高潔,陳樹存,唐浩奎,滕叢叢,赫珍珍,曹宏,李家勁,薛俊
武漢工程大學材料科學與工程學院,湖北 武漢 430074
碳包覆納米粒子系導電涂料的制備與性能
高潔,陳樹存,唐浩奎,滕叢叢,赫珍珍,曹宏,李家勁,薛俊*
武漢工程大學材料科學與工程學院,湖北 武漢 430074
以自制碳包覆銅鎳合金納米粒子為填料,醇酸樹脂為成膜劑,共混制備了碳包覆銅鎳合金納米粒子/醇酸樹脂導電復合涂料.X射線衍射分析和透射電子顯微鏡觀察表明,碳包覆銅鎳合金納米粒子為核殼結(jié)構(gòu),核為銅-鎳合金,殼為石墨化碳.分別添加占涂料總質(zhì)量的3%、5%、10%、15%及20%(質(zhì)量分數(shù))的填料制備涂料,探討了碳包覆銅鎳合金納米粒子添加量對涂料性能的影響.并對所制備涂料的黏度、導電性,漆膜附著力、吸波性進行了表征測試.結(jié)果表明,隨著碳包覆銅鎳合金納米粒子添加量增加,涂料黏度單調(diào)增大,電阻單調(diào)減小,最大粘度為180 mm2/s,最小電阻為2×107Ω.當碳包覆銅鎳合金納米粒子質(zhì)量分數(shù)為15%時漆膜附著力最佳,脫落面積綜合評定等級為0;當質(zhì)量分數(shù)為20%時,漆膜有較好吸波性能,反射損耗峰值為-2.7 dB,吸收帶寬為2 GHz(14~16 GHz).
共混;納米粒子;醇酸樹脂;電性能;吸波性能
隨著納米技術的飛速發(fā)展,新型納米材料在涂料領域得到了大量應用,納米技術不僅優(yōu)化了傳統(tǒng)涂料的各項性能,而且為功能涂料這一研究熱點提供了廣闊的思路和全新的視角.1993年Rouff[1]和Tomita[2]等人首次發(fā)現(xiàn)了碳包覆LaC2納米粒子.這種具有核殼結(jié)構(gòu)的金屬/碳復合納米粒子又被稱為碳包覆金屬納米粒子(Carbon-encapsulated metal nanoparticles,CEMNPs)[3-5],是一種碳殼包裹另一種物質(zhì)的納米復合材料,其碳層性質(zhì)相對穩(wěn)定,可以防止金屬納米粒子長大和團聚,可以保護金屬粒子不與其他介質(zhì)發(fā)生氧化、還原、化合、分解等反應[6-7].醇酸樹脂以產(chǎn)量大價格低廉的優(yōu)勢廣泛應用于涂料領域,且成膜后光澤柔韌,具有很好的附著力,耐磨性以及耐候性,將碳包覆金屬納米粒子與醇酸樹脂復合有望提高涂料的基礎性能以及增加涂料的導電功能.本實驗以碳包覆銅鎳合金納米粒子(簡稱CuNi@C)為填料,通過共混的方法與醇酸樹脂復配制備成了復合涂料,重點對涂料的基本性能、電性能及吸波性能[8-10]進行了研究.
1.1 主要原料
碳包覆銅鎳合金納米粒子(CuNi@C),自制[11];醇酸樹脂(工業(yè)級),市售;無水乙醇(AR級),河南中促實業(yè)有限公司;硅烷偶聯(lián)劑(AR級),武漢博大科技有限公司;十二烷基苯磺酸鈉(AR級),國藥集團化學試劑有限公司;聚酰胺(工業(yè)級),市售;稀釋劑(工業(yè)級),市售.
1.2 涂料制備過程
涂料配方設計如表1所示,其制備工藝如下:首先用硅烷偶聯(lián)劑和十二烷基苯磺酸鈉分散劑處理CuNi@C納米粒子的表面,然后將改性過的納米粒子粉末、醇酸樹脂、聚酰胺以及氧化鋁陶瓷球按照一定的比例和順序投入球磨罐中,高速(580 r/min)球磨2 h,最終將涂料與陶瓷球分離,將涂料密封保存,以備下一步噴涂[12].
涂料制備及噴涂流程如圖1.
1.3 結(jié)構(gòu)表征與性能測試
用涂-4黏度計測定涂料的黏度[13];用畫格法測定漆膜的附著力[14];用循環(huán)伏安法測定填料粉體以及涂料的導電性.材料吸波效能測試系統(tǒng)的建立參照了文獻[15]:它的工作頻率范圍是8~18 GHz.被測樣品的尺寸要求是300 mm×300 mm的正方形平板材料,測試單位為航天科工武漢磁電有限責任公司.
表1 涂料配方及黏度Table 1 Formula and viscocity of coating
圖1 工藝流程示意圖Fig.1 Schematic diagram of technological process
按照金屬源和碳源摩爾比為1∶1的比例稱取Cu(NO3)2·3H2O、Ni(NO3)2·6H2O和蔗糖,成功制備出了CuNi@C納米粒子,通過對其XRD分析(圖2),表明樣品中的碳有一定程度的石墨化.為了更準確地觀察樣品的微觀結(jié)構(gòu),進行了TEM測試,從圖3、圖4觀測分析,與XRD表征結(jié)果一致,證明樣品即是銅鎳合金納米粒子為核,碳層為殼的核/殼結(jié)構(gòu).
2.1 黏度
通過對涂-4黏度計測定數(shù)值的分析可知(表1),CuNi@C納米粒子的添加量對涂料黏度產(chǎn)生了明顯影響.當CuNi@C納米粒子添加量不斷增加,涂料黏度也不斷攀升.當CuNi@C納米粒子添加質(zhì)量分數(shù)為最大20%時,涂料黏度達到最大,為180mm2/s,說明改性后的CuNi@C納米粒子與醇酸樹脂充分結(jié)合,同時也在一定程度上提高了涂料的固含量.
2.2 附著力
圖2 CuNi@C的XRD圖Fig.2 XRD pattern of CuNi@C
圖3 CuNi@C的TEM圖Fig.3 TEM image of CuNi@C
圖4 CuNi@C的HRTEM圖Fig.4 HRTEM image of CuNi@C
不同CuNi@C納米粒子添加量的漆膜附著力?測試結(jié)果如表2,隨著CuNi@C含量的增加,附著力漸漸提高,當CuNi@C質(zhì)量分數(shù)為15%時漆膜附著力最好,說明填料對漆膜附著力有一定的影響;隨著CuNi@C含量繼續(xù)提高至20%時,附著力有所降低,說明當漆膜CuNi@C含質(zhì)量分數(shù)超過15%時,填料比例過高,導致醇酸樹脂的交聯(lián)密度降低,對漆膜附著力產(chǎn)生負面影響,所以當CuNi@C添加質(zhì)量分數(shù)為15%時,漆膜附著力最佳,脫落面積綜合評定等級為0.
表2 漆膜附著力Table 2 Adhesion of coating
2.3 導電性能
實驗測得CuNi@C系涂料的電流、電壓,可計算出涂料的體電阻,所測涂料的體積相同,那么所測得的涂料的體電阻可以反映涂料的導電性.隨著CuNi@C納米粒子添加量的增大,體電阻呈現(xiàn)急劇下降的趨勢;當添加質(zhì)量分數(shù)大于7%時,涂料體電阻的下降趨勢漸緩且呈現(xiàn)線性變化,如圖5,說明隨著CuNi@C納米粒子含量的增加,粒子間距減小,導電依賴粒子間電子的傳遞,因此導電性越來越好,最小體電阻為2×107Ω.
2.4 吸波性能
圖6為空白板的反射率R和頻率f的關系曲線(上半部)以及質(zhì)量分數(shù)為20%的CuNi@C涂料樣板的反射率R和頻率f的關系曲線(下半部),R值越小,表明電磁波的衰減量越大,材料的吸波性能越好.由圖6可以觀察到,在14~16 GHz這一頻率范圍內(nèi),R值達最小為-2.7 dB,計算可知最小反射率為53.7%,說明此時漆膜的吸波性能良好.而其他因素對漆膜吸波性的影響會在后續(xù)的實驗中深入研究.
圖5 CuNi@C的含量與電阻的關系曲線Fig.5 Curve of relationship between the quantity of CuNi@C and resistance
圖6 空白板反射率R和頻率f的關系曲線(上半部)質(zhì)量分數(shù)為20%CuNi@C涂料樣板的反射率R和頻率f的關系曲線(下半部)Fig.6 Curve of relationship between R and f of blank simple(upper half).Curve of relationship between R and f of 20%CuNi@C coating(lower half)
用共混的方法將CuNi@C納米粒子與醇酸樹脂復合,制備成復合涂料,實驗表明兩者緊密復配,隨著添加量的質(zhì)量分數(shù)由3%增至20%,體電阻逐漸下降,最小為2×107Ω,導電性能良好;當添加質(zhì)量分數(shù)為20%時,涂料黏度達到最大180 mm2/s;當添加質(zhì)量分數(shù)為15%時,漆膜附著力最佳,脫落面積綜合評定等級為0.因此綜上考慮,當CuNi@C納米粒子質(zhì)量分數(shù)為15%時,涂料的綜合性能最佳;CuNi@C納米粒子質(zhì)量分數(shù)為20%,在14~16 GHz這一頻率范圍內(nèi),漆膜的吸波性能良好,最小反射率為53.7%.
致謝
感謝湖北省自然科學基金項目、武漢工程大學研究生教育創(chuàng)新基金項目和武漢工程大學科學研究基金對本研究的資助!
[1]TOMITA M,SAITO Y,HAYASHI T.LaC2encapsulated in graphite nanoparticle[J].Jap J Appl Phys,1993,32:280-282.
[2]TSAI S H,LEE C L,CHAO C W,et a1.A novel technique for the formation of carbonencapsulated metal nanoparticles on silicon[J].Carbon,2000,38:78l-785.
[3]雒敏婷.Sn@C納米復合材料的制備及生長機理的研究[D].綿陽:西南科技大學,2012:66.
LUO Min-ting.Study on preparation and growth mechanism of Sn@C nanocomposite[D].Mianyang:SouthwestUniversityofScienceandTechnology,2012:66.(in Chinese)
[4]李曉杰,羅寧,歐陽欣,等.合成碳包覆納米金屬材料的研究現(xiàn)狀[J].材料導報,2009,7:33-37.
LI Xiao-jie,LUO Ning,OU Yang-xin,et al.Reserch statusonsynthesisofcarbonencapsulatedmetal nanomaterial[J].Materials Review,2009,7:33-37.(in Chinese)
[5]MONTAZERIA,CHITSAZZADEHM.Effectof sonication parameters on the mechanical properties of multi-walled carbon nanotube/epoxy composites[J].Mater Des,2014,56:500-508.
[6]趙軍.碳包裹納米金屬及其合金粒子的制備和性能研究[D].南京:南京理工大學,2007.
ZHAO Jun.Preparation and properties of carbonencapsulatednanometalandalloypaticles[D].Nanjing:NanjingUniversityofScienceand Technology,2007.(in Chinese)
[7]趙軍,肖樂勤,李煜,等.碳包裹納米Co粒子的制備及其磁性[J].稀有金屬材料與工程,2009(9):1646-1649.
ZHAO Jun,XIAO Le-qin,LI Yu,et al.Preparation andmagnetismstudyofcarboncoatednanoCo particles[J].Rare Metal Materials and Engineering,2009(9):1646-1649.(in Chinese)
[8]陳亮,宋仁國,郭燕清,等.改性納米SiO2/三氟型FEVE復合氟碳涂料的制備及其性能[J].材料保護,2014,12:18-21,7.
CHEN Liang,SONG Ren-guo,GUO Yan-qing,et al.Preparation and properties of modified nano SiO2/three fluorine FEVE composite coatings[J].Journal of Materials Protection,2014,12:18-21,7.(in Chinese)
[9]李娜.納米粒子的改性及其在涂料中的應用研究[D].上海交通大學,2010.
LI Na.The surface modification of nano-particles and application in coating[D].Shanghai:Shanghai Jiao Tong University,2010.(in Chinese)
[10]ZHANG D,XU F,LIN J,et al.Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2-18-GHz frequency range[J].Carbon,2014,80:103-111.
[11]唐浩奎,薛俊,陳樹存,等.核/殼結(jié)構(gòu)銅鎳合金/碳復合納米粒子制備及表征[J].武漢工程大學學報,2009,31(12):55-58.
TANG Hao-kui,XUE Jun,CHEN Shu-cun,et al.Preparation andcharacterizationofcoppernickel alloy/carbon composite nanoparticles with core/shell structure[J].JournalofWuhanInstituteof Technology,2009,31(12):55-58.(in Chinese)
[12]陳樹存.碳包覆鈷納米粒子的制備及其應用基礎研究[D].武漢:武漢工程大學,2010.
CHEN Shu-cun.Synthesis and application of carbon encapsulated cobalt metal nanoparticles[D].Wuhan:Wuhan Institute of Technology,2010.(in Chinese)
[13]全國涂料和顏料標準化技術委員會.GB/T1723-1993涂料粘度測定法[S].北京:中國標準出版社,1993.
[14]國家質(zhì)量技術監(jiān)督局.GB/T9286-1998色漆和清漆漆膜的劃格試驗[S].北京:中國標準出版社,1998.
[15]中國電子工業(yè)總公司.SJ20155-1992射頻輻射吸收體(微波吸收材料)的通用規(guī)范[S].北京:中國電子標準化研究所,1992.
Preparation and properties of electrical conductive coating of carbon encapsulated nanoparticles
GAO Jie1,CHEN Shu-cun,TANG Hao-kui,TENG Cong-cong,HE Zhen-zhen,CAO Hong,LI Jia-jin,XUE Jun
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430074,China
Conductive composite coatings were prepared by using the carbon encapsulated copper nickel alloy nanoparticles as fillers and the alkyd resins as film formers.Characterized by X-ray diffraction and transmission electron microscope,the nanoparticles of carbon encapsulated copper nickel alloy show core-shell structures with copper nickel alloy as the core and graphitized carbon as the shells.The coatings were prepared respectively with the filler mass fraction of 3%,5%,10%,15%and 20%.The effect of filler mass fraction on the performances of the coatings,including the electric and absorption properties,the viscosity and the adhesion was analyzed.The results suggest that the viscosity increases monotonously while the resistance decreases monotonously with the increase of the filler mass fraction,in which the maximum viscosity is 180 mm2/s and the minimum resistance is 2×107Ω.The adhesive force of the coating is best and reaches degree 0 when the filler addition is 15%.The coatings have excellent microwave absorbing properties with the reflection loss of-2.7 dB and the bandwidth of 2 GHz(14-16 GHz)at the filler mass fraction of 20%.
blend;nanoparticles;alkyd resin;electrical conductivity;microwave absorbing
TQ630.7
A
10.3969/j.issn.1674-2869.2015.11.007
1674-2869(2015)11-0033-05
本文編輯:龔曉寧
2015-09-08
湖北省自然科學基金項目(2014CFB788);武漢工程大學科學研究基金(K201465);武漢工程大學研究生教育創(chuàng)新基金項目(CX2014063)
高潔(1990-),女,河北石家莊人,碩士研究生.研究方向:功能材料.*通信聯(lián)系人.