• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Induced Polyploidy as a Tool for Increasing Tea (Camellia sinensis L.) Production

    2015-04-14 11:48:01HasnainAlamMuhammadRazaqandSalahuddin

    Hasnain Alam, Muhammad Razaq, and Salahuddin

    1Department of Biotechnology, International Islamic University, Islamabad

    2Department of Silviculture, Northeast Forestry University, Harbin 150040, China

    Induced Polyploidy as a Tool for Increasing Tea (Camellia sinensis L.) Production

    Hasnain Alam1, Muhammad Razaq2, and Salahuddin2

    1Department of Biotechnology, International Islamic University, Islamabad

    2Department of Silviculture, Northeast Forestry University, Harbin 150040, China

    Tea (Camellia sinensis L.) represents different ploidy levels. In the present paper, we reviewed the recent data on the diploid, aneuploid and polyploid formed their origin and chemically induced polyploidy and predicted it role in teagenetic improvement for better yield. Different polidy levels had different effects on tea physiology. Tetraploid and triploid had more vigour and hardness due to increased size of cells, while triploid could have even more vigours due to increased size of cells and sterilities. Chemically induced polyploidy had been found an important tool for improving plant physiology and production, therefore, induced polyploids should be produced to overcome the problem of low yield and limited rainfall in tea growing areas.

    tea, Camellia sinensis, polyploidy

    Introduction

    Tea (Camellia sinensis (L.) O. Kuntze) belongs to family Theaceae and evergreen tree or shrub that grows up to 10-15 m tall in the wild and 0.6-1.5 m under cultivation. The leaves are short stalked, light green, coriaceous, alternate, elliptic-obovate or lanceolate, with serrate margin, glabrous, or sometimes pubescent beneath, varying in length from 5 to 30 and about 4 cm wide. Mature leaves are brighter green in color, leathery and smooth. Flowers are white, fragrant, 2.5-4 cm in diameter, solitary or in clusters of two to four. They have numerous stamens with yellow anthers and produces brownish-red, one- to four-lobed capsules. Each lobe contains one to three spherical or flattened brown seeds (Ross, 2005).

    Commercial tea population contains the following three spices and hybrid between them (Wood and Barua, 1958), China type (Camellia sinensis (L.) O. Kuntze), Assam type (Camellia assamica (Masters) and Cambod type (Camellia assamica sub ssp. Lasiocalyx (planchon.ex.watt) (Mondal et al., 2004).

    It is the oldest non-alcoholic caffeine containing beverage in the world. Chinese were the first to use tea as medicinal drink, later as beverage and have been doing so for the past 3 000 years, recorded first in Chinese literature 2 700 years ago (Eden, 1958).

    It spread to Japan in 1 000 AD and was introduced in Europe in the middle of 17th century. The British started tea cultivation in the middle of 18th century. The Indians (South East sub-continent) got familiar with tea, due to British rulers in 18th century (Yamanishi, 1991).

    Tea is grown in about 30 countries, but consumed worldwide. Although at greatly varying levels, it is the most widely consumed beverage aside from water with a per capita worldwide consumption of approximately0.12 liter per year (Graham, 1992).

    Polyploidy

    Polyploidy was first discovered in 1907 and was defined as the heritable increase in genome copy number. Polyploidy is the presence of more than two genomes per cell (Lutz, 1907). Polyploidy occurs in nature due to adverse environmental conditions like temperature and it was observed in Vicia and Pisum plants treated with hot water at 40℃ (Randolph, 1932).

    Polyploidy is a central feature of plant diversification. Thirty to seventy of angiosperms, including many important crop plants, are estimated to have polyploidy in their lineages (Grant, 1981). The success of polyploid species had been attributed to their ability to colonize a wider range of habitats and to survive better in unstable climates compared with their diploid progenitors, presumably due to increase heterozygosity and flexibility provided by the presence of additional alleles (Lewis, 1980). During polyploidy only cell size increase and without change in the nuclear genome (Song, 1995). In various plant genera, the rate at which polyploids arise and persist is on the order of 0.01 per lineage per million years, roughly 1/10ththe rate of speciation (Meyers and Levin, 2006). With such a high rate of polyploidization per speciation, one would expect a large fraction of plant species to have undergone polyploidization at some points in their evolutionary past. Previous studies had suggested that polyploidy occurred sometime in the past of 57% to 70% of flowering plants, based solely on chromosome numbers among extant species (Goldblatt, 1980; Masterson, 1994).

    Polyploidy might cause morphological differences; most important of them is the larger size. Polyploid animals tend to preserve the same body size as diploids in spite of an increase in cell size by reducing the overall numbers of cells and are often morphologically indistinguishable from their diploid progenitors (Bogart, 1980), but polyploid plants more often have larger bodies and thus could be ecologically or reproductively altered compared with diploids (Otto and Whitton, 2000). This process is also used to produce the causes or consequences of such developmental differences for the adaptive potential of polyploids in new environments. Therefore, tolerance of polyploids is generally greater than the diploids and can adapt to a wider range of adverse environmental conditions (Estilai and Shannon, 1993).

    Role in Crop Genetic Improvement

    Obtaining polyploid plant is widely used to increase the cold resistance and bigger flowering species in ornamental breeding. For medicinal plants, polyploids are usually more valuable because they exhibit increased biomass and content of effective compounds (Gao et al., 1996). Their dark green color is the result of bigger cells and more chlorophyll content. Photosynthesis potential is even higher than diploids (Molin et al., 1982). In the flavonol biosynthetic pathway of Petunia 'Mitchell', polyploid had been found a differential effect of increasing the relative concentration of the major metabolite quercetin-3-sophoroside and decreasing the relative concentration of the minor metabolite quercetin-3, 7-diglucoside (Griesbach and Kamo, 1996). The characteristics of being bigger species increased their commercial interests through increasing agricultural production. Although cell size typically is larger in polyploids, adult size may or may not be altered; as a rough generalization, polyploidization is more likely to increase adult body size in plants and invertebrates than in vertebrates (Gregory and Mable, 2005; Otto and Whitton, 2000). Polyploidy is of interest not only to researchers who have been worked on plants to utilize for vegetative part but also researchers specialized on ornamental plant breeding (Rose and Tobutt, 2000; Vainole and Repo, 2000).

    Tea Cytology and Polyploidy

    The chromosome number in Camellia sinensis is15 (n=15) (Morinaga et al., 1929) and saprophytic chromosome count is n=30 (Morinaga and Fukushima, 1931) Karasawa (1932) first reported polyploidy in camellia (n=45). Karyo type of Thea sinensis, var. macyophylla was examined that was grown at the Kobotoke Pass, and found that the variety was triploid form having 45 somatic chromosomes (three times as many as the 15 basic chromosome numbers). Extensive investigation in Camellia's polyploidy began in early 1950's (Janaki, 1952).

    In South East Asia, out of 100 different clones of verity assamica, all but two plants are found regular diploid and only one C. sasanqa as a hexaploid with 2n=90. Schimawallichi which is common in North East India contains 36 chromosomes with n=18 (Bazbaruah, 1968).

    Different aneoploidy chromosome numbers among inter specific and inter generic hybrid may also be found (Ackerman, 1973; Kondo, 1977) like Meng 38 Long Shu Cha had only 28 chromosomes found in China (Li, 1996). Similar results were also observed that Guangdong tea varieties Ruyuan Baimao and Taishan Baiyun which have chromosome number 2n=2x=30 (diploid) but cells with fewer than 30 chromosomes and also a haploid cell was also observed in Ruyuan Baimao (Li et al., 1996). Open pollinated progenies of triploid tea which ranged from diploid aneuploid to tetraploid and rear pentaploid (Chaudhurai, 1979).

    Attempts have also been made to create triploids artificially by hybridizing tetraploids with diploids tea in Japan (Osone, 1958), India (Chaudhurai, 1979) and Bangladesh (Rashid et al., 1985), but success was low.

    Effect of Polidy Level on Tea

    Polyploidy may cause phenotypic variation in the same Camellia species. Triploids, in general, are more vigorous, hardier and tolerant to cold than diploids (Simurah, 1956a). Some triploids and aneoploids had been found to have superior vigour. Morphological and anatomical studies on polyploids revealed a wide range of phenotypic variations and anatomical characteristics like frequency and size of stomata and sclereids (Chaudhurai, 1979). Chromosome number is also correlated to the pollen size in genus Camellia (Ackerman and Kondo, 1980) and to the stomatical guard cells of leaf the mean number/stomata being 21.9±2. 07 for diploids, 32.5±3.15 for triploids and 41.4±4.26 for t tetraploids (Ahmed and Sing, 1993). A simple and effective method to distinguish the polyploidy of tea is to count the chloroplast numbers per guard cell. Chloroplast numbers per guard cell of diploid, triploid and tetraploid were generally equal or a slightly less than 16, 24 and 32, respectively (Dapeng, 1989).

    Though Bazbaruah (1971) reported that the quality of the tetraplods and natural triploids were inferior to the diploids but yet the two commercial clones UPASI-1 and TV-29 were triploids which produced acceptable quality of tea. Genetic variations or mutations of diploid tea plants into polyploids are therefore expected to improve the vigour and hardness. Out of different types of tea polyploids produced so far, dry weights, leaf size and rooting ability of triploids were higher by 14% and 109%, respectively, over diploids. Pentapoids and aneuploids were, however, poor rooters and had smaller leaves than diploids, triploids and tetraploids. Consequently breeding might have to be concentrated mostly on the production of vigorous triploids (3n=3x= 45) or perhaps tetraploids (2n=4x=60), providing that the quality aspects do not deteriorate (Singh, 1980).

    Induced Polyploidy

    Induced polyploidy was first observed in the seedlings grown in close association with disintegrating pieces of the corms of Colchicum autumnale. It was suggested that the sites of colonies of this species might prove fruitful sources of polyploids (Bates, 1939). Polyploidy can be induced by hydrostatic pressure (Lou and Purdom, 1984) and oryzaline (Bouvier et al., 1994).

    When young protocorms were treated in liquid culture with 50 mg · L-1colchicine about 50% of the proto corms Phalaenopsi sorchids developed into tetraploids. Lavandula angustifolia (lavender) seed germinated in the presence of colchicine at concentrations of 125 mg · L-1resulted in polyploid plants carrying sports with larger flowers (Nigel et al., 2007). Seeds of V. villosa (hairy vetch) were obtained treated with 0.005% colchicine and 12% tetraploid plants (2n=4x=28) (Tulay and Unal, 2010).

    Miscanthus species produced 55% polyploid treated with 313 μmol · L-1colchicine for 18 h (G?owacka et al., 2009a). Miscanthus sinensis and Miscanthus x giganteus by plant colchicine treatment showed 20% efficiency of doubling of the chromosome numbers when treated with 1 252 μmol · L-1colchicine, supplemented with dimethyl sulphoxide for 18 h (G?owacka et al., 2009b).

    Treating shoot-tips of Centella asiatica (L.) with colchicine concentrations ranging from 0.050%-0.200% for 12-24 h promoted induction of tetraploids. Tetraploid plants demonstrated significantly longer stomata and a higher stomatal index compared to those of the diploid control plants. Furthermore, a positive trend in both biomass and triterpenoid production was obtained with the tetraploid and mixoploid plants of C. asiatica (Kaensaksiri et al., 2011).

    Conclusions

    Tea production in Pakistan was very low and its cultivation was not feasible to the farmer due to poor genetic makeup. Pakistan produced about 400-800 kg per acre production that was much lower as compare to other tea producing countries about 3 000 kg per acre. Thus, there was a great need to increase production per unit area with acceptable tea quality. We could increase its production by selecting high yielding bushes. Chemically induced polyploidy could also increase its production 40%-60%. Since tea polyploids are scare under natural conditions and their artificial production had become a necessity. Breeding of the tea polyploids had been advocated by some workers. The aim of tea breeding was to develop high yielding tea per unit area of bush surface with acceptable quality under different agroclimatic conditions. Tea was valued for its vegetative parts (two leaves and a bud) which offered the greatest chance of success to induce polyploidy.

    Ackerman W L. 1973. Aneuploidy in the Camellia. Heredity,64: 197-202.

    Ackerman W L, Kondo K. 1980. Pollen size and variability as related to chromosome number and speciation in genus Camellia. Jap J Breed,30(3): 251-259.

    Ahmed N, Sing I D. 1993. A technique for rapid identification of polidy levels in tea. Two and a Bud,40(2): 31-33.

    Bates G H. 1939. Colchicine-induced polyploidy in nature. Nature,143: 643-643.

    Bazbaruah H P. 1968. An evaluation of preparatory procedures for leaftip chromosomes spreads of the tea plant (Camellia sinensis). Stain Technol,43(5): 279-82.

    Bazbaruah H P. 1971. Cytological investigations in the family Theaceae. I. Chromosome numbers in some Camellia species and allied genera. Caryologia,24: 423-426.

    Bogart J P. 1980. Evolutionary implications of polyploidy in amphibians and reptiles. In: Lewis W H. Polyploidy: biol relevance. Plenum Press, New York. pp. 341-378.

    Bouvier L, Fillon F R, Lespinasse Y. 1994. Oryzalin as an efficient agent for chromosome doubling of haploid apple shoots in vitro. Plant Breeding,113: 343-346.

    Chaudhurai T C. 1979. Studies on the morphology and cytology of the progenies of triploid tea (C. sinensis). Uni Jorhat Toklai Expt St.

    Dapeng C S Y. 1989. Relation between the chloroplast number in each guard cell and the ploidy of tea. J. Tea. Sci. 2.http://en.cnki.com.cn/ Article_en/CJFDTOTAL-CYKK198902005.htm.

    Eden T. 1958. The development of tea culture. In: Eden T. Tea. Longman, London. pp. 1-4.

    Estilai A, Shannon M C. 1993. Salt tolerance in relation to ploidy level in guayule. In: Janick J, Simon J E. New crops. Wiley, New York. pp. 349-351.

    Gao S L, Zhu D N, Cai Z H, et al. 1996. Autotetraploid plants from colchicine treated bud culture of Salvia miltiorrhizabge. Plant CellTiss Organ Cult,47: 73-77.

    G?owacka K, Jezowski S, Kaczmarek Z. 2009a. Polyploidization of Miscanthus sinensis and Miscanthus x giganteus by plant colchicine treatment. Ind Crop and Prod,30: 444-446.

    G?owacka K, Jezowski S, Kaczmarek Z. 2009b. In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind Crop and Prod,32: 88-96.

    Goldblatt P. 1980. Polyploidy in angiosperms: monocotyledons. In: Lewis W H. Polyploidy: biological relevance. Plenum Press, New York. pp. 219-239.

    Graham H N. 1992. Green tea composition, consumption and polyphenols chemistry. Prey Med,21(3): 334-50.

    Grant V. 1981. Plant speciation. Columbia Univ Press, New York. pp. 283-353.

    Gregory T R, Mable B K. 2005. Polyploidy in animals. In: Gregory T R. The evolution of the genome. San Diego Elsevier. pp. 427-517.

    Griesbach, Kamo K K. 1996. The effect of induced polyploidy on the flavonols of petunia 'mitchell'. Phytochem,42(2): 361-363.

    Janaki A E K. 1952. Chromosome relationship in cultivated species of Camellia. American Camellia Year Book. pp. 106-114.

    Kaensaksiri T, Soontornchainaksaeng P, Soonthornchareonnon N S. Prathanturarug 2011 in vitro induction of polyploidy in Centella asiatica (L.) Urban. Plant Cell Tiss and Organ Cult,107: 187-194.

    Karasawa K. 1932. On triploid tea. Bot Mag Tokyo,46: 458-460.

    Kondo K. 1977. Chromosome numbers in the genus Camellia. Biotropica,9(2): 86-94 .

    Lewis W. 1980. Polyploidy: biological relevance. Plenum Press, New York. pp. 45-60.

    Li B, Chen-CuoBenand, Zheng Y Q. 1996. Karyotype analysis of five macrophyll tea plant. J Tea Sci,16(2): 119-124.

    Li S F. 1996. A primary report on the identification of aneuploids and triploids in tea germplasm. J Tea Sci,16(1): 73-74.

    Lou Y D, Purdom C E. 1984. Polyploidy induced by hydrostatic pressure in rainbow trout, Salmogairdneri Richardson. J Fish Biol,25(3): 345-351.

    Lutz A M. 1907. A preliminary note on the chromosomes of Oenothera Lamarckiana and one of its mutants, O gigas. Sci,26: 151-152.

    Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Sci,264: 421-423.

    Meyers L A, Levin D A . 2006. On the abundance of polyploids in flowering plants. Evolution Int J Org Evolon,60: 1198-1206.

    Molin W T, Mayers S P, Baer G R, et al. 1982. Ploidy effects in isogenic populations of alfalfa. II. Photosynthesis chloroplast number, ribolose-1, 5-biphosfate carboxylase, chlorophyll, and DNA in protplasts. Plant Physiol,70: 1710-1714.

    Mondal T K, Bhattacharya A, Laxmikumaran M, et al. 2004. Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tiss Orgn Cult,76: 195-254.

    Morinaga T, Fukushima E, Kano T, et al. 1929. Chromosome no of cultivated plants II. Bot Mag Tokyo,43: 589-594.

    Morainaga, Fukushima. 1931. Chromosome no of cultivated plants III. Bot Mag Tokyo,45: 140-145.

    Nigel A R, Horsnell Urwin J, Moon T. 2007. Generation and characterisation of colchicine-induced autotetraploid Lavandula angustifolia. Euphytica,156: 257-266.

    Osone, 1958. Studies on the breeding of triploid plants by diploidizing gametic cells. Japnese J Bred,8: 171-177.

    Otto S P, Whitton J. 2000. Polyploid incidence and evolution. Annu Rev Genet,34: 401-437.

    Randolph L F. 1932. Some effects of high temperature on polyploidy and other variations in maize. Proc N A S Genetic,18: 222-229.

    Rose J B, Tobutt K R. 2000. Induction of tetraploids for breeding hardy ornamentals. 4th International symposium on in vitro culture and horticultural breeding, Tampere-Finlan.

    Ross I A. 2005. Medicinal plants of the world, vol. 3: chemical constituents, traditional and modern medicinal uses. Humana Press Inc., Totowa, NJ. pp. 2.

    Song K, Lu P, Tang K, et al. 1995. Rapid genome change in synthetic polyploids of rassica and its implications for polyploid evolution Proc. Natl Acad Sci USA,92: 7719-7723.

    Tulay E, Unal M. 2010. Production of colchicine induced tetraploids in Vicia villosa roth. Caryologia,63(3): 292-303.

    Vainole A, Repo T. 2000. Polyplodisation of Rhododendron cultivars in vitro and how it affects cold hardiness. 4thInternational Symposium on in vitro culture and horticultural breeding, Tampere-Finland, Abstracts: 99.

    Wood D J, Barua P K. 1958. Species hybrids of tea. Nature,181: 1674-1675.

    Yamanishi T. 1991. Flavor characteristic of various teas. World Tea, International Symposium on Tea Science, 2-12.

    S5

    A

    1006-8104(2015)-03-0043-05

    Received 10 July 2015

    Hasnain Alam, E-mail: agrian369@gmail.com

    欧美xxxx性猛交bbbb| 国国产精品蜜臀av免费| 日韩一本色道免费dvd| 精品久久久久久久久久免费视频| 国产精华一区二区三区| 观看美女的网站| 国产成人91sexporn| 久久人人精品亚洲av| 不卡一级毛片| 变态另类成人亚洲欧美熟女| 天天一区二区日本电影三级| 亚洲欧美精品综合久久99| 日韩亚洲欧美综合| 狠狠狠狠99中文字幕| 久久精品国产自在天天线| 你懂的网址亚洲精品在线观看 | 最好的美女福利视频网| 白带黄色成豆腐渣| 国产亚洲精品av在线| 女人被狂操c到高潮| 两个人的视频大全免费| 在线播放无遮挡| 99久久人妻综合| 亚洲一区高清亚洲精品| 久久精品国产亚洲网站| av黄色大香蕉| 午夜福利视频1000在线观看| 少妇的逼好多水| 色综合亚洲欧美另类图片| 3wmmmm亚洲av在线观看| av免费观看日本| 亚洲av中文av极速乱| 国内精品美女久久久久久| 在线a可以看的网站| 一个人看的www免费观看视频| 国产精品乱码一区二三区的特点| 国产午夜精品一二区理论片| 亚洲国产精品国产精品| 九九爱精品视频在线观看| 亚洲丝袜综合中文字幕| 国产又黄又爽又无遮挡在线| 又爽又黄无遮挡网站| 亚洲人与动物交配视频| 成人性生交大片免费视频hd| 两个人视频免费观看高清| 成人特级av手机在线观看| 成人特级黄色片久久久久久久| 久久精品国产亚洲av天美| 好男人在线观看高清免费视频| av在线天堂中文字幕| 日产精品乱码卡一卡2卡三| av天堂中文字幕网| 少妇熟女aⅴ在线视频| 中文资源天堂在线| 国产成人精品一,二区 | 日本爱情动作片www.在线观看| 久久久久国产网址| 中文资源天堂在线| 亚洲成av人片在线播放无| 成人欧美大片| kizo精华| 白带黄色成豆腐渣| 一夜夜www| 国产精品爽爽va在线观看网站| 深夜精品福利| 国产亚洲91精品色在线| 美女国产视频在线观看| 日韩精品有码人妻一区| 久久精品夜夜夜夜夜久久蜜豆| 午夜a级毛片| 国产av在哪里看| 2022亚洲国产成人精品| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产鲁丝片午夜精品| 男人狂女人下面高潮的视频| 亚洲成a人片在线一区二区| 一本一本综合久久| 国产黄片视频在线免费观看| 午夜亚洲福利在线播放| 岛国在线免费视频观看| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜爱| 天堂√8在线中文| 国产视频内射| av在线观看视频网站免费| 国内揄拍国产精品人妻在线| 免费观看人在逋| 亚洲精品日韩av片在线观看| 伦精品一区二区三区| 精品一区二区三区视频在线| 岛国在线免费视频观看| 亚洲高清免费不卡视频| 在线观看午夜福利视频| 性色avwww在线观看| 久久九九热精品免费| 国产精品久久久久久精品电影小说 | 精品久久久久久久久av| 亚洲国产欧洲综合997久久,| 久久精品国产亚洲av香蕉五月| 国内揄拍国产精品人妻在线| 日韩精品有码人妻一区| eeuss影院久久| 久久这里只有精品中国| 五月伊人婷婷丁香| 久久精品国产自在天天线| 91av网一区二区| 男女下面进入的视频免费午夜| 少妇人妻一区二区三区视频| 精华霜和精华液先用哪个| 少妇被粗大猛烈的视频| 欧美bdsm另类| 婷婷色综合大香蕉| 日本与韩国留学比较| 国产极品天堂在线| 午夜福利高清视频| 看免费成人av毛片| 久久久久久久久久成人| 国产伦理片在线播放av一区 | 日本三级黄在线观看| 欧美极品一区二区三区四区| 99久国产av精品| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清专用| 男人和女人高潮做爰伦理| 日本爱情动作片www.在线观看| 国产国拍精品亚洲av在线观看| 午夜福利高清视频| 色5月婷婷丁香| 老司机福利观看| 最近2019中文字幕mv第一页| 亚洲精品久久国产高清桃花| 亚洲av一区综合| 国产亚洲91精品色在线| 亚洲成人中文字幕在线播放| 日韩三级伦理在线观看| 少妇被粗大猛烈的视频| 日韩精品青青久久久久久| 美女黄网站色视频| .国产精品久久| 不卡一级毛片| 中文字幕av成人在线电影| 91久久精品电影网| 亚洲精品乱码久久久久久按摩| 成人三级黄色视频| 少妇丰满av| 午夜a级毛片| avwww免费| 亚洲av.av天堂| 久久这里只有精品中国| 免费电影在线观看免费观看| 亚洲av男天堂| 偷拍熟女少妇极品色| 国产精品三级大全| 丰满乱子伦码专区| 久久精品国产清高在天天线| 欧美又色又爽又黄视频| 久久人人精品亚洲av| 欧美日本亚洲视频在线播放| 免费看a级黄色片| av在线观看视频网站免费| av在线观看视频网站免费| 99国产极品粉嫩在线观看| 91av网一区二区| 国产精品国产三级国产av玫瑰| 亚洲国产欧美在线一区| 亚洲av成人av| 最近视频中文字幕2019在线8| 超碰av人人做人人爽久久| 亚洲无线在线观看| 日本av手机在线免费观看| 黑人高潮一二区| 变态另类丝袜制服| 国产高清视频在线观看网站| 男人舔女人下体高潮全视频| 精品国产三级普通话版| 边亲边吃奶的免费视频| 美女脱内裤让男人舔精品视频 | 99热网站在线观看| 欧美区成人在线视频| 一个人看视频在线观看www免费| 欧美高清成人免费视频www| 亚洲最大成人中文| 九九在线视频观看精品| av.在线天堂| 久久欧美精品欧美久久欧美| 成人国产麻豆网| 亚洲国产欧洲综合997久久,| 黄色视频,在线免费观看| 一级毛片电影观看 | 在线免费观看不下载黄p国产| 国产日本99.免费观看| 精品久久久久久成人av| 99热这里只有精品一区| 国产又黄又爽又无遮挡在线| 久久久欧美国产精品| 日韩成人伦理影院| 全区人妻精品视频| 亚洲成人久久性| 欧美又色又爽又黄视频| 婷婷色综合大香蕉| 午夜a级毛片| 亚洲国产欧美在线一区| 成人特级av手机在线观看| 免费大片18禁| 在线观看午夜福利视频| 国产人妻一区二区三区在| 青春草国产在线视频 | 国产精品美女特级片免费视频播放器| 在线免费观看不下载黄p国产| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 国产成人一区二区在线| 亚洲人成网站在线播放欧美日韩| 两性午夜刺激爽爽歪歪视频在线观看| 国产高清不卡午夜福利| 边亲边吃奶的免费视频| 亚洲乱码一区二区免费版| 97人妻精品一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久久免费av| av天堂在线播放| 亚洲av免费在线观看| 欧美性猛交╳xxx乱大交人| 久久韩国三级中文字幕| 久99久视频精品免费| 一级黄片播放器| 亚洲不卡免费看| 国产午夜精品一二区理论片| 天堂网av新在线| 日本熟妇午夜| 午夜福利高清视频| 九九久久精品国产亚洲av麻豆| 免费黄网站久久成人精品| 精品久久久久久久久久久久久| 三级经典国产精品| 国产精品久久久久久亚洲av鲁大| 亚洲自拍偷在线| 国产亚洲91精品色在线| 久久6这里有精品| 久久韩国三级中文字幕| 亚洲欧美日韩高清专用| 99热这里只有是精品在线观看| 女人被狂操c到高潮| 色视频www国产| 国产高清三级在线| 99久久精品一区二区三区| 内射极品少妇av片p| 99久久九九国产精品国产免费| 寂寞人妻少妇视频99o| 变态另类成人亚洲欧美熟女| 国产高潮美女av| 久久欧美精品欧美久久欧美| 久久婷婷人人爽人人干人人爱| 久久精品影院6| 好男人视频免费观看在线| 国产片特级美女逼逼视频| 成人性生交大片免费视频hd| 久久精品国产亚洲网站| 精品久久久噜噜| 夫妻性生交免费视频一级片| 精品久久久久久久久亚洲| 亚洲精品日韩av片在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲精品亚洲一区二区| 国产一区二区激情短视频| 国产精品精品国产色婷婷| 一本一本综合久久| 天堂网av新在线| 成人特级黄色片久久久久久久| 美女大奶头视频| 一级毛片电影观看 | 日本在线视频免费播放| 日韩成人伦理影院| 两性午夜刺激爽爽歪歪视频在线观看| 神马国产精品三级电影在线观看| 长腿黑丝高跟| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 欧美激情久久久久久爽电影| av福利片在线观看| 国产精品乱码一区二三区的特点| 久久精品91蜜桃| 日本色播在线视频| 中文字幕熟女人妻在线| 日韩 亚洲 欧美在线| 尤物成人国产欧美一区二区三区| 婷婷亚洲欧美| 亚洲电影在线观看av| 天天躁夜夜躁狠狠久久av| 丰满的人妻完整版| 国产精品久久久久久av不卡| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 国产成人精品一,二区 | 欧美精品一区二区大全| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av香蕉五月| 99在线人妻在线中文字幕| 亚洲精品久久国产高清桃花| 99久久人妻综合| 亚洲国产精品合色在线| 亚洲欧美精品自产自拍| 亚洲国产欧美在线一区| 午夜免费激情av| 亚洲国产精品国产精品| 免费看光身美女| av天堂在线播放| 中文字幕熟女人妻在线| 99热6这里只有精品| 午夜视频国产福利| 1000部很黄的大片| 精品午夜福利在线看| 亚洲最大成人手机在线| 九九爱精品视频在线观看| 国产精品乱码一区二三区的特点| 只有这里有精品99| 九色成人免费人妻av| 91在线精品国自产拍蜜月| 麻豆av噜噜一区二区三区| 亚洲性久久影院| 欧美bdsm另类| 欧美精品一区二区大全| www.色视频.com| 男女边吃奶边做爰视频| 99久久精品国产国产毛片| 国产精品永久免费网站| 亚洲在久久综合| 国产精品一区二区三区四区免费观看| 亚洲精品日韩在线中文字幕 | 亚洲欧美日韩高清专用| 午夜精品一区二区三区免费看| 美女脱内裤让男人舔精品视频 | 久久久午夜欧美精品| 久久久久久大精品| 国产成人aa在线观看| 国产精品电影一区二区三区| 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va| 青青草视频在线视频观看| 青春草国产在线视频 | 精品欧美国产一区二区三| 成熟少妇高潮喷水视频| 啦啦啦观看免费观看视频高清| 亚洲无线观看免费| 国内精品美女久久久久久| 中文欧美无线码| 爱豆传媒免费全集在线观看| 久久精品综合一区二区三区| 一本一本综合久久| 亚洲人成网站在线播| 国产精品永久免费网站| 性插视频无遮挡在线免费观看| 美女内射精品一级片tv| 高清毛片免费看| 99视频精品全部免费 在线| 欧美精品国产亚洲| 久久精品国产亚洲av香蕉五月| 久久这里只有精品中国| 一区福利在线观看| 久久久午夜欧美精品| 色哟哟哟哟哟哟| 特级一级黄色大片| 久久人妻av系列| 国产亚洲精品久久久com| 久久精品国产清高在天天线| 此物有八面人人有两片| 国产亚洲精品久久久久久毛片| 欧美一级a爱片免费观看看| 成人性生交大片免费视频hd| 亚洲精品国产成人久久av| a级毛片a级免费在线| 最好的美女福利视频网| 久久久久久久久中文| 午夜免费男女啪啪视频观看| 亚洲精品乱码久久久久久按摩| 18禁在线播放成人免费| 性欧美人与动物交配| 少妇的逼水好多| 网址你懂的国产日韩在线| 色哟哟·www| 欧美色视频一区免费| 99久久精品一区二区三区| av.在线天堂| 国产午夜福利久久久久久| 床上黄色一级片| 乱人视频在线观看| 中国美女看黄片| 麻豆av噜噜一区二区三区| 又爽又黄a免费视频| 欧美潮喷喷水| 观看免费一级毛片| 日韩欧美在线乱码| 我的老师免费观看完整版| 日韩精品有码人妻一区| 久久久久久久午夜电影| 18禁在线无遮挡免费观看视频| 三级毛片av免费| 久久人妻av系列| 三级国产精品欧美在线观看| 日日撸夜夜添| 激情 狠狠 欧美| 久久久久网色| 亚洲丝袜综合中文字幕| 久久久久久久久久成人| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 亚洲最大成人av| 亚洲一区高清亚洲精品| 搞女人的毛片| 精品久久久久久久久亚洲| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 国产久久久一区二区三区| 色5月婷婷丁香| 边亲边吃奶的免费视频| 日日撸夜夜添| 免费看美女性在线毛片视频| 欧美色视频一区免费| 亚洲天堂国产精品一区在线| 国产毛片a区久久久久| 欧美日韩综合久久久久久| 亚洲精品日韩av片在线观看| 长腿黑丝高跟| 国模一区二区三区四区视频| 婷婷色av中文字幕| 97超碰精品成人国产| 久久久久久九九精品二区国产| 97超视频在线观看视频| videossex国产| 人妻少妇偷人精品九色| 久久这里有精品视频免费| 成人毛片60女人毛片免费| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 国内精品久久久久精免费| 亚洲av中文av极速乱| 日韩av在线大香蕉| 中国美白少妇内射xxxbb| 变态另类丝袜制服| 欧美丝袜亚洲另类| 日本黄色片子视频| 免费av观看视频| 国产老妇女一区| 久久精品国产自在天天线| 日本av手机在线免费观看| 国产中年淑女户外野战色| 99久久人妻综合| 精品人妻偷拍中文字幕| 亚洲在线自拍视频| 99九九线精品视频在线观看视频| 亚洲av熟女| 性色avwww在线观看| 女人十人毛片免费观看3o分钟| 亚洲国产高清在线一区二区三| av在线蜜桃| 在线观看美女被高潮喷水网站| 日本欧美国产在线视频| 国产黄色小视频在线观看| 亚洲欧美中文字幕日韩二区| 欧美激情在线99| 简卡轻食公司| 亚洲在久久综合| 国产成人精品婷婷| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 97人妻精品一区二区三区麻豆| 国产成人aa在线观看| 少妇的逼水好多| 国产精品一及| 日韩高清综合在线| 国产成人a区在线观看| 日韩av不卡免费在线播放| 少妇熟女aⅴ在线视频| 91aial.com中文字幕在线观看| 久久午夜亚洲精品久久| 91精品一卡2卡3卡4卡| 丝袜喷水一区| 一级二级三级毛片免费看| 欧美一区二区国产精品久久精品| 国产色爽女视频免费观看| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜 | 丝袜美腿在线中文| 美女高潮的动态| h日本视频在线播放| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 日本成人三级电影网站| 久久中文看片网| 亚洲成a人片在线一区二区| 九九在线视频观看精品| 久久久精品欧美日韩精品| 亚洲欧美精品综合久久99| 在线观看66精品国产| 国产精品爽爽va在线观看网站| 精品99又大又爽又粗少妇毛片| 亚洲精品久久久久久婷婷小说 | 赤兔流量卡办理| 3wmmmm亚洲av在线观看| 99久国产av精品国产电影| 久久久久久久久久成人| 国产一区二区在线av高清观看| 亚洲四区av| 麻豆一二三区av精品| 高清日韩中文字幕在线| 亚洲国产色片| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 亚洲精品久久久久久婷婷小说 | 免费av不卡在线播放| 亚洲成人精品中文字幕电影| 18禁在线无遮挡免费观看视频| 日韩欧美在线乱码| 99久久中文字幕三级久久日本| 老司机影院成人| 亚洲精品乱码久久久v下载方式| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| videossex国产| 午夜免费鲁丝| 久久久欧美国产精品| 少妇人妻 视频| 免费黄色在线免费观看| 狂野欧美白嫩少妇大欣赏| av.在线天堂| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| av.在线天堂| 亚洲精品亚洲一区二区| 天堂8中文在线网| 欧美精品高潮呻吟av久久| 国产极品粉嫩免费观看在线 | av又黄又爽大尺度在线免费看| 91精品国产国语对白视频| 热99久久久久精品小说推荐| 久久人妻熟女aⅴ| 91精品伊人久久大香线蕉| 午夜福利视频在线观看免费| 一区在线观看完整版| 久久精品夜色国产| 少妇被粗大的猛进出69影院 | 久久久久久人妻| 亚洲av二区三区四区| 久久婷婷青草| 久久精品人人爽人人爽视色| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 国产精品 国内视频| 美女内射精品一级片tv| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃| 2021少妇久久久久久久久久久| 永久免费av网站大全| 成人18禁高潮啪啪吃奶动态图 | 中文字幕免费在线视频6| 日韩中字成人| 精品亚洲乱码少妇综合久久| 在线天堂最新版资源| 久久精品夜色国产| 久久免费观看电影| 欧美精品亚洲一区二区| 国产精品一国产av| 亚洲国产精品一区三区| 三上悠亚av全集在线观看| 中国三级夫妇交换| 国产色婷婷99| 最近中文字幕2019免费版| 日韩一区二区三区影片| 亚洲精品aⅴ在线观看| 亚洲精品国产av成人精品| 九九在线视频观看精品| 18禁在线播放成人免费| 大又大粗又爽又黄少妇毛片口| 69精品国产乱码久久久| 欧美日韩在线观看h| 国产视频首页在线观看| 九色亚洲精品在线播放| 免费人成在线观看视频色| 欧美日韩国产mv在线观看视频| 亚洲av在线观看美女高潮| 极品少妇高潮喷水抽搐| 日本av免费视频播放| 99久国产av精品国产电影| 91成人精品电影| 成人毛片a级毛片在线播放| 99热6这里只有精品| 亚洲精品国产av蜜桃| 伦理电影大哥的女人| 搡老乐熟女国产| 国产精品99久久久久久久久| 国产伦理片在线播放av一区| 最黄视频免费看| 性色av一级| 成人黄色视频免费在线看| 18在线观看网站| 国产精品熟女久久久久浪| 久久久久久久久久成人| www.色视频.com| 蜜桃久久精品国产亚洲av| 一区二区日韩欧美中文字幕 | 18禁在线播放成人免费| 亚洲第一av免费看| 大码成人一级视频| 一区二区三区免费毛片| 精品少妇黑人巨大在线播放| 日韩电影二区| 亚洲无线观看免费|