• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Guidance law with angle constraint used to intercept maneuvering targets①

    2015-04-22 07:58:18LIXianqiangZHOUJun
    固體火箭技術(shù) 2015年5期
    關(guān)鍵詞:補(bǔ)償器制導(dǎo)滑模

    LI Xian-qiang,ZHOU Jun

    (Institute of Precision Guidance and Control, Northwestern Polytechnical University,Xi'an 710072,China)

    ?

    Guidance law with angle constraint used to intercept maneuvering targets①

    LI Xian-qiang,ZHOU Jun

    (Institute of Precision Guidance and Control, Northwestern Polytechnical University,Xi'an 710072,China)

    A continuous finite-time stabilization guidance law with terminal impact angle constrained is presented in this paper,which can be used to intercept the non-maneuvering and maneuvering target.Firstly,an adaptive super-twisted algorithm is designed based on the super-twisted algorithm,which can effectively alleviate the chattering,through using the adaptive parameters.A finite-time stabilization disturbance compensator is designed based on the adaptive super-twisted algorithm and the integrated sliding surface.Secondly,the geometric homogeneous theory is employed to design the finite-time stabilization controller for the compensated nominal system.The controller,composited by above disturbance observer and the geometric homogeneous theory controller,can ensure the system's finite time convergence.In addition,the composite controller is continuous and the parameters are adaptive,which can effective suppress the chattering of the sliding mode.The above control theory is applied to design the guidance law with terminal impact angle constrained,and the effectiveness of the guidance law is verified through simulation.

    terminal impact angle constrained;guidance law;finite-time stabilization;sliding mode

    0 Introduction

    In modern warfare,not only a small miss distance is required for the missiles, and in order to enhance the attacking effectiveness,but also certain impact angle constraints are also needed to be met[1].Such as inverse trajectory interception is always employed to enhance the matching efficiency of fuse and warhead.And the desired direction of the velocity vector of the missile should be opposite to that of the target. In order to enhance the penetration effect when attacked fortification,the missile needs to attack the target in vertically direction.

    The sliding mode control possesses the advantages of strong robustness and easy to implement,so it is widely used in the design of the guidance law with impact angle constraint.But for the guidance law with angle constraint designed based on the conventional sliding mode control, only asymptotical stability can be maintained. While the demand of the guidance law with finite-time stability is growing in modern warfare.For example,in the air-combat,the guidance laws with impact angle constraint with finite-time convergence is especially important[4-5].In this regard,some scholars developed lots of corresponding finite-time guidance law based on the terminal sliding mode control theory.For instance,in References[6-7] the conventional terminal sliding mode control theory is used in the development of the finite-time guidance law,while there are singularities in the guidance laws developed in References[6-7],and the guidance command may be saturated in the application.To tackle the singularity issue,the non-singular terminal sliding mode control theory is employed in the development of the finite-time guidance law with impact angle constraint in the References[4-8].However,the finite-time guidance laws, which are developed in the above references,are generally characterized with discontinuity.The discontinuity in the guidance law can cause chattering,which may reduce the guidance accuracy, and even lead to system instability[1].To alleviate the chattering,in Reference[9]a finite-time guidance law is designed based on the high-order sliding mode control theory.In the high-order sliding mode control theory,the control parameter should be chosen greater than the bound of the disturbance.And large control parameters will reduce the chattering suppression effect[10].While in practice,for safety reasons, the actual bound of the disturbance often is chosen larger,so the parameters of high-order sliding mode control are always selected larger.Thus the chattering suppression effect may be degraded.

    In this paper,a novel adaptive high-order sliding mode control is developed,in which the control parameters are adaptive to the disturbance.Thus the conservatism in choosing the control parameters can be greatly reduced.And the chattering of the sliding mode control will be greatly alleviated too. Moreover,in this paper the adaptive super-twisting algorithm is combined with the integral sliding mode surface for the first time.And based on this,a finite-time disturbance compensator is designed.Then the geometric homogeneous theory is employed to design a finite-time controller for the compensated system.The controller design method is then used in the designing of the guidance law with impact constraint angle,and a finite-time continuous guidance law is successfully developed.The effectiveness of the designed guidance law is also verified through three-dimension simulation.

    1 Preliminaries

    1.1 Design of the adaptive super-twisting algorithm

    Lemma 1.Super-twisting algorithm[11]Consider the system as following:

    (1)

    Thesuper-twistingalgorithmproposedinLemma1belongstothehigh-orderslidingmodecontroltheory,inwhichthediscreteswitchingtermhidesintheintegralpartoftheinput,sothechatteringoftheslidingmodecontrolcanbeeffectivelyalleviated.Throughanalysisitcanbeconcludedthatthecontrolparametersofthesuper-twistingalgorithmneedtobelargerthantheboundofthedisturbance.However,thepreciseboundofthedisturbanceisdifficulttobeobtainedinpractice.Andincontrollerdesign,theboundofthedisturbanceisalwayschosenmuchlargerthantheactualvalueofthedisturbance.Andthenthecontrolparametersofthesuper-twistingalgorithmwillbechosenmuchlarger,whichwillmakesthechatteringalleviatingeffectbecomeworse[10].Toensurethechatteringalleviatingeffect,inthissection,thesuper-twistingalgorithmwillbeimprovedandanadaptivesuper-twistingalgorithmwillbedeveloped,inwhich,thecontrolparametersisadaptivetothedisturbance.

    Theorem1.Adaptivesuper-twistingalgorithm

    Considerthesystemasfollows:

    (2)

    (3)

    where,L(t)=r+l,lis a constant andl>0.

    (4)

    where,γ>0,and

    (5)

    Proof.Thelyapunovefunctionischosenas:

    (6)

    (7)

    here,

    (8)

    (9)

    (10)

    Accordingtoequation(8),onecanobtain

    (11)

    Accordingtoequation(9),onehas

    (12)

    (13)

    Notingequation(3)and

    L-τ=r+l-τ=l+2r

    (14)

    thenfromequation(13),wehave

    (15)

    Formequation(10),weknow

    (16)

    Substituting(11), (13)and(16)into(7),yields

    (17)

    (18)

    1.2 A finite-time composite control law designed based on adaptive super-twisting algorithm

    Consider a system with disturbance as following:

    (19)

    where,xidenote the states,u=u1+uf,u1denotes the controller of the nominal system,ufdenotes the compensation law,fdenotes disturbance.

    For the system above,a compensator will be proposed in the following Theorem 2.

    Theorem 2.For the system denoted as (19),when the disturbance compensator is chosen as following:

    (20)

    where,k1andk1are chosen as those in Theorem 1,and

    (21)

    Then the sliding mode surfaces1will converge to zero in finite time under the control ofuf.And on the sliding mode surface, the disturbance is nearly fully compensated.So the system on the sliding mode surface can be viewed as a nominal system as following,which is without the disturbance.

    (22)

    Proof.Firstly,the integral sliding mode surface is designed as following:

    (23)

    Differentiating the equation (23)and combing with (19),we have

    (24)

    (25)

    According to Theorem 1, we known the reaching law as (25)is able to maintains1which can converge to zero in finite time. Whens1converges to zero,uf+f≈0 can be obtained from (24). And then the system (19)reduces to the nominal system as (22), which is without disturbance.

    Remark 1. If the initial value ofx2can be obtained,the approaching process of the sliding mode surface can be eliminated.According to equation (23), the sliding mode surface is improved as following:

    (26)

    It is obviously that in (26),the initial value of the sliding mode surfaces1is zero,so the approaching process of the sliding mode surface is eliminated.

    Remark 2.Through compensation,the disturbed system (19)can reduce to the nominal system (22)in finite time.In the following,a finite-time control law will be designed for the nominal system (22).

    1.3 A finite-time controller designed based on geometric homogeneous theory

    Consider a kind of integral chain system as following:

    (27)

    where,xi(i=1,2…,r)are the states,udenotes input.For the system as (27),the following lemma holds.

    Lemma 3[12].In equation (27),when the input is chosen as (28),then the states of the system (27)will converge to zero in finite time.

    (28)

    Remark3.AccordingtoTheorem2andLemma3,weknowiftheinputof(19)isdesignedasu=u1+uf,inwhichu1andufaredenotedasequation(20)and(28)separately,system(19)willbefinite-timestable.

    2 Modeling

    2.1 Modeling of the engagement geometry

    The engagement geometry between the missile and the target can be shown as Fig 1.

    Fig.1 Engagement geometry

    According to the geometry in Fig.1, the modeling equation can be formulated as:

    (29)

    where,θmdenotes the flight path angle of the missile,θtdenotes the flight path angle of the target.vmdenotes the velocity of the missile andvtdenotes the velocity of the target.Rdenotes the relative distance andqdenotes the angle of the line of sight (LOS).

    2.2 Modeling of the impact angle constraint

    In the design of the guidance law with impact angle constraint,it is desired that the missile can intercept the target along with a desired direction.So at the impact time,the direction of the missile velocity vector shall meet the following constraint:

    θm(tf)=θd

    (30)

    where,θddenotes the desired flight path angle.If it is desired a head-on interception,thenθd=θt-π.

    If it is assumed thatqdis the desired angle of the LOS at the impact time,the following equation holds.

    (31)

    Such that,one can uniquely determine the desired angle of sight,when the flight path angle of the target and the desired flight path angle of the missile are known.

    2.3 Modeling of the LOS rate

    (32)

    3 Design of the guidance law

    Based on equation (32),the guidance law is designed as following:

    u=(-a1x2+ueq+uf)/a2

    (33)

    Underthecontroloftheequation(33),thesystem(32)willreducetotheequationasfollowing:

    (34)

    Inequation(34),itisassumedthatueqis the equivalent control law when the system is without disturbance.And it can ensure that the system is finite-time stable,ufis a compensator,which is used to compensate the disturbancef.

    3.1 Design of the compensator

    In this section,a compensatorufwill be designed,which can fully compensate the disturbancefin finite time.And then the system (34)will reduce to a nominal system without disturbance. Based on Theorem 2,the compensator can be designed as following:

    (35)

    where,the parameters are selected according to Theorem 1.

    (36)

    Then,according to Theorem 2,uf+fcan converge to zero in finite time, such that the disturbance can be fully compensated in finite time.And then the system (19)can reduces to the nominal system as following:

    (37)

    In the following,a finite-time sTablecontrol lawuequwill be designed based on the nominal system.

    3.2 Controller design based on the geometric homogeneous theory

    In this section,a controller will be designed based on the geometric homogeneous theory.The controller should ensure that the system is asymptotically sTableand possesses suiTablenegative homogeneous degree.And the finite time stability of the system (32)will be achieved when the system (32)is asymptotically sTableand possesses suiTablenegative homogeneous degree.The corresponding controller is designed as follows based on Lemma 3.

    (38)

    in which,μ1=0.25,μ2=0.4.λ1andλ2are positive constants which can ensure thatp2+λ2p+λ1is Hurwitz.

    In summary,combing equations (33),(35),(36)with (38),the guidance law can be obtained as:

    (39)

    From the guidance law (39),we know that it is continuous nonsingular and finite-time stable.So the saturation cased by singularity can be avoided.And the chattering cased by non-discontinuous sliding mode control can also be avoided.Moreover,the parameters of the compensator are adaptive in guidance law (39),thus it can avoid the performance degradation caused by improperly selected parameters.

    4 Simulation

    In this section,the guidance law proposed in this paper (ISMCFTGL)will be simulated.And for comparison,the guidance law with impact angle constraint (SMCGL)proposed in reference[1],which is designed based on sliding mode control,will be also simulated. The SMCGL is denoted as:

    (40)

    In the following,both the case of intercepting constant velocity target and the case of intercepting the maneuvering target will be simulated.

    4.1 Simulation for non-maneuvering target

    It is desired that the missile can intercept the target along the invere trajectory of the target.In simulation,the position of the interceptor is selected asxm=0,ym=0,zm=0.The parameters relevant to the velocity of the interceptor are selected asvm=400,θ=45°,ψm=-40°.The position of the interceptor is selected asxt=7 500,yt=5 000,zt=4 330.The parameters relevant to the velocity of the target are selected asvt=300 m/s,θt=150°,ψt=150°.

    The parameters of ISMCFTG used in longitudinal channel and lateral channel are the same. And they areλ1=4,λ2=4,r(0)=0.5,l=0.6,ε=0.001,γ=15.The parameters of SMCGL in longitudinal channel and lateral channel are the same too. And they areλ=3,k=4,ε=1.

    The comparison simulation resultes are decipited as Table1 and Fig.2~Fig.5.

    Table1 Miss distance and the angle tracking error when intercepting the non-maneuvering target

    Fig.2 Comparison of the trajectories,when intercepting the non-maneuvering target

    Fig.3 Comparison of the payloads,when intercepting the non-maneuvering target

    Fig.4 Comparison of the velocity of the line-of-sight, when intercepting the non-maneuvering target

    From Fig.4,it can be concluded that, when intercepting the non-maneuvering target, ISMCFTGL can effectively control the LOS rate converge to the neighborhood of zero,while the LOS rate under the control of SMCGL diverges slowly.Therefore,it is verified that the guidance performance of ISMCFTGL is better than that of SMCGL.The advantage of ISMCFTGL is also reflected in Fig.3 and Table1.Such that,the needed overload of ISMCFTGL,at the impact time,is smaller than that of SMCGL(see Fig.3),so that the miss distance is smaller and the tracking accuracy to the desired LOS angle is also higher than that of SMCGL (see Table1).

    Fig.5 Comparison of the true values and the estimates of the disturbance

    In Fig.5,it shows a comparison of the estimated value and the true value of the disturbance in equation (31).Through simulaton results,it can be concluded that the disturbance can be estimated accurately,thus it can maitains the guidance law controls the LOS rate effectively. 4.2 Simulation for maneuvering target

    In this section it is also desired that the missile can intercept the target along the invere trajectory of the target.The longitudinal acceleration of the target isatz=50sin(0.8t),and the lateral acceleration isatc=50sin(0.8t).The other parameters are selected the same as those in section 4.1.the simulation results are decipited as Fig.6~Fig.9 and Table2.

    Fig.6 Comparison of the trajectories,when intercepting the maneuvering target

    Fig.7 Comparison of the payloads,when intercepting the maneuvering target

    Fig.8 Comparison of the velocities of the line-of-sight,when intercepting the maneuvering target

    Fig.9 Comparison of the true values and the estimates of the disturbance

    Table2 Miss distance and the angle tracking error when intercepting the maneuvering target

    According to the simulation results,it can be concluded that the performance of ISMCFTGL in suppressing the LOS rate,in the last paragraph of the interception,is better than that of SMCGL (Fig.8).And the overload of ISMCFTGL is much smaller (Fig.7),which effectively reduce the miss distance and the tracking error to the desired LOS angle (Table2).The reason to obtain such a goog effect is that ISMCFTGL can precisely eatimate the disturbance caused by the accelaration of the target and other factors (Fig.9).And the infulunce to the LOS rate caused by the disturbance can be nearly eliminated completely.Moreover,in the modelling of the LOS rate,the speed characteristic of the target is also fully considered, thus the proposed guidance law ISMCFTGL can effectively intercept the maneuvering target with high speed.

    5 Conclusion

    In this paper, an adaptive algrithom is firstly proposed through improving the super-twisting algrithom.Then a novel finite-time composite control method is designed through combing with the integral sliding mode surface and geometric homogeneous theory.And the composite control method is then used in designing of the guidance law with impact angle constraint. The proposed guidance law possesses some characteristics as following:

    (1)It can not only effectively intercept the non-maneuvering target,but it can also effectively intercept the high maneuvering target.

    (2)The guidance law is finite-time stable.

    (3)The guidance law is continuous and the parameters are also adaptive.Thus the chattering of the sliding mode conrol is alleviated and the guidance precesion is improved.

    [1] CAI Hong,HU zhen-dong,CAO Yuan.A survey of guidance law with terminal impact angle constraints[J].Journal of Astronautics,2010,31(2):315-323.

    [2] Kim B S,Lee J G,Han H S,et al.Homing guidance with terminal angular constraint against non-maneuvering and maneuvering targets[R].AIAA-97-3474,1997.

    [3] JIA Qing-zhong,LIU Yong-shan,LIU Zao-zhen.Variable-structure backstepping guidance law with terminal angular constraint for video-guided penetrating bomb[J].Journal of Astronautics,2008,29(1):208-214.

    [4] Shashi Ranjan Kumar,Sachit Rao,Debasish Ghose.Nonsingular terminal sliding mode guidance with Impact angle constraints[J].Journal of Guidance,Control,and Dynamics,2014,37(4):1114-1130.

    [5] Kumar S R,Rao S,Ghose D.Sliding mode guidance and control for all-aspect Interceptor with terminal angle constraints[J].Journal of Guidance,Control,and Dynamics,2012,35(4):1230-1246.

    [6] Zhang Y,Sun M,Chen Z.Finite-time convergent guidance law with Impact angle constraint based on sliding-mode control[J].Nonlinear Dynamics,2012,70(1):619-625.

    [7] ZHANG Yun-xi,SUN Ming-wei,CHEN Zeng-qiang.Sliding-mode varialble structure finite-time convergence guidance law[J].Control Theory & Applications,2012,29(11):1413-1418.

    [8] WANG Hong-qiang,FANG Yang-wang,WU You-li.Research on terminal guidance law of missiles based on nonsigngular terminal sliding mode[J].Systems Engineering and Electronics,2009,31( 6):1391-1395.

    [9] DOU Rong-bin,ZHANG Ke.Reserch on termianl guidance for Re-entry vehicle based on second-order sliding mode control[J].Journal of Astronautics,2011,32( 10):2109-2114.

    [10] Yuri Shtessel,Mohammed Taleb,Franck Plestan.A novel adaptive-gain supertwisting sliding mode controller:Methodology and application [J].Automatica 2012,48(2):759-769.

    [11] Jaime A M.Strict lyapunov functions for the super-twisting algorithm[J].IEEE Transactions on Automatic Control,2012,57(4):1035-1040.

    [12] Bhat S P,Bernstein D S.Geometric homogeneity with application to finite-time stability[J].Mathematics of Control,Signals and Systems,2005,17(2):101-127.

    (編輯:呂耀輝)

    可攔截機(jī)動目標(biāo)的終端角度約束制導(dǎo)律

    李憲強(qiáng), 周 軍

    (西北工業(yè)大學(xué) 精確制導(dǎo)與控制研究所,西安 710072)

    設(shè)計了一種連續(xù)且有限時間穩(wěn)定的終端角約束制導(dǎo)律,該制導(dǎo)律不但能夠打擊非機(jī)動目標(biāo)而且能有效打擊機(jī)動性的目標(biāo)。文中首先將超扭曲算法進(jìn)行改進(jìn),設(shè)計了一種自適應(yīng)超扭曲算法,該算法的參數(shù)是隨著干擾的大小自動調(diào)節(jié)的,從而避免了常規(guī)的超扭曲算法由于參數(shù)選取不當(dāng)而引起的對滑模抖振的抑制能力下降。文中將自適應(yīng)超扭曲算法首次與積分滑模相結(jié)合,設(shè)計了一種有限時間收斂的干擾補(bǔ)償器,該干擾補(bǔ)償器能夠在有限時間內(nèi)對干擾進(jìn)行精確補(bǔ)償,然后采用幾何齊次理論針對干擾補(bǔ)償后的系統(tǒng)設(shè)計了有限時間收斂控制器。以上干擾觀測器和控制器組成的復(fù)合控制律,能夠保證系統(tǒng)的有限時間穩(wěn)定性,此外該控制律不但是連續(xù)的,而且參數(shù)是自適應(yīng)的,因而大大降低了滑模的抖振特性。文中將以上控制理論應(yīng)用于終端角約束制導(dǎo)律的設(shè)計過程中,最后通過仿真驗證了該制導(dǎo)律的有效性。

    終端角約束;制導(dǎo)律;有限時間穩(wěn)定;滑模

    V448 Do cument code:A Article ID:1006-2793(2015)05-0614-08

    10.7673/j.issn.1006-2793.2015.05.003

    ① Received date: 2015-01-13; Revised date: 2015-04-20。

    Foundation: Natural Science of China( 61304238) ; National High-tech R&D Program of China ( 863) ( 2012AA120602) .

    Biography: LI Xian-qiang ( 1986—) ,man,doctor,speciality: Guidance,navigation and control ( GNC) of vehicle. E-mail: 1740679934@ qq. com

    猜你喜歡
    補(bǔ)償器制導(dǎo)滑模
    500kV并網(wǎng)靜止無功補(bǔ)償器的無功電壓支撐能力及處置方案
    湖南電力(2021年4期)2021-11-05 06:44:50
    基于組合滑??刂频慕^對重力儀兩級主動減振設(shè)計
    測控技術(shù)(2018年4期)2018-11-25 09:47:26
    并網(wǎng)逆變器逆系統(tǒng)自學(xué)習(xí)滑??箶_控制
    淺析TBBW智能無功補(bǔ)償器在農(nóng)村配網(wǎng)中的應(yīng)用
    電子制作(2017年2期)2017-05-17 03:55:29
    基于MPSC和CPN制導(dǎo)方法的協(xié)同制導(dǎo)律
    基于在線軌跡迭代的自適應(yīng)再入制導(dǎo)
    靜止無功補(bǔ)償器穩(wěn)定電壓的仿真研究
    帶有攻擊角約束的無抖振滑模制導(dǎo)律設(shè)計
    復(fù)合制導(dǎo)方式確保精確入軌
    太空探索(2014年1期)2014-07-10 13:41:49
    观看美女的网站| 欧美97在线视频| 国产成人午夜福利电影在线观看| 1000部很黄的大片| 免费不卡的大黄色大毛片视频在线观看| 日本av手机在线免费观看| 国产美女午夜福利| 午夜精品国产一区二区电影 | 亚洲成色77777| 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 欧美3d第一页| 高清视频免费观看一区二区| 91aial.com中文字幕在线观看| 国产男女内射视频| 亚洲四区av| 99久久人妻综合| 天天一区二区日本电影三级| 日本色播在线视频| 久久ye,这里只有精品| 在线免费十八禁| av黄色大香蕉| 在线a可以看的网站| 欧美日韩视频精品一区| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 男人舔奶头视频| 国产成人精品婷婷| 午夜爱爱视频在线播放| 国产成人午夜福利电影在线观看| 久久99蜜桃精品久久| 国产男女内射视频| 国产人妻一区二区三区在| 成人美女网站在线观看视频| 国产成人精品久久久久久| 免费av毛片视频| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| 免费观看在线日韩| 成人国产av品久久久| 日韩电影二区| 成人毛片a级毛片在线播放| av又黄又爽大尺度在线免费看| 亚洲国产最新在线播放| 一级爰片在线观看| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 欧美日本视频| 国产精品国产三级专区第一集| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲网站| 搞女人的毛片| 成人黄色视频免费在线看| 深爱激情五月婷婷| 欧美成人精品欧美一级黄| 麻豆成人av视频| 免费高清在线观看视频在线观看| 久久久精品欧美日韩精品| 狂野欧美激情性bbbbbb| 91狼人影院| 亚洲av中文av极速乱| 久久久久久国产a免费观看| 亚洲欧美中文字幕日韩二区| 国产在线男女| 亚洲自拍偷在线| 亚洲av一区综合| 国产视频内射| kizo精华| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 美女高潮的动态| 尾随美女入室| 欧美日韩在线观看h| 免费大片18禁| 久热久热在线精品观看| 插逼视频在线观看| 高清日韩中文字幕在线| 国产淫片久久久久久久久| 久久久久久久久久久丰满| av福利片在线观看| 七月丁香在线播放| 日韩强制内射视频| 久久韩国三级中文字幕| av国产久精品久网站免费入址| 久久精品国产a三级三级三级| 大香蕉久久网| 日韩三级伦理在线观看| 五月天丁香电影| 伊人久久国产一区二区| 日韩一区二区视频免费看| 亚洲人成网站在线观看播放| 99久久九九国产精品国产免费| 3wmmmm亚洲av在线观看| 国精品久久久久久国模美| 亚洲美女搞黄在线观看| 国产免费福利视频在线观看| 久久久精品94久久精品| 国产精品蜜桃在线观看| 国产成人a∨麻豆精品| 亚洲国产成人一精品久久久| 国产高清不卡午夜福利| 亚洲伊人久久精品综合| 春色校园在线视频观看| 精品一区二区三卡| 亚洲欧美精品专区久久| 18禁在线无遮挡免费观看视频| 九九爱精品视频在线观看| 国产黄片美女视频| 亚洲av.av天堂| 最近手机中文字幕大全| 看黄色毛片网站| 边亲边吃奶的免费视频| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 日韩,欧美,国产一区二区三区| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美 | 69av精品久久久久久| 色视频www国产| 在线精品无人区一区二区三 | 一二三四中文在线观看免费高清| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人 | 欧美日韩精品成人综合77777| 国产成人免费无遮挡视频| 亚洲不卡免费看| 色网站视频免费| 97超视频在线观看视频| 国产中年淑女户外野战色| 欧美老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 纵有疾风起免费观看全集完整版| 青青草视频在线视频观看| 蜜桃亚洲精品一区二区三区| 国产有黄有色有爽视频| 一边亲一边摸免费视频| 国产一级毛片在线| 久久久久久久久久人人人人人人| 综合色av麻豆| 亚洲精品中文字幕在线视频 | 免费看日本二区| 国产精品一区二区三区四区免费观看| 亚洲精品乱久久久久久| 亚洲精品第二区| 国产伦在线观看视频一区| 日本午夜av视频| 国产成人a∨麻豆精品| 丝袜喷水一区| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 尤物成人国产欧美一区二区三区| 午夜福利在线在线| 精品久久久精品久久久| 国产探花在线观看一区二区| 亚洲精品日韩av片在线观看| 亚洲精品日本国产第一区| 小蜜桃在线观看免费完整版高清| 黄片无遮挡物在线观看| 久久久久九九精品影院| 欧美激情国产日韩精品一区| 日韩大片免费观看网站| 婷婷色av中文字幕| 天堂中文最新版在线下载 | 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 欧美性感艳星| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 国产大屁股一区二区在线视频| 国产高潮美女av| 欧美一区二区亚洲| 老师上课跳d突然被开到最大视频| 久久久亚洲精品成人影院| 久久人人爽av亚洲精品天堂 | 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 水蜜桃什么品种好| h日本视频在线播放| 各种免费的搞黄视频| 国产美女午夜福利| 最近中文字幕2019免费版| 午夜激情久久久久久久| 成人鲁丝片一二三区免费| 人人妻人人澡人人爽人人夜夜| 国产精品人妻久久久影院| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 国国产精品蜜臀av免费| 高清在线视频一区二区三区| 婷婷色麻豆天堂久久| av在线播放精品| videos熟女内射| 亚洲精品乱码久久久久久按摩| 最近中文字幕高清免费大全6| videos熟女内射| 亚洲精品日韩在线中文字幕| 18禁裸乳无遮挡免费网站照片| 久热这里只有精品99| 亚洲精品日韩av片在线观看| av女优亚洲男人天堂| 国产成人一区二区在线| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| 99视频精品全部免费 在线| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 黄色怎么调成土黄色| 国产高清三级在线| 欧美bdsm另类| 国产在视频线精品| 天天一区二区日本电影三级| 大码成人一级视频| 九九爱精品视频在线观看| 久久久久久九九精品二区国产| 综合色丁香网| 中文在线观看免费www的网站| 汤姆久久久久久久影院中文字幕| 亚洲综合精品二区| 大香蕉久久网| 亚洲欧洲日产国产| 日本三级黄在线观看| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 成人高潮视频无遮挡免费网站| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 我要看日韩黄色一级片| 在线观看人妻少妇| 亚洲真实伦在线观看| 18禁在线无遮挡免费观看视频| 午夜视频国产福利| 亚州av有码| 久久99热6这里只有精品| 欧美日韩视频精品一区| 丝袜脚勾引网站| 国产欧美亚洲国产| 国产黄a三级三级三级人| 极品教师在线视频| 蜜臀久久99精品久久宅男| 久久国内精品自在自线图片| 黄色配什么色好看| 中国国产av一级| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 亚洲国产最新在线播放| 成人高潮视频无遮挡免费网站| 日韩av免费高清视频| 久热久热在线精品观看| 蜜臀久久99精品久久宅男| 毛片女人毛片| 国产成人一区二区在线| 欧美另类一区| av线在线观看网站| 国产黄频视频在线观看| 狂野欧美激情性bbbbbb| 人妻夜夜爽99麻豆av| 在线观看免费高清a一片| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| 禁无遮挡网站| www.av在线官网国产| 欧美国产精品一级二级三级 | 下体分泌物呈黄色| 亚洲欧美精品自产自拍| 最后的刺客免费高清国语| 一个人看视频在线观看www免费| 2018国产大陆天天弄谢| 亚洲天堂国产精品一区在线| 日韩中字成人| 亚洲欧美日韩另类电影网站 | 22中文网久久字幕| 性色avwww在线观看| 久久精品国产亚洲av涩爱| 777米奇影视久久| 欧美高清性xxxxhd video| 国产精品国产三级专区第一集| 大香蕉97超碰在线| av福利片在线观看| 卡戴珊不雅视频在线播放| 另类亚洲欧美激情| 精品久久国产蜜桃| 黄色欧美视频在线观看| 一本色道久久久久久精品综合| 国产精品久久久久久精品古装| 边亲边吃奶的免费视频| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 国产成人免费观看mmmm| 别揉我奶头 嗯啊视频| 自拍偷自拍亚洲精品老妇| 亚洲国产色片| 国产av码专区亚洲av| 亚洲,一卡二卡三卡| 亚洲精品一二三| 亚洲内射少妇av| 伊人久久国产一区二区| 少妇人妻 视频| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 能在线免费看毛片的网站| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 免费av观看视频| 国产国拍精品亚洲av在线观看| 日本三级黄在线观看| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 精品酒店卫生间| 国产精品女同一区二区软件| 欧美日本视频| 精品久久国产蜜桃| 成人欧美大片| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| av网站免费在线观看视频| 性色avwww在线观看| 欧美激情久久久久久爽电影| 国产精品女同一区二区软件| av在线亚洲专区| 久久久精品94久久精品| 久久久欧美国产精品| xxx大片免费视频| 高清在线视频一区二区三区| 亚洲综合色惰| 99热这里只有精品一区| 哪个播放器可以免费观看大片| 久久久久国产精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 2021少妇久久久久久久久久久| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 搞女人的毛片| 美女xxoo啪啪120秒动态图| 美女被艹到高潮喷水动态| av免费在线看不卡| 国产大屁股一区二区在线视频| 亚洲欧美成人综合另类久久久| 欧美3d第一页| 2021天堂中文幕一二区在线观| 51国产日韩欧美| 亚洲欧美一区二区三区黑人 | 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 亚洲第一区二区三区不卡| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 国产精品爽爽va在线观看网站| 国产探花在线观看一区二区| 精品久久久久久久久av| 午夜视频国产福利| 久久ye,这里只有精品| 午夜免费观看性视频| 一边亲一边摸免费视频| 日韩欧美一区视频在线观看 | 亚洲美女视频黄频| 直男gayav资源| 少妇人妻 视频| 99热这里只有精品一区| 美女国产视频在线观看| 高清在线视频一区二区三区| 最近最新中文字幕免费大全7| 久久精品国产鲁丝片午夜精品| 日韩伦理黄色片| 麻豆精品久久久久久蜜桃| 日本免费在线观看一区| 偷拍熟女少妇极品色| 在线观看免费高清a一片| 亚洲四区av| 久久精品国产亚洲av涩爱| 嫩草影院精品99| 老女人水多毛片| 欧美日韩在线观看h| 国产人妻一区二区三区在| 看免费成人av毛片| 九色成人免费人妻av| 晚上一个人看的免费电影| 交换朋友夫妻互换小说| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 搡老乐熟女国产| 精品一区二区三卡| 七月丁香在线播放| 国产欧美日韩一区二区三区在线 | 一区二区三区精品91| 欧美xxxx黑人xx丫x性爽| 18+在线观看网站| 最新中文字幕久久久久| 午夜精品国产一区二区电影 | 亚洲成人一二三区av| 国产精品偷伦视频观看了| 女人被狂操c到高潮| 黄片无遮挡物在线观看| 欧美极品一区二区三区四区| 亚洲av成人精品一二三区| 国产在线一区二区三区精| 99热网站在线观看| 国产色爽女视频免费观看| 97超视频在线观看视频| 久久精品熟女亚洲av麻豆精品| 午夜激情久久久久久久| 国产精品人妻久久久久久| 久久影院123| 精品久久久久久久人妻蜜臀av| 菩萨蛮人人尽说江南好唐韦庄| 日韩成人av中文字幕在线观看| 欧美日韩国产mv在线观看视频 | 美女高潮的动态| 老司机影院毛片| 国产成人免费无遮挡视频| 久久精品国产亚洲av涩爱| 嫩草影院精品99| a级一级毛片免费在线观看| 亚洲av男天堂| 午夜精品国产一区二区电影 | 深爱激情五月婷婷| a级一级毛片免费在线观看| 亚洲av男天堂| 亚洲精品456在线播放app| 亚洲一区二区三区欧美精品 | 亚洲国产高清在线一区二区三| 男男h啪啪无遮挡| 国产成人freesex在线| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 精华霜和精华液先用哪个| 国产精品国产三级国产专区5o| 中文天堂在线官网| 欧美成人一区二区免费高清观看| 日韩在线高清观看一区二区三区| 777米奇影视久久| 特大巨黑吊av在线直播| 1000部很黄的大片| 一区二区三区免费毛片| 国产精品一区二区在线观看99| 能在线免费看毛片的网站| 国产精品成人在线| 干丝袜人妻中文字幕| 3wmmmm亚洲av在线观看| 国产综合懂色| 日本猛色少妇xxxxx猛交久久| av专区在线播放| 亚洲精品国产色婷婷电影| 内射极品少妇av片p| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区黑人 | 国产综合精华液| 日本熟妇午夜| 日本一二三区视频观看| 亚洲一区二区三区欧美精品 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 哪个播放器可以免费观看大片| 国产91av在线免费观看| 亚洲av免费在线观看| 国产欧美日韩精品一区二区| 精品少妇久久久久久888优播| 久久久久久久久久人人人人人人| 国产淫片久久久久久久久| 日日啪夜夜撸| 成人亚洲精品av一区二区| av免费在线看不卡| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 波野结衣二区三区在线| 亚洲精品日本国产第一区| 汤姆久久久久久久影院中文字幕| 国产91av在线免费观看| 亚洲精品色激情综合| 人人妻人人看人人澡| 亚洲色图综合在线观看| 免费观看av网站的网址| 日韩一区二区三区影片| 久久精品久久久久久噜噜老黄| 亚洲av成人精品一区久久| a级毛片免费高清观看在线播放| 伊人久久精品亚洲午夜| 婷婷色综合www| av网站免费在线观看视频| 超碰97精品在线观看| 国产精品久久久久久精品电影| 男女无遮挡免费网站观看| 18禁在线播放成人免费| 亚洲成人av在线免费| 午夜爱爱视频在线播放| 亚洲天堂av无毛| 在线观看人妻少妇| 成人漫画全彩无遮挡| 亚洲经典国产精华液单| 乱系列少妇在线播放| av免费观看日本| 国产色爽女视频免费观看| 国产精品爽爽va在线观看网站| 看十八女毛片水多多多| 在线免费十八禁| 97人妻精品一区二区三区麻豆| 国产综合懂色| 深爱激情五月婷婷| 九九在线视频观看精品| 99热全是精品| 久久久久久伊人网av| 国产在线男女| 亚洲婷婷狠狠爱综合网| 日韩一本色道免费dvd| 成人亚洲精品av一区二区| 啦啦啦在线观看免费高清www| 亚洲精品一二三| 王馨瑶露胸无遮挡在线观看| 亚洲一区二区三区欧美精品 | 国产男人的电影天堂91| 精品少妇黑人巨大在线播放| 天天躁日日操中文字幕| 看十八女毛片水多多多| 一区二区三区免费毛片| 久久久a久久爽久久v久久| 赤兔流量卡办理| 亚洲内射少妇av| 可以在线观看毛片的网站| 亚洲国产欧美人成| 免费看不卡的av| 日韩成人av中文字幕在线观看| 国产精品.久久久| 亚洲综合精品二区| 国产免费一级a男人的天堂| 男插女下体视频免费在线播放| 国产熟女欧美一区二区| av卡一久久| 99久久九九国产精品国产免费| 国精品久久久久久国模美| 国产成人freesex在线| 嫩草影院新地址| 免费大片黄手机在线观看| 亚洲精品久久午夜乱码| 人妻制服诱惑在线中文字幕| 国精品久久久久久国模美| 亚洲色图av天堂| 午夜福利视频1000在线观看| 国产高潮美女av| 久久精品国产亚洲网站| av免费观看日本| 免费看日本二区| 久久99蜜桃精品久久| 最近的中文字幕免费完整| 22中文网久久字幕| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 简卡轻食公司| 国产永久视频网站| 国产视频内射| 欧美日韩在线观看h| 少妇 在线观看| 亚洲电影在线观看av| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人爽人人夜夜| 偷拍熟女少妇极品色| 亚洲三级黄色毛片| 国产亚洲午夜精品一区二区久久 | 日韩伦理黄色片| 久久久久久久久久久丰满| 亚洲一级一片aⅴ在线观看| 成人美女网站在线观看视频| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 午夜亚洲福利在线播放| 制服丝袜香蕉在线| 中文字幕制服av| 久久久久久久午夜电影| 美女脱内裤让男人舔精品视频| 色视频www国产| 大码成人一级视频| 黄色一级大片看看| 午夜爱爱视频在线播放| 少妇人妻久久综合中文| 国产毛片在线视频| 好男人在线观看高清免费视频| 亚洲精品日韩av片在线观看| 日韩视频在线欧美| 国产免费视频播放在线视频| 22中文网久久字幕| 尤物成人国产欧美一区二区三区| 久久综合国产亚洲精品| 欧美精品一区二区大全| 亚洲人成网站在线播| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 中文字幕制服av| 欧美国产精品一级二级三级 | 亚洲精品一二三| 久久久久九九精品影院| 欧美日韩在线观看h| 日韩一区二区视频免费看| 性色avwww在线观看| av免费观看日本| 各种免费的搞黄视频| 国产成人一区二区在线| 国产淫片久久久久久久久| 国产精品av视频在线免费观看| 久久久久久久大尺度免费视频|