• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dim Small Target Detection AlgorithmBased on Multi-Features Fusion Algorithm

    2015-04-04 03:29:58ZHANGShuangleiCHENFanshengWANGTao
    紅外技術(shù) 2015年8期
    關(guān)鍵詞:紅外技術(shù)弱小紅外

    ZHANG Shuang-lei,CHEN Fan-sheng,WANG Tao

    ?

    A Dim Small Target Detection AlgorithmBased on Multi-Features Fusion Algorithm

    ZHANG Shuang-lei1,2,CHEN Fan-sheng1,WANG Tao1,2

    (1. S,,200083,;2.,100049,)

    Based on the transcendental information under the specific scene, by analyzing multiple features’ performance on dim small target detection, this paper designs a dim small target detection algorithm, which combines multiple features’ Eigen values by taking advantage of the multiple features. Taking the following three features as examples, the Space Gray Model Matching, the Region Gray Weighed Entropy and the Adaptive Thresholding in Frequency Domain, based on the transcendental detection results of multiple features under the specific scene, we propose two multi-Eigen values fusion method by using probability theory. Experiments show that the two methods can both effectively improve the performance of dim small target detection in a single frame.

    target detection,multi-Eigen values fusion,model matching,dim small target

    0 Introduction

    For the detection of dim small targets, there are mainly two categories: the TBD(tracking before detecting) algorithm and the DBT(detecting before tracking) algorithm[1-8]. Because of the complicated calculations, the research on the TBD algorithm just stayed at theoretical analysis in the past. But in recent years the TBD is becoming more and more popular with the development of computer technology and the new algorithms about it which has been proposed recently, such as the EFK(extended Kalman filter)algorithm and the PF(pipeline filtering) algorithm etc. The TBD have been highly improved in the terms of the detection accuracy, the detection speed and the reliability, but the complicated calculations still limits its further development and appliances. On the other hand, although the research on the DBT started earlier, its reliability and detection accuracy are no better than the former[1,7]. When taking both the appliance and implementation into consideration, we will see advantages of the DBT which don’t need very complicated calculations. So, it has been widely used in real-time monitoring applications. In this paper, we analyze and design three developed detection algori- thms, combined with characters of the imaging system; we construct two three-feature fusion methods finally.

    1 The Multi-features Fusion Algorithm

    The traditional single-feature target detection has highly developed after years of research, which can realize detection of the small targets from different feature domains. While, its shortages are obvious that it often gains unsatisfactory effect in the area of dim and small target detection. Since the dim and small target imaging process is subject to the energy equivalent and high-energy clutter, the target detection will be affected by the complex background and noise in most single-feature domain, the detection probability also largely limited to imaging conditions, system noise. The primary task to improve the effect of detection algorithm is how to avoid the peak of the interference which called “the blind area” when using single-feature algorithm.

    Here, we will introduce a target detection method based on the multi-features fusion algorithm. In this algorithm, we can extract and select mutual independ- ence features according to the environment of the target and imaging system to ensure that the different features can make up for deficiencies in each single- feature algorithm, and finally improve detection pro- bability. In order to illustrate the problem more clearly, multi-features fusion algorithm will be introduced in the following.

    Hypothesis, there are three characteristics will be used:(the Region Gray Weighed Entropy algorithm),(the Adaptive Thresholding in Frequency Domain algorithm),(the Space Gray Model Matching algorithm), the Eigen value CDV(Character Digital Value)corresponding to the three features is defined as follows:

    CDV1=1() (1)

    CDV2=2() (2)

    CDV3=3() (3)

    The1,2,3is Eigen value calculation functions of the three features; we can calculate target detection probability depending on corresponding feature’s probability distribution by the following formula:

    1.1 The Multi-features Fusion Method 1

    The essence of multi-feature fusion target detection method is sampling probability density with using different methods. So, we need calculate the probability distribution of each feature, and estimate the probability that the being-detected point is a real one.

    Here, we have three features: the RGWE(Region Gray Weighed Entropy), the SGMM(Space Gray Model Matching) and the ATFD(Adaptive Thres- holding in Frequency Domain)as examples to calcu- late their probability distributionsP. Using the above method, we can calculate the probability distributions of three features as follows :

    1)The Region Gray Weighed Entropy Algorithm[2]

    2)The Space Gray Model Matching Algorithm[3]

    3)The Adaptive Thresholding in Frequency Domain Algorithm[4-6]

    The probability calculating formula is shown as the following:

    In this article, three weight variables is1=1/3,2=1/3,3=1/3. The normalized probability density distribution of both the target and non-target points of the three algorithms are shown in Fig.1, Fig.3, Fig.5, The normalized probability distribution of the target points of the three algorithms are shown in Fig.2, Fig.4, Fig.6. The features and their joint probability distribution are continuous, complex curve in the above formula, we should interpolate, fitting when detects target, it will increase the complexity of operation. Therefore, to ensure the accurate and reliable of algorithm, we modify three joint probability distributions as follows.

    1)To normalize the probability density distribution for each characteristic. Normalize Eigen value CVDof No., the segmentation threshold isT1, T2, …,T(N), it is normalized asinterval, and so on, the number of segmentation threshold we can get is×(-1). Here we assume the=1, 2, 3,=10.

    Fig.2 Normalized PD of Target points

    Fig.3 PD of target and non-target points

    Fig.4 Normalized PD of target points

    Fig.5 PD of target and non-target points

    Fig.6 Normalized PD of target points

    Where:=1, 2, 3,=1, 2, 3,…,,T0equals to -¥, T¥equals to+¥. Three normalized features’ proba- bility in each interval is shown in the Fig.7 to Fig.9.

    3)Calculate multi-feature joint probability distri- butionTarget:

    1.2 The Multi-features Fusion Method 2

    We will construct new characteristic NP(normalized parameter), then analysis both the target point and non-target points’ NP distributions, count the NP’s probability distribution NPD. NP is formed by downward formula:

    NCDV(Normalized Character Digital Value) is Normalized Eigen value of feature, it’s calculation formula is shown as the following:

    With the same normalizing method as the Multi- Features Fusion Method 1, we can obtain the and the discrete distribution between NP and , which is shown in the Fig.10 and the Fig.11.

    Fig.8 Normalized PD @SGMM

    Fig.9 Normalized PD @ATFD

    Fig.10 PD of target and non-target points

    Fig.11 Normalized PD of target points

    In order to achieve the goal of fast target detection in practical application, we need normalize the proba- bility distribution curve; the normalizing method is identical to the first method in feature normalizing. After test, infer and calculate the NP’s probability distribution is shown in the Fig.12.

    1.3 The Comparison of Two Methods

    The method that dim small target could be detected with joint probability of multi-features has been constructed by method 1. The target detection is based on three relatively independent feature in their feature domain and the method diversities the measurement ways of target detection and improves reliability and detection probability of single-frame target detection effectively, strongly offsetting their own non-sensitive parts of target detection between features through subtly constructing joint mode of multi-features.

    Although multi-features fusion algorithm is more reliable than that with any single-feature detection algorithm, large amount of calculation would be needed and the Eigen values of all features need to be calculated respectively. Therefore, the performance of the algorithm depends on the reasonableness of selected features, which contains amount of calcu- lating these Eigen values, the correlation extent of these features, and their individual target detection ability in a specific environment and so on.

    What the shortcoming is, that the method need to collect large statistics of samples while carrying on curve fitting of transcendental probability distribution function in the early stage to ensure diversity of samples and reliability of results. The target condition out of samples of early stage will result in lower reliability of processing results.

    2 Experiment Result and Analysis

    In order to ensure the effectiveness of experiment results, the data is obtained from the same imaging system, and similar target is taken images in the same applied circumstance of data acquisition. These 200 images including target are respectively detected with three single-feature methods and two multi-features methods, the detection result figures are shown below.

    From Fig.13 to Fig.17, the detection results of 200 frames including target images by using corres- ponding target detection algorithms are shown in the left. It is concluded that the detection probability fluctuates to some extent when images change with time, which may mainly because the target SNR vary strongly in the successive images with strong back- ground intensity. The right figures collect statistics of 200 frame images’ detection results for all kinds of algorithms and clearly explain the relation of these algorithms’ performance and the SNR of the target.

    Fig.12 Normalized PD @multi-features fusion algorithm 2

    Fig.13 The results by the Region Gray Weighed Entropy method

    Fig.14 The results by the Adaptive thresholding in frequency domain method

    Fig.15 The results by the space gray model matching method

    Fig.16 The results by the multi-features fusion method 1

    Fig.17 The results by multi-features fusion method 2

    As is shown in the left images, target detection probability has been improved in statistics after taking multi-features fusion algorithm and the values of target detection probability could mostly be increased to more than 0.5. As is shown in the right images from the view of the SNR, the detection probability, for the targets with the same SNR, by taking an arbitrary single-feature target detection algorithm is lower than those by taking multi-features fusion algorithms. Especially for low SNR target, fusion algorithms obviously get higher probabilities over most single- feature algorithms by 0.3.

    3 Summary

    In the theory, after selecting reasonable features, multi-features fusion algorithm can take all the features’ advantages of target detection by analyzing images in several features’ domains to overcome their shortcoming. In this way, the performance of the multi-features fusion target detection algorithm has been highly improved. What’s more, by taking the advantages of the difference sensibilities to target condition between the features, and by accomplishing the detection missions in different stages with different features dynamic, the method could decrease the calculation of multi-features fusion algorithm effect- tively. Especially for the low SNR targets, the effect could be better.

    However, there are still some drawbacks for the algorithm. The first problem is the selection of relatively independent features. When taking the design and selection of features into consideration, it’s difficult to guarantee their relatively independent, because they are often relative directly and indirectly, besides, the weight relationship among features will also have an effect on the performance of this algori- thms. So, more research needs to be carried on for this algorithm.

    [1] 汪國(guó)有, 陳振學(xué), 李喬亮. 復(fù)雜背景下紅外弱小目標(biāo)檢測(cè)的算法研究綜述[J]. 紅外技術(shù), 2006, 28(5): 287-292.

    WANG Gouyou, CHEN Zhenxue, LI Qiaoliang. A review of infrared weak and small targets detection under complicated background[J]., 2006, 28(5): 287-292.

    [2] 李欣, 趙亦工, 郭偉. 基于復(fù)雜度的自適應(yīng)門限弱小目標(biāo)檢測(cè)[J]. 光子學(xué)報(bào), 2009, 38(8): 2144-2149.

    LI Xin, ZHAO Yigong, GUO Wei. Adaptive threshold detection method for dim and small target based on image complex degree[J]., 2009, 38(8): 2144-2149.

    [3] 王岳環(huán), 陳妍, 程勝蓮, 等. 基于模式側(cè)抑制復(fù)雜背景下的小目標(biāo)檢測(cè)[J].紅外激光工程, 2005, 34(6): 703-708.

    WANG Yuehuan, CHEN Yan, CHENG Shenglian, et al. Small target detection in clutter based on patternlateral inhibition[J]., 2005, 34(6): 703-708.

    [4] 程塨, 郭雷, 韓軍偉, 等. 基于形態(tài)學(xué)帶通濾波和尺度空間理論的紅外弱小目標(biāo)檢測(cè)[J]. 光學(xué)學(xué)報(bào), 2012, 32(10):1-8.

    CHENG Gong, GUO Lei, Han Jun-wei, et al. Infrared dim small target detection based on morphological band-pass filter and scale space theory[J]., 2012, 32(10): 1-8.

    [5] 袁慧晶, 王涌天. 一種抗干擾的弱小目標(biāo)檢測(cè)方法[J]. 光子學(xué)報(bào), 2004, 33(5): 609-612.

    YUAN Huijing, WANG Yongtian. A new denoising method for small target detection[J]., 2004, 33(5): 609-612.

    [6] 薛峰, 操樂(lè)林, 張偉. 點(diǎn)擴(kuò)散函數(shù)對(duì)點(diǎn)目標(biāo)探測(cè)性能的影響分析[J]. 紅外激光工程, 2007, 36: 178-181.

    XUE Feng, CAO Le-lin, ZHANG Wei. Research on effect of PSF on point target detection performance[J]., 2007, 36: 178-181.

    [7] 陳錢. 紅外圖像處理技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J].紅外技術(shù), 2013, 35(6): 311-318.

    CHEN qian. The status and development trend of infrared image Processing Technology[J]., 2013, 35(6): 311-318.

    [8] 王宇慶, 王索建. 紅外與可見(jiàn)光融合圖像的質(zhì)量評(píng)價(jià)[J]. 中國(guó)光學(xué), 2014, 7(3): 396-401.

    WANG Yu-qing, WANG Suo-jian. Quality assessment method of IR and visible fusion image[J]., 2014, 7(3): 396-401.

    一種基于多特征參數(shù)融合的弱小目標(biāo)檢測(cè)算法

    張雙壘1,2,陳凡勝1,王 濤1,2

    (1. 中國(guó)科學(xué)院上海技術(shù)物理研究所,上海 200083;2. 中國(guó)科學(xué)院大學(xué),北京 100049)

    基于特定場(chǎng)景的先驗(yàn)信息,通過(guò)分析多個(gè)特征參量對(duì)弱小目標(biāo)檢測(cè)的性能,利用各參量對(duì)弱小目標(biāo)檢測(cè)的長(zhǎng)處,設(shè)計(jì)了一種基于多特征融合的目標(biāo)檢測(cè)算法。以空域匹配模型、區(qū)域加權(quán)信息熵和頻域?yàn)V波自適應(yīng)閾值分割3種方法為單特征量,基于各個(gè)特征量對(duì)特定應(yīng)用場(chǎng)景下的大量目標(biāo)檢測(cè)的先驗(yàn)結(jié)果,利用概率論的知識(shí),構(gòu)造了有利于提升計(jì)算速度和檢測(cè)概率的兩種多特征融合方法。實(shí)驗(yàn)表明,該方法能夠有效地提高單幀弱小目標(biāo)的檢測(cè)性能。

    目標(biāo)檢測(cè);特征融合;模型匹配;弱小目標(biāo)

    TP391

    A

    1001-8891(2015)08-0635-07

    2015-03-11;

    2015-07-20.

    張雙壘(1986-),男,在讀博士研究生,主要從事紅外成像系統(tǒng)和紅外目標(biāo)探測(cè)技術(shù)方面的研究。

    陳凡勝(1978-),男,博士,研究員,目前擔(dān)任國(guó)家某重大專項(xiàng)衛(wèi)星載荷項(xiàng)目負(fù)責(zé)人,中科院某重大創(chuàng)新項(xiàng)目課題負(fù)責(zé)人。E-mail:paper_purple@126.com。

    中科院重大創(chuàng)新項(xiàng)目,編號(hào):G09K1200B00。.

    猜你喜歡
    紅外技術(shù)弱小紅外
    啊!水手,上岸吧
    網(wǎng)紅外賣
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    閃亮的中國(guó)紅外『芯』
    金橋(2021年4期)2021-05-21 08:19:20
    昆明北方紅外技術(shù)股份有限公司
    TS系列紅外傳感器在嵌入式控制系統(tǒng)中的應(yīng)用
    電子制作(2019年7期)2019-04-25 13:17:14
    基于快速遞推模糊2-劃分熵圖割的紅外圖像分割
    我有特別的喝水技巧
    蜜桃在线观看..| 少妇裸体淫交视频免费看高清 | 精品人妻一区二区三区麻豆| 看免费成人av毛片| 久久免费观看电影| 免费久久久久久久精品成人欧美视频| 国产精品久久久久成人av| 日日摸夜夜添夜夜爱| 老司机深夜福利视频在线观看 | 亚洲av日韩精品久久久久久密 | 亚洲色图综合在线观看| 亚洲国产精品成人久久小说| 欧美精品高潮呻吟av久久| 久久亚洲精品不卡| 亚洲一码二码三码区别大吗| 最黄视频免费看| 亚洲综合色网址| 国产免费视频播放在线视频| 久久久久久免费高清国产稀缺| 亚洲欧美色中文字幕在线| 国产av一区二区精品久久| 高清视频免费观看一区二区| 婷婷色麻豆天堂久久| 日韩一卡2卡3卡4卡2021年| 欧美国产精品一级二级三级| 国产片内射在线| 久久久精品94久久精品| 亚洲免费av在线视频| 两人在一起打扑克的视频| 视频区图区小说| 婷婷色综合大香蕉| 观看av在线不卡| 日本一区二区免费在线视频| 国产成人91sexporn| 日本wwww免费看| 成人国语在线视频| 两个人看的免费小视频| 黑人猛操日本美女一级片| 国产精品久久久av美女十八| 巨乳人妻的诱惑在线观看| 丝袜喷水一区| 80岁老熟妇乱子伦牲交| 啦啦啦 在线观看视频| 一区福利在线观看| 建设人人有责人人尽责人人享有的| 制服人妻中文乱码| 久久ye,这里只有精品| 亚洲国产中文字幕在线视频| 50天的宝宝边吃奶边哭怎么回事| 久久精品久久精品一区二区三区| 大香蕉久久网| 中文字幕亚洲精品专区| 成年动漫av网址| 五月开心婷婷网| 黄频高清免费视频| 亚洲熟女精品中文字幕| 久久久精品94久久精品| 中文字幕精品免费在线观看视频| av电影中文网址| 手机成人av网站| 激情视频va一区二区三区| 好男人电影高清在线观看| 午夜福利乱码中文字幕| 欧美老熟妇乱子伦牲交| 久久人妻福利社区极品人妻图片 | 啦啦啦在线免费观看视频4| 国产老妇伦熟女老妇高清| 精品少妇一区二区三区视频日本电影| 久久久久久人人人人人| 日韩精品免费视频一区二区三区| 国产精品.久久久| 在线观看免费午夜福利视频| 美国免费a级毛片| 免费黄频网站在线观看国产| 欧美xxⅹ黑人| 国产一区亚洲一区在线观看| 水蜜桃什么品种好| 免费看不卡的av| 国产精品成人在线| 久久精品国产综合久久久| 午夜福利视频在线观看免费| 日韩人妻精品一区2区三区| 午夜久久久在线观看| 男人爽女人下面视频在线观看| 国产免费又黄又爽又色| 日本av免费视频播放| 色视频在线一区二区三区| 免费看av在线观看网站| 老司机影院毛片| 两人在一起打扑克的视频| 2021少妇久久久久久久久久久| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 国产精品久久久久久人妻精品电影 | 老司机深夜福利视频在线观看 | 男的添女的下面高潮视频| 日韩av免费高清视频| a 毛片基地| 国产av一区二区精品久久| 大香蕉久久成人网| 亚洲,一卡二卡三卡| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 9热在线视频观看99| 成年动漫av网址| 国产成人影院久久av| 久久影院123| 国产精品免费视频内射| 久久久国产精品麻豆| 国产成人91sexporn| 欧美性长视频在线观看| a级片在线免费高清观看视频| 亚洲av国产av综合av卡| 真人做人爱边吃奶动态| 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 男女高潮啪啪啪动态图| 亚洲精品国产区一区二| 成年美女黄网站色视频大全免费| 国产精品一区二区在线不卡| 免费看av在线观看网站| 性色av乱码一区二区三区2| 国产精品欧美亚洲77777| 国产片特级美女逼逼视频| 成人午夜精彩视频在线观看| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 精品亚洲成国产av| 日韩人妻精品一区2区三区| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av| 日韩av在线免费看完整版不卡| 国产日韩一区二区三区精品不卡| 丝瓜视频免费看黄片| 一级毛片黄色毛片免费观看视频| 精品第一国产精品| 午夜免费成人在线视频| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄频视频在线观看| 免费在线观看日本一区| 日韩 欧美 亚洲 中文字幕| 视频在线观看一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲av成人不卡在线观看播放网 | 久久久精品区二区三区| 午夜免费男女啪啪视频观看| 黄频高清免费视频| 精品久久蜜臀av无| 欧美 亚洲 国产 日韩一| 日本av手机在线免费观看| 国产成人免费观看mmmm| 国产精品人妻久久久影院| 好男人视频免费观看在线| 欧美成人精品欧美一级黄| 亚洲视频免费观看视频| 这个男人来自地球电影免费观看| 99香蕉大伊视频| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美网| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 亚洲五月婷婷丁香| 国产视频首页在线观看| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩高清在线视频 | 男的添女的下面高潮视频| 美女主播在线视频| 男女高潮啪啪啪动态图| 丰满少妇做爰视频| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 一区二区av电影网| 国产亚洲午夜精品一区二区久久| 亚洲综合色网址| 在线 av 中文字幕| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网 | 满18在线观看网站| 国产成人欧美在线观看 | 日韩电影二区| 国产精品 国内视频| 国产麻豆69| 久久久久精品人妻al黑| 免费看十八禁软件| svipshipincom国产片| 国产免费一区二区三区四区乱码| 一区二区三区激情视频| 精品一品国产午夜福利视频| 久久中文字幕一级| 69精品国产乱码久久久| 一级毛片女人18水好多 | 黑丝袜美女国产一区| bbb黄色大片| 久久人人爽av亚洲精品天堂| 国产黄色视频一区二区在线观看| 国产真人三级小视频在线观看| 男女之事视频高清在线观看 | 日本欧美国产在线视频| 国产在线观看jvid| 亚洲国产精品一区二区三区在线| 成人三级做爰电影| 秋霞在线观看毛片| 国产成人欧美| 18禁观看日本| videos熟女内射| 国产成人精品在线电影| 女警被强在线播放| 啦啦啦视频在线资源免费观看| 国产爽快片一区二区三区| 九草在线视频观看| 操出白浆在线播放| 午夜日韩欧美国产| 国产在线一区二区三区精| 国产成人精品在线电影| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 在线观看人妻少妇| 在线看a的网站| svipshipincom国产片| 少妇 在线观看| 国产一卡二卡三卡精品| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美在线一区二区| 亚洲精品乱久久久久久| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 国产色视频综合| 久久 成人 亚洲| 97在线人人人人妻| 在线看a的网站| 啦啦啦中文免费视频观看日本| 亚洲 国产 在线| 亚洲九九香蕉| 免费久久久久久久精品成人欧美视频| 一级黄片播放器| 久久久欧美国产精品| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 妹子高潮喷水视频| 免费高清在线观看日韩| 成人国产av品久久久| 深夜精品福利| 欧美日韩一级在线毛片| 99国产精品99久久久久| 涩涩av久久男人的天堂| 你懂的网址亚洲精品在线观看| 久久精品久久久久久噜噜老黄| av不卡在线播放| 在线精品无人区一区二区三| 久久性视频一级片| 日日夜夜操网爽| 乱人伦中国视频| 国产成人av激情在线播放| 午夜91福利影院| 男女无遮挡免费网站观看| 大香蕉久久成人网| 国产成人av激情在线播放| 秋霞在线观看毛片| 日本91视频免费播放| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 高清黄色对白视频在线免费看| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 国产免费现黄频在线看| 欧美国产精品一级二级三级| 成人国产一区最新在线观看 | 伦理电影免费视频| 下体分泌物呈黄色| 国产精品九九99| 亚洲国产欧美在线一区| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 亚洲情色 制服丝袜| 亚洲av在线观看美女高潮| 男的添女的下面高潮视频| 欧美大码av| 下体分泌物呈黄色| 午夜福利在线免费观看网站| 两个人看的免费小视频| 欧美在线黄色| 国产国语露脸激情在线看| 欧美国产精品va在线观看不卡| 国产三级黄色录像| 色婷婷av一区二区三区视频| 2021少妇久久久久久久久久久| 国产又色又爽无遮挡免| 久久99精品国语久久久| 亚洲色图综合在线观看| 午夜精品国产一区二区电影| 香蕉丝袜av| 最新在线观看一区二区三区 | 日韩视频在线欧美| 肉色欧美久久久久久久蜜桃| 日韩制服骚丝袜av| 国产成人精品久久二区二区免费| 欧美在线黄色| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三 | 国产精品.久久久| 成人三级做爰电影| 中文字幕制服av| 久久人妻福利社区极品人妻图片 | 亚洲男人天堂网一区| bbb黄色大片| 五月天丁香电影| 亚洲男人天堂网一区| 菩萨蛮人人尽说江南好唐韦庄| 日日爽夜夜爽网站| 在线观看人妻少妇| 高清黄色对白视频在线免费看| 久久久久久久久免费视频了| 2021少妇久久久久久久久久久| 深夜精品福利| 90打野战视频偷拍视频| 夫妻午夜视频| 新久久久久国产一级毛片| 色精品久久人妻99蜜桃| 亚洲精品国产一区二区精华液| 欧美 亚洲 国产 日韩一| 欧美人与善性xxx| 91国产中文字幕| av电影中文网址| 国产午夜精品一二区理论片| 国产精品秋霞免费鲁丝片| 手机成人av网站| 五月开心婷婷网| 欧美精品av麻豆av| 久久久国产欧美日韩av| 亚洲色图 男人天堂 中文字幕| 最近手机中文字幕大全| 欧美黑人欧美精品刺激| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲图色成人| 老司机影院毛片| 亚洲综合色网址| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站| 高清不卡的av网站| 欧美97在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇猛男粗大的猛烈进出视频| 亚洲国产看品久久| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 国产xxxxx性猛交| 欧美在线一区亚洲| 久久久久久久精品精品| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 一区二区三区四区激情视频| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 色视频在线一区二区三区| 日本五十路高清| 欧美日韩视频精品一区| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 色婷婷av一区二区三区视频| 亚洲熟女毛片儿| 免费观看av网站的网址| av在线播放精品| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 日韩视频在线欧美| 亚洲国产av影院在线观看| 日韩中文字幕欧美一区二区 | 手机成人av网站| 精品福利永久在线观看| 久久久久网色| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 成人手机av| 在线观看www视频免费| 日韩精品免费视频一区二区三区| 亚洲天堂av无毛| 啦啦啦啦在线视频资源| 亚洲色图 男人天堂 中文字幕| 国产成人欧美| 久久久精品国产亚洲av高清涩受| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看 | 欧美精品av麻豆av| 久久精品国产亚洲av涩爱| 午夜久久久在线观看| 国产精品国产av在线观看| 多毛熟女@视频| 午夜影院在线不卡| 激情五月婷婷亚洲| 一区福利在线观看| 亚洲av男天堂| 精品卡一卡二卡四卡免费| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久人人做人人爽| 中文欧美无线码| 欧美精品啪啪一区二区三区 | 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码 | 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久| 精品亚洲乱码少妇综合久久| 一级片免费观看大全| 黄片播放在线免费| 久久国产精品男人的天堂亚洲| 久9热在线精品视频| 97人妻天天添夜夜摸| 成人免费观看视频高清| 久久久国产一区二区| 飞空精品影院首页| 日韩av不卡免费在线播放| 婷婷色综合www| av有码第一页| 看免费av毛片| 熟女av电影| 国产视频首页在线观看| 19禁男女啪啪无遮挡网站| 9191精品国产免费久久| 亚洲av日韩在线播放| 欧美日韩av久久| 亚洲五月婷婷丁香| 国产深夜福利视频在线观看| 成人三级做爰电影| 人人妻人人爽人人添夜夜欢视频| 亚洲成人手机| 交换朋友夫妻互换小说| 婷婷色av中文字幕| 两人在一起打扑克的视频| 亚洲国产看品久久| 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| 老熟女久久久| 免费观看人在逋| 久久久精品94久久精品| 午夜免费成人在线视频| 观看av在线不卡| 狂野欧美激情性bbbbbb| 51午夜福利影视在线观看| 精品国产国语对白av| 午夜视频精品福利| 乱人伦中国视频| 成人国产av品久久久| 天堂8中文在线网| 国产欧美亚洲国产| 9191精品国产免费久久| 欧美精品人与动牲交sv欧美| 国产无遮挡羞羞视频在线观看| 最黄视频免费看| 丝袜喷水一区| 中文字幕最新亚洲高清| 欧美激情极品国产一区二区三区| 超碰成人久久| 成人手机av| 国产在线一区二区三区精| 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐| 午夜福利视频精品| 国产亚洲精品久久久久5区| 久久久久国产精品人妻一区二区| 亚洲熟女精品中文字幕| av在线老鸭窝| 美女扒开内裤让男人捅视频| 欧美黑人欧美精品刺激| 人妻人人澡人人爽人人| 日韩大码丰满熟妇| 91字幕亚洲| av网站在线播放免费| 深夜精品福利| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 在线观看www视频免费| 少妇人妻 视频| 国产精品香港三级国产av潘金莲 | 视频区欧美日本亚洲| 免费在线观看视频国产中文字幕亚洲 | 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| a级毛片在线看网站| 中文字幕亚洲精品专区| 久久久国产一区二区| 亚洲久久久国产精品| 精品少妇内射三级| 欧美在线一区亚洲| 纯流量卡能插随身wifi吗| 最新在线观看一区二区三区 | 自拍欧美九色日韩亚洲蝌蚪91| 黄片小视频在线播放| 9191精品国产免费久久| 婷婷色麻豆天堂久久| 韩国精品一区二区三区| 黑人猛操日本美女一级片| 五月开心婷婷网| 手机成人av网站| 别揉我奶头~嗯~啊~动态视频 | 夫妻性生交免费视频一级片| 久久久久久久精品精品| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 777米奇影视久久| 日韩中文字幕欧美一区二区 | www日本在线高清视频| 欧美激情高清一区二区三区| 国产精品一区二区免费欧美 | 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 国产精品久久久久久人妻精品电影 | 国产精品二区激情视频| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 亚洲免费av在线视频| 自线自在国产av| 精品国产一区二区久久| 丝瓜视频免费看黄片| 操美女的视频在线观看| 在线亚洲精品国产二区图片欧美| 欧美人与性动交α欧美精品济南到| 999久久久国产精品视频| 日韩制服骚丝袜av| 亚洲成人免费av在线播放| 国产成人av教育| 亚洲少妇的诱惑av| 大码成人一级视频| 欧美97在线视频| www.熟女人妻精品国产| av视频免费观看在线观看| 国产片内射在线| 国产精品二区激情视频| 啦啦啦视频在线资源免费观看| 欧美97在线视频| 中文字幕av电影在线播放| 母亲3免费完整高清在线观看| 亚洲 国产 在线| 国产精品免费大片| 国产日韩欧美亚洲二区| 亚洲国产精品一区三区| 成人亚洲精品一区在线观看| 一二三四在线观看免费中文在| 别揉我奶头~嗯~啊~动态视频 | 中国美女看黄片| 精品亚洲成a人片在线观看| 国产人伦9x9x在线观看| 肉色欧美久久久久久久蜜桃| 免费在线观看影片大全网站 | 天天躁夜夜躁狠狠躁躁| 国产亚洲午夜精品一区二区久久| 午夜福利在线免费观看网站| 国产精品一二三区在线看| 日韩中文字幕视频在线看片| 在线精品无人区一区二区三| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 亚洲视频免费观看视频| 老司机深夜福利视频在线观看 | 男男h啪啪无遮挡| 亚洲av电影在线进入| 99九九在线精品视频| 99精国产麻豆久久婷婷| 99久久精品国产亚洲精品| 亚洲欧洲日产国产| 午夜福利一区二区在线看| 国产精品三级大全| 精品人妻熟女毛片av久久网站| 国产成人精品久久二区二区免费| 性色av乱码一区二区三区2| 一本久久精品| 久久久久久久久久久久大奶| 一边摸一边抽搐一进一出视频| 亚洲精品自拍成人| 美女视频免费永久观看网站| 午夜老司机福利片| 国产又爽黄色视频| 男女边吃奶边做爰视频| 国产欧美日韩一区二区三 | 中文字幕另类日韩欧美亚洲嫩草| 老司机影院成人| 久久精品亚洲av国产电影网| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 精品人妻1区二区| 精品欧美一区二区三区在线| av欧美777| 2018国产大陆天天弄谢| 精品视频人人做人人爽| 亚洲国产中文字幕在线视频| 一本一本久久a久久精品综合妖精| 50天的宝宝边吃奶边哭怎么回事| 久久女婷五月综合色啪小说| 日本欧美国产在线视频| 欧美在线一区亚洲| 亚洲欧美激情在线| 亚洲五月婷婷丁香| 丝瓜视频免费看黄片| 亚洲精品国产一区二区精华液| 久久亚洲国产成人精品v| 日日爽夜夜爽网站|