽电影| 成年av动漫网址| av国产久精品久网站免费入址| 淫秽高清视频在线观看| 看非洲黑人一级黄片| 国内精品一区二区在线观看| 91精品国产九色| 嫩草影院入口| av免费观看日本| 国产熟女欧美一区二区| 国产av一区在线观看免费| 亚洲av福利一区| 欧美一区二区精品小视频在线| 亚洲在线自拍视频| 中文乱码字字幕精品一区二区三区 | 亚洲人成网站在线播| 久久6这里有精品| 久久99精品国语久久久| 免费看光身美女| 日本三级黄在线观看| 亚洲av成人av| 国产高清不卡午夜福利| 久久人人爽人人片av| 青春草亚洲视频在线观看| 国产精品无大码| 最近中文字幕2019免费版| 午夜精品一区二区三区免费看| АⅤ资源中文在线天堂| 三级国产精品欧美在线观看| 18+在线观看网站| 美女高潮的动态| 爱豆传媒免费全集在线观看| 三级国产精品欧美在线观看| 久久精品熟女亚洲av麻豆精品 | 97热精品久久久久久| 国产精华一区二区三区| 欧美成人一区二区免费高清观看| 亚洲国产日韩欧美精品在线观看| 成人二区视频| 久久6这里有精品| 国产av不卡久久| 日本与韩国留学比较| 亚洲电影在线观看av| 亚洲在久久综合| 中文字幕人妻熟人妻熟丝袜美| 国产麻豆成人av免费视频| 我要搜黄色片| 亚洲精品日韩在线中文字幕| 特级一级黄色大片| 在线播放国产精品三级| 午夜福利在线观看吧| 99久久精品热视频| 久久热精品热| 亚洲欧美成人精品一区二区| 插阴视频在线观看视频| 九色成人免费人妻av| 成人国产麻豆网| 欧美激情久久久久久爽电影| 不卡视频在线观看欧美| 一区二区三区乱码不卡18| 日韩精品有码人妻一区| 日韩欧美 国产精品| 亚洲,欧美,日韩| 久久人妻av系列| 国产亚洲一区二区精品| 欧美成人a在线观看| 日韩欧美三级三区| 2022亚洲国产成人精品| 亚洲最大成人中文| 天堂影院成人在线观看| 成人性生交大片免费视频hd| 搡女人真爽免费视频火全软件| 夜夜看夜夜爽夜夜摸| 成年av动漫网址| 亚洲高清免费不卡视频| 有码 亚洲区| 91久久精品电影网| 久久精品熟女亚洲av麻豆精品 | 18禁在线播放成人免费| 日本猛色少妇xxxxx猛交久久| 久久精品91蜜桃| 久久久久久久亚洲中文字幕| 国产91av在线免费观看| 韩国高清视频一区二区三区| 18禁在线播放成人免费| 国产成年人精品一区二区| 久久精品熟女亚洲av麻豆精品 | 久久精品国产自在天天线| 日本黄色视频三级网站网址| 中文乱码字字幕精品一区二区三区 | 日本免费在线观看一区| 欧美成人精品欧美一级黄| 日韩高清综合在线| 亚洲精品乱久久久久久| 日本免费在线观看一区| 高清视频免费观看一区二区 | 99久久精品国产国产毛片| 精品一区二区免费观看| 女人久久www免费人成看片 | 亚洲欧美一区二区三区国产| 乱人视频在线观看| 亚洲精品成人久久久久久| 国产午夜福利久久久久久| 国产一区有黄有色的免费视频 | 色播亚洲综合网| 色综合亚洲欧美另类图片| 3wmmmm亚洲av在线观看| 精品熟女少妇av免费看| 国产成人午夜福利电影在线观看| 久久久a久久爽久久v久久| 自拍偷自拍亚洲精品老妇| 亚洲av成人精品一区久久| 午夜久久久久精精品| 三级毛片av免费| 亚洲av熟女| 长腿黑丝高跟| 26uuu在线亚洲综合色| 亚洲欧美精品自产自拍| 成年av动漫网址| 少妇熟女欧美另类| 丰满乱子伦码专区| 午夜a级毛片| 哪个播放器可以免费观看大片| 免费看a级黄色片| 精品人妻偷拍中文字幕| 欧美人与善性xxx| 精品久久久久久久人妻蜜臀av| 看黄色毛片网站| 直男gayav资源| 久久精品久久久久久久性| 一区二区三区乱码不卡18| 视频中文字幕在线观看| 亚洲av电影在线观看一区二区三区 | 少妇猛男粗大的猛烈进出视频 | 男女边吃奶边做爰视频| av免费观看日本| 日产精品乱码卡一卡2卡三| 男的添女的下面高潮视频| 小说图片视频综合网站| 白带黄色成豆腐渣| kizo精华| 99久久精品一区二区三区| 中文字幕制服av| 狂野欧美白嫩少妇大欣赏| 久久久国产成人免费| 亚洲一区高清亚洲精品| 一级av片app| 99热6这里只有精品| av女优亚洲男人天堂| 欧美zozozo另类| 狠狠狠狠99中文字幕| 国产高清国产精品国产三级 | 久久精品91蜜桃| 免费av观看视频| 亚洲久久久久久中文字幕| a级毛色黄片| 男女视频在线观看网站免费| 搡老妇女老女人老熟妇| 国内揄拍国产精品人妻在线| 日韩在线高清观看一区二区三区| av专区在线播放| 亚洲在久久综合| 国产黄片美女视频| 伊人久久精品亚洲午夜| 亚洲人成网站在线观看播放| 中国美白少妇内射xxxbb| 国产精品99久久久久久久久| 天天一区二区日本电影三级| 两个人的视频大全免费| 91午夜精品亚洲一区二区三区| 少妇被粗大猛烈的视频| 免费看光身美女| 赤兔流量卡办理| 国产色爽女视频免费观看| a级一级毛片免费在线观看| 国产探花极品一区二区| 美女被艹到高潮喷水动态| 国产精品麻豆人妻色哟哟久久 | 色噜噜av男人的天堂激情| 免费观看a级毛片全部| 成人国产麻豆网| 日本wwww免费看| 乱人视频在线观看| 一区二区三区免费毛片| 美女内射精品一级片tv| 国产精品女同一区二区软件| 亚洲av电影在线观看一区二区三区 | 少妇裸体淫交视频免费看高清| 69人妻影院| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 水蜜桃什么品种好| 亚洲高清免费不卡视频| 一级黄片播放器| 久久久久久国产a免费观看| 日本爱情动作片www.在线观看| 少妇裸体淫交视频免费看高清| 久久午夜福利片| 精品久久久久久久末码| 亚洲国产精品专区欧美| 97人妻精品一区二区三区麻豆| 精华霜和精华液先用哪个| 日产精品乱码卡一卡2卡三| 男人舔女人下体高潮全视频| 国产免费福利视频在线观看| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 亚洲欧美成人综合另类久久久 | 国产成人freesex在线| 少妇熟女aⅴ在线视频| 一个人看的www免费观看视频| 国产老妇女一区| 中文天堂在线官网| 高清视频免费观看一区二区 | 国产又黄又爽又无遮挡在线| 亚洲欧美清纯卡通| 午夜精品在线福利| 亚洲四区av| 97热精品久久久久久| 国产成人免费观看mmmm| 黄色一级大片看看| 夜夜看夜夜爽夜夜摸| 欧美成人免费av一区二区三区| 视频中文字幕在线观看| 国产精品久久视频播放| 日韩 亚洲 欧美在线| 嘟嘟电影网在线观看| 国产精品嫩草影院av在线观看| 最近的中文字幕免费完整| 国产视频内射| 国产精品久久久久久久久免| 观看免费一级毛片| 久久久精品大字幕| 日韩成人伦理影院| av黄色大香蕉| 午夜久久久久精精品| 国产精品久久久久久久久免| 18禁动态无遮挡网站| 高清毛片免费看| 日韩视频在线欧美| 小蜜桃在线观看免费完整版高清| 日韩国内少妇激情av| 少妇熟女aⅴ在线视频| 永久网站在线| 女人久久www免费人成看片 | 亚洲经典国产精华液单| 色吧在线观看| 亚洲精品乱久久久久久| 精品久久久久久久人妻蜜臀av| 欧美精品一区二区大全| 国产一区二区亚洲精品在线观看| 人妻系列 视频| 亚洲在线自拍视频| 亚洲人成网站高清观看| 汤姆久久久久久久影院中文字幕 | 精品99又大又爽又粗少妇毛片| 欧美成人精品欧美一级黄| 久久久久久久亚洲中文字幕| 免费av观看视频| 国产熟女欧美一区二区| 人人妻人人澡欧美一区二区| 日韩精品有码人妻一区| 国产一区二区亚洲精品在线观看| 国产高清国产精品国产三级 | 国产亚洲午夜精品一区二区久久 | 性色avwww在线观看| 简卡轻食公司| 九九爱精品视频在线观看| 国产精品人妻久久久久久| 三级国产精品欧美在线观看| 26uuu在线亚洲综合色| 国产成人福利小说| 亚洲精品影视一区二区三区av| 99久久精品国产国产毛片| 熟女人妻精品中文字幕| 青春草国产在线视频| 免费观看精品视频网站| 中文资源天堂在线| 在线播放无遮挡| 亚洲中文字幕日韩| www日本黄色视频网| 淫秽高清视频在线观看| 午夜福利视频1000在线观看| 美女高潮的动态| 联通29元200g的流量卡| 国产伦一二天堂av在线观看| 精品不卡国产一区二区三区| 国产午夜精品论理片| 国产白丝娇喘喷水9色精品| 国内少妇人妻偷人精品xxx网站| 欧美bdsm另类| 高清av免费在线| 国产黄色小视频在线观看| 2021少妇久久久久久久久久久| 韩国高清视频一区二区三区| 乱码一卡2卡4卡精品| 中国美白少妇内射xxxbb| 亚洲av二区三区四区| 欧美日韩一区二区视频在线观看视频在线 | 欧美人与善性xxx| av.在线天堂| 村上凉子中文字幕在线| 亚洲国产精品专区欧美| 偷拍熟女少妇极品色| 禁无遮挡网站| 欧美成人精品欧美一级黄| 成人综合一区亚洲| 色综合色国产| 久久欧美精品欧美久久欧美| 日日撸夜夜添| 深爱激情五月婷婷| 国产亚洲精品久久久com| 一级av片app| 国产伦精品一区二区三区四那| 亚洲成色77777| 亚洲av中文av极速乱| 久久精品久久久久久噜噜老黄 | 91精品伊人久久大香线蕉| 免费黄色在线免费观看| 日韩成人伦理影院| 三级国产精品欧美在线观看| 久久99精品国语久久久| av国产免费在线观看| 一个人观看的视频www高清免费观看| 久99久视频精品免费| 在线播放国产精品三级| 99久久精品一区二区三区| 女人久久www免费人成看片 | 2021天堂中文幕一二区在线观| 最近最新中文字幕免费大全7| 丝袜美腿在线中文| 人妻系列 视频| 亚洲在线自拍视频| 免费av不卡在线播放| 国产精品无大码| 在线观看一区二区三区| 欧美一区二区国产精品久久精品| 久久久久性生活片| 国产欧美日韩精品一区二区| 久久久久久久久久久免费av| 日韩av不卡免费在线播放| 久久精品夜夜夜夜夜久久蜜豆| 偷拍熟女少妇极品色| 日韩 亚洲 欧美在线| av国产免费在线观看| 久久久久久国产a免费观看| 在现免费观看毛片| 尤物成人国产欧美一区二区三区| 日韩,欧美,国产一区二区三区 | 永久免费av网站大全| 亚州av有码| 久久人人爽人人片av| 夜夜爽夜夜爽视频| 日韩欧美精品v在线| 亚洲av一区综合| 亚洲av不卡在线观看| 人体艺术视频欧美日本| 国产成人免费观看mmmm| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 99久久九九国产精品国产免费| 国产爱豆传媒在线观看| 久久精品熟女亚洲av麻豆精品 | 久久99热这里只有精品18| 欧美zozozo另类| 欧美97在线视频| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 国语对白做爰xxxⅹ性视频网站| 最近最新中文字幕大全电影3| 亚洲经典国产精华液单| 成人国产麻豆网| 国产成人精品婷婷| 国产精品熟女久久久久浪| 精品久久久噜噜| 精品一区二区三区人妻视频| 久久久久久久久大av| 欧美zozozo另类| 中文字幕人妻熟人妻熟丝袜美| 亚洲三级黄色毛片| 日韩欧美 国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女人久久www免费人成看片 | av免费观看日本| 岛国在线免费视频观看| 91精品国产九色| 三级经典国产精品| 欧美性猛交黑人性爽| 热99re8久久精品国产| 国产精品不卡视频一区二区| 亚洲精品aⅴ在线观看| 日本爱情动作片www.在线观看| 国产精品伦人一区二区| 看免费成人av毛片| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| 亚洲人与动物交配视频| 特级一级黄色大片| 日本与韩国留学比较| 一个人免费在线观看电影| 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 人人妻人人澡欧美一区二区| 免费看美女性在线毛片视频| 18禁动态无遮挡网站| 啦啦啦韩国在线观看视频| 久久亚洲精品不卡| 一级毛片我不卡| 一级爰片在线观看| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 久久久色成人| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| 久久久久久久久久久免费av| 国产黄色小视频在线观看| 精品久久久噜噜| 色噜噜av男人的天堂激情| 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 国内揄拍国产精品人妻在线| 久久久国产成人免费| 可以在线观看毛片的网站| 亚洲精品乱码久久久久久按摩| 久久人人爽人人爽人人片va| 嘟嘟电影网在线观看| 精品久久久久久久人妻蜜臀av| 国产高清不卡午夜福利| 精品人妻视频免费看| 国产精品久久久久久精品电影小说 | 亚洲熟妇中文字幕五十中出| 日韩av在线大香蕉| 最近最新中文字幕大全电影3| 国产高潮美女av| 久久久久久伊人网av| 精品欧美国产一区二区三| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 色哟哟·www| 如何舔出高潮| 日本五十路高清| 欧美激情在线99| 久久久a久久爽久久v久久| 男的添女的下面高潮视频| 国产黄a三级三级三级人| 亚洲图色成人| 欧美精品一区二区大全| 日本免费a在线| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 内射极品少妇av片p| 国产一区二区在线观看日韩| 午夜福利视频1000在线观看| 免费看光身美女| 99热网站在线观看| 最近的中文字幕免费完整| 亚洲最大成人中文| 精品一区二区免费观看| 国产精品伦人一区二区| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 麻豆国产97在线/欧美| 久久久久久九九精品二区国产| 亚洲国产欧美在线一区| 国产69精品久久久久777片| 国产精品一区二区三区四区免费观看| 亚洲经典国产精华液单| 午夜亚洲福利在线播放| 日韩一区二区视频免费看| 少妇的逼好多水| 精品99又大又爽又粗少妇毛片| av在线蜜桃| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品专区欧美| 国产淫片久久久久久久久| 久久鲁丝午夜福利片| 国产男人的电影天堂91| 久久久久性生活片| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 国产乱来视频区| 全区人妻精品视频| 91久久精品国产一区二区三区| 国产精品久久久久久久久免| 婷婷色麻豆天堂久久 | 三级经典国产精品| 免费观看性生交大片5| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| 精品国产三级普通话版| 国内精品宾馆在线| 国产激情偷乱视频一区二区| 亚洲成人精品中文字幕电影| 国语对白做爰xxxⅹ性视频网站| 欧美高清成人免费视频www| 国产乱人视频| 久久综合国产亚洲精品| 亚洲国产精品国产精品| 久久精品人妻少妇| 亚洲av熟女| 精品国内亚洲2022精品成人| 婷婷色综合大香蕉| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 国产一区亚洲一区在线观看| 久久精品国产99精品国产亚洲性色| 亚洲av日韩在线播放| 99国产精品一区二区蜜桃av| 日韩,欧美,国产一区二区三区 |