• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fe2BiTaO7納米催化劑的組織結(jié)構(gòu)及光催化性能

    2015-04-01 06:16:56欒景飛胡文華陳標(biāo)杭裴冬華
    無機(jī)化學(xué)學(xué)報 2015年2期
    關(guān)鍵詞:羅丹明光催化劑資源化

    欒景飛 胡文華 陳標(biāo)杭 裴冬華

    (南京大學(xué)環(huán)境學(xué)院污染控制與資源化研究國家重點實驗室,南京210023)

    Fe2BiTaO7納米催化劑的組織結(jié)構(gòu)及光催化性能

    欒景飛*胡文華 陳標(biāo)杭 裴冬華

    (南京大學(xué)環(huán)境學(xué)院污染控制與資源化研究國家重點實驗室,南京210023)

    用固相反應(yīng)合成法合成了光催化劑Fe2BiTaO7,通過XRD、SEM、TEM、紫外-可見漫反射等表征方法對其組織結(jié)構(gòu)及光催化性能進(jìn)行了研究。結(jié)果表明Fe2BiTaO7為立方晶系燒綠石結(jié)構(gòu),空間群為Fd3m,禁帶寬度為1.72 eV。通過比較Fe2BiTaO7、P25 TiO2、摻氮TiO2和Bi2InTaO7的可見光光催化降解羅丹明B,發(fā)現(xiàn)Fe2BiTaO7降解效果及催化活性均高于其它催化劑,并且Fe2BiTaO7降解羅丹明B效率是摻氮二氧化鈦的1.5倍。Fe2BiTaO7降解羅丹明B的曲線符合一級動力學(xué),一級動力學(xué)常數(shù)為0.022 93 min-1。研究了羅丹明B可能的降解路徑和Fe2BiTaO7在可見光下降解苯酚的效果。Fe2BiTaO7(可見光)光催化劑系統(tǒng)適用于紡織工業(yè)廢水處理。

    催化作用;Fe2BiTaO7;光學(xué)性能;可見光;光催化降解;羅丹明B

    0 Introduction

    Dyes in the effluents of the textile,leather,food processing,dyeing,paper,andmanufacturing industries have become one of the most notorious organic pollutants in aquatic environments in recent years[1-6].There is huge volume of dye wastewater releasing to the ecosystem each year,which causes serious environmental pollutions[7].The presence of dye in water is not only aesthetically displeasing but alsoadversetowatertransparency,resultingin reduction of sunlight penetration,gas solubility and reducing the photosynthetic reaction[3-4,8].Some dyes also exhibit toxic effects toward microbial populations and some are even carcinogenic to mankind[9-10]. Rhodamine B(RhB)is one of the most important representatives of xanthene dyes widely utilized as a photosensitizer,a quantum counter and an active medium in dye lasers,etc.Most dyes are resistant to biodegradation and direct photolysis.As a N-containing dye,RhBundergoesnaturalreductiveanaerobic degradation to yield potentially carcinogenic aromatic amines[11-12].Therefore,the removal of RhB from wastewater is necessary and should be highly concerned.

    Conventionalmethodsincludingphysical, chemical and biological processes are used for the removal of dyes[13-16].However,it is usually inefficient to use biological oxidation or multi-step physicalchemicaltreatmentsforremovingdyecolors[17]. Photocatalysis has emerged as an efficient approach for purifying water[18-20].In recent years,photosensitive degradation of colored contaminants in wastewater on semiconductor surface has attracted a great deal of attentions[21-25].Zhao et al.[26]reported that some dyes could be degraded under visible light irradiation over TiO2by a self-photosensitized process.Some dyes are often utilized as a probe contaminant to evaluate the activity of a photocatalyst under irradiation of both ultraviolet light and visible light[27-28].Asthe most commonly used photocatalyst,TiO2has shown effective photocatalytic activity for RhB under ultraviolet light irradiation accounted for 4%of sunlight.However, TiO2cannot be used in the visible light region which accounts for 43%of sunlight,and this problem limits itsapplicationsinthefieldofphotocatalysis. Therefore,some efficient catalysts,which can generate electron-hole pairs under visible light irradiation, should be developed.Fortunately,there are some oxides such as BiVO4,Bi12TiO20,K6Nb10.8O30,Bi38ZnO58which show photocatalytic activity under visible light irradiation[29-37].Because of the controllability in composition, the diversity in structure and the difference in property, transitionmetaloxidesnano-compositehasbeen further developed in the field of photocatalysis.A series of A2B2O7inorganic compounds with different structures have been resulted from the wide-range chemicalreplacementinA,BandOsite.In particular,A2B2O7compounds are considered to own betterphotocatalyticpropertyundervisiblelight irradiation[38-42],they have not only been the important part of the nano-materials field but also have a good application in real life.In our previous work[43],we found that Bi2InTaO7crystallized with the pyrochloretype structure which could be used as a photocatalyst under visible light irradiation.It seems that Bi2InTaO7has a potential for improvement of photocatalytic activity by modification of its structure.According to above analysis,we guess that the substitution of Bi3+by Fe5+and substitution of In3+by Bi3+in Bi2InTaO7may increase carriers concentration.A change and improvementoftheelectricaltransportationand photophysicalpropertiescanbefoundinthe Fe2BiTaO7compound.

    To the best of our knowledge,there have no reports on preparation and structural,photophysical andphotocatalyticpropertycharacterizationsfor Fe2BiTaO7.The molecular composition of Fe2BiTaO7is very similar to other A2B2O7compounds.The resemblance suggests that Fe2BiTaO7may possess photocatalytic property under visible light irradiation,similar to that of other members in A2B2O7family.Fe2BiTaO7also seemstohavepotentialforimprovingthe photocatalytic activity by modification of its structure.

    We report here the synthesized semiconductor compound Fe2BiTaO7and its photocatalytic property for photosensitized removal of colored contaminants inwastewaterundervisiblelightirradiation.The structural,photophysical and photocatalytic property of Fe2BiTaO7were investigated.A comparison among the photocatalytic property of Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7was performed in order to reveal the structure-photocatalytic activity relationship for the title compound.

    1 Experimental

    1.1 Preparation of Fe2BiTaO7powder photocatalyst

    The photocatalysts were synthesized by a solidstate reaction method[36].Fe2O3,In2O3,Bi2O3and Ta2O5with purity of 99.99%(Sinopharm Group Chemical Reagent Co.,Ltd.,Shanghai,China)were utilized as precursors.All powders were dried at 200℃for 4 h before synthesis.The precursors were stoichiometrically mixed prior to the synthesis of Fe2BiTaO7and the mixture was then pressed into small columns and put into an alumina crucible(Shenyang Crucible Co.,Ltd., China).Finally,calcination was carried out at 1 060℃for 30 h in an electric furnace(KSL 1700X,Hefei KejingMaterialsTechnologyCO.,Ltd.,China). Similarly,Bi2InTaO7was prepared by calcination at 1 050℃for 46 h.

    1.2 Preparation of nitrogen-doped titania photocatalyst

    Nitrogen-doped titania(N-doped TiO2)catalyst with tetrabutyl titanate as a titanium precursor was preparedbyusingthesol-gelmethodatroom temperature.17 mL tetrabutyl titanate and 40 mL absolute ethyl alcohol were mixed as solution a,which was then added dropwise under vigorous stirring into a mixture(solution b)of 40 mL absolute ethyl alcohol, 10 mL glacial acetic acid and 5 mL double distilled waterto form transparent colloidal suspension c. Subsequently aqua ammonia with nN/nTiof 8%was added into c under vigorous stirring and stirred for 1 h.Finally,the xerogel was formed after being aged for 2 d.The xerogel was ground into powder and was then calcined at 500℃for 2 h,subsequently was ground in agate mortar and screened by shaker to obtain N-doped TiO2powder.

    1.3 Characterization of photocatalysts

    The crystal structures of the photocatalysts were analyzed by the powder X-ray diffraction method(D/ MAX-rB,Rigaku Corporation,Japan)with Cu Kα radiation(λ=1.54 18 nm).The data were collected at 295 K with a step-scan procedure in the range of 2θ= 10°~95°.The step interval was 0.02°and the time per step was 1.2 s.The chemical composition of Fe2BiTaO7was estimated by scanning electron microscope energy dispersiveX-rayspectroscopy(SEM-EDS,LEO 1530VP,LEO Corporation,Germany).The contents of surface O2-,Fe3+,Bi3+and Ta5+in Fe2BiTaO7were determined by X-ray photoelectron spectroscopy(XPS, ESCALABMK-2,VGScientificLtd.,U.K.).The chemical composition within the depth profile of Fe2BiTaO7was examined by the argon ion denudation method when X-ray photoelectron spectroscopy was utilized.The optical absorption of Fe2BiTaO7was analyzedwithanUV-Visiblespectrophotometer (Lambda 40,Perkin-Elmer Corporation,USA).The surface area of Fe2BiTaO7was determined by BET model(MS-21,Quantachrome Instruments Corporation, USA)with N2adsorption at liquid nitrogen temperature. The particle sizes of the photocatalysts were measured by malvern′s mastersize-2000 particle size analyzer (Malvern Instruments Ltd.,United Kingdom).The particle morphology was measured by transmission electronmicroscope(TecnalF20S-Twin,FEI Corporation,USA).

    1.4 Photocatalytic reaction

    The photocatalytic degradation of RhB(Tianjin Kermel Chemical Reagent Co.,Ltd.)was performed with 0.8 g photocatalyst(Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7)powder suspended in 300 mL of 0.029 3 mmol·L-1RhB solution within a pyrex glass cell(Jiangsu Yancheng Huaou Industry,China). Before visible light irradiation,the suspension was magnetically stirred in the dark for 45 min to ensure establishment of an adsorption/desorption equilibrium among the photocatalysts,RhB dye and atmospheric oxygen.Thephotocatalyticreactionsystemis consisted of a 300 W Xe arc lamp with the main emission wavelength at 436 nm(Nanjing JYZCPSTCO.,Ltd.),a magnetic stirrer and a cut-off filter(λ>400 nm,Jiangsu Nantong JSOL Corporation,China). The Xe arc lamp was surrounded by a quartz jacket andwaspositionedwithintheinnerpartofa photoreactor quartz vessel(5.8 cm in diameter and 68 cm in length),through which a suspension of RhB and photocatalyst was circulated.An outer recycling water glass jacket maintained a near constant reaction temperature(22℃),and the solution was continuously stirred and aerated.2 mL aliquots were sampled at various time intervals.The incident photon flux Iomeasured by a radiometer(Model FZ-A,Photoelectric Instrument Factory Beijing Normal University,China) was 4.76×10-6Einstein·L-1·s-1under visible light irradiation(wavelength range of 400~700 nm).The incident photon flux on the photoreactor was varied by adjusting the distance between the photoreactor and the Xe arc lamp.The adjustment of pH value was not carried out and the initial pH value was 7.0.The concentration of RhB was determined according to the absorption at 554 nm by an UV-Vis spectrophotometer (Lambda 40,Perkin-Elmer Corporation,USA).The inorganic products obtained from RhB degradation were analyzed by ion chromatograph(DX-300,Dionex Corporation,USA).

    The identification of RhB and the degradation intermediate products of RhB were performed by gas chromatograph-mass spectrometer(HP 6890 Series Gas Chromatograph,HP-Innowax column,30 m×0.32 mm×0.25 μm)operated at 320℃and connected to HP 5973 mass selective detector and a flame ionization detector with He as the carrier gas.The split ratio was 40∶1,the injection and detector temperature were 250℃and 300℃respectively.Intermediate products of RhB were also identified by liquid chromatographmass spectrometer(LC-MS,Thermo Quest LCQ Duo, USA,HPLC column:Beta Basic-C18(150 mm×2.1 mm×5 μm),Finnigan,Thermo,USA).Here,20 μL of post-photocatalysis solution was injected automatically into the LC-MS system.The eluent contained 60% methanol and 40%water,and the flow rate was 0.2 mL·min-1.MS conditions included an electrospray ionization interface and a capillary temperature of 27℃with a voltage of 19.00 V,a spray voltage of 5 000 V and a constant sheath gas flow rate.The spectrum was acquired in the negative ion scan mode,sweeping the m/z range from 50 to 600.Evolution of CO2was analyzedwithanintersmatTMIGC120-MBgas chromatograph equipped with a porapack Q column (30 m×0.32 mm×20 μm),which was connected to a catharometer detector.

    The total organic carbon(TOC)concentration was determined with a TOC analyzer(TOC-5000,Shimadzu Corporation,Japan).Thephotonicefficiencywas calculated according to the following equation[44-45]:

    φ=R/Io

    where φ is the photonic efficiency(%),and R is the rate of RhB degradation(mol·L-1·s-1),and Iois the incident photon flux(Einstein·L-1·s-1).

    The catalyst recycling experiment was taken to prove that the Fe2BiTaO7catalyst was still active.The Fe2BiTaO7catalyst was washed by anhydrous ethanol and distilled water for 6 times after recycling from the previous experiment,then it was dried in the 60℃oven and put it into the photocatalytic reactor for the degradation of rhodamine B again,the catalyst was recycled for three times.

    2 Results and discussion

    2.1 Structure analysis

    Fig.1showstheTEMimageofFe2BiTaO7nanoscale particles and regular shapes.The diameter of Fe2BiTaO7particles is 400~600 nm,indicating a small mean particle size.Fig.2(a)and(b)present SEM image and EDS spectrum of Fe2BiTaO7,respectively. SEM-EDSspectrumtakenfromthepreparedFe2BiTaO7indicates the presence of iron,bismuth, tantalum and oxygen.Other elements can not be identified from Fe2BiTaO7.

    Fig.1TEM image of Fe2BiTaO7

    Fig.2SEM image and EDS spectrum of Fe2BiTaO7

    Fig.3 shows the XRD pattern of Fe2BiTaO7.The full-profile structure refinements of the collected data are obtained by the RIETANTM[46]program based on Rietveld analysis.The results of the final refinements for Fe2BiTaO7indicate a good agreement between the observed intensities and calculated intensities for the pyrochlore-type structure,a cubic crystal system and a space group Fd3m(O atoms are included in the model).The lattice parameter α for Fe2BiTaO7is 1.048 734 4 nm.All the diffraction peaks for Fe2BiTaO7can be indexed according to the lattice constant and the space group above.The atomic coordinates and structural parameters of Fe2BiTaO7are listed in Table 1.It can be seen from Fig.3 that Fe2BiTaO7is a single phase.In addition,the XRD results show that Fe2BiTaO7crystallizes by the pyrochlore-type structure,a cubic crystal system and a space group Fd3m.The 2θ angles for each diffraction of Bi2InTaO7change with Bi3+substitution by Fe3+and In3+substitution by Bi3+. The lattice parameter decreases from α=1.074 641 0 nm for Bi2InTaO7to α=1.048 734 4 nm for Fe2BiTaO7, indicating a decrease in lattice parameter of the photocatalyst with a decrease of corresponding ionic radii,Fe3+(0.078 nm)<Bi3+(0.117 nm)and Fe3+(0.078 nm)<In3+(0.092 nm).

    Fig.3XRD patterns and Rietveld refinements for Fe2BiTaO7prepared by a solid-state reaction method at 1 060℃

    Fe2BiTaO7and Bi2InTaO7crystallize with the same pyrochlore-type structure according to the X-ray diffraction results.The cubic system structure with space group Fd3m for Bi2InTaO7keep unchanged upon substituting Fe3+by Bi3+and substituting Bi3+by In3+. The outcome of refinements for Fe2BiTaO7generates the unweighted R factors,RP=18.64%with spacegroup Fd3m.The crystal structure of Bi2InNbO7was refined by Zou et al.[47]and R factor obtained was large due to a slightly modified structure model for Bi2InNbO7.Accordingtothehighpurityofthe precursors utilized in this study and no impurity elements observed from EDS results,it is unlikely that the observed space groups originate from the impurities. Therefore,it is suggested that the slightly high RPfactor for Fe2BiTaO7is due to a slightly modified structure model for Fe2BiTaO7.It should be emphasized that the defects or the disorder/order of a fraction of the atoms can result in the change of structures, including different bond-distance distributions,thermal displacement parameters and occupation factors for some of the atoms.

    Table 1Atomic coordinates and structural parameters of Fe2BiTaO7prepared by the solid state reaction method

    ThevariouselementalXPSpeaksandthe corresponding specific binding energies of Fe2BiTaO7, i.e.Bi4f7/2,Ta4f7/2,Fe2p3/2,O1s,are 155.9,26.6,708.2, 529.0 eV,respectively.The results further suggest that the oxidation states of Fe,Bi,Ta and O ions from Fe2BiTaO7are+3,+3,+5 and-2 respectively.For Fe2BiTaO7,the average atomic ratios of Fe∶Bi∶Ta∶O are 2.00∶0.97∶1.01∶6.96 according to the average results of XPS,SEM-EDS.Similarly,the oxidation states of Bi, In,Ta and O ions from Bi2InTaO7are+3,+3,+5 and -2 respectively.It is obvious that the observed XPS spectra of Fe2BiTaO7show neither shoulders nor widening peaks,implying(albeit not proving)the absence of any other phases.Hence,it can be deduced that the obtained material is of high purity under our preparation conditions.

    Fig.4Selected area electron diffraction pattern of Fe2BiTaO7

    Fig.4presentstheselectedareaelectron diffraction pattern of Fe2BiTaO7.It can be seen from Fig.4 that Fe2BiTaO7is a single phase.As shown in Fig.4,Fe2BiTaO7crystallizes with the pyrochlore-type structure,cubic crystal system and space group Fd3m. The lattice parameter for Fe2BiTaO7is α=1.048 734 4 nm.According to the calculation results from Fig.4, the(hkl)value for the main peaks of Fe2BiTaO7can be found and indexed.

    2.2 UV-Vis diffuse reflectance spectroscopy

    TheabsorptionspectrumofFe2BiTaO7is presented in Fig.5.Compared with the well-known TiO2whose absorption edge is less than 380 nm,the absorption edge of newly synthesized Fe2BiTaO7is at 710 nm,which is in the visible region of the spectrum.It is noteworthy that the apparent absorption(defined hereby as 1-transmission)can not take reflection and scatteringintoconsideration.Consequently,the apparent absorbance at sub-bandgap wavelengths(600 to 800 nm for Fe2BiTaO7)is higher than zero.

    Fig.5Absorption spectrum of Fe2BiTaO7

    For a crystalline semiconductor,the optical absorption near the band edge follows the equation:αhν= A(hν-Eg)n[48-49].Here,A,α,Egand ν are proportional constant,absorption coefficient,band gap and light frequency,respectively.Withintheequation,n determinesthecharacterofthetransitionina semiconductor.Egand n can be calculated by the following steps:(i)plotting ln(αhν)versus ln(hν-Eg)by assuming an approximate value of Eg,(ii)deducing the value of n according to the slope in the graph.(iii) refining the value of Egby plotting(αhν)1/nversus hν and extrapolating the plot to(αhν)1/n=0.According tothis method,Fig.6 shows the plot of(αhν)1/nversus hν for Fe2BiTaO7.According to the data in Fig.6,the value of Egfor Fe2BiTaO7is calculated to be 1.72 eV, while the value of n for Fe2BiTaO7is 0.5.The results above indicate that Fe2BiTaO7possesses a narrower band gap compared with Bi2InTaO7.At the same time, the optical transition for Fe2BiTaO7is directly allowed.

    Fig.6Plot of(αhν)2versus hν for Fe2BiTaO7

    2.3 Photocatalytic activity

    Generally speaking,the semiconductor photocatalysis starts from the direct absorption of suprabandgap photons and the generation of electron-hole pairs in the semiconductor particles.Subsequently, the diffusion of the charge carriers to the surface of the semiconductor particles is followed.Fig.7 presents the concentration changes of RhB during the process ofphotocatalyticdegradationundervisiblelight irradiation(λ>400 nm)with the presence of Fe2BiTaO7, P25 TiO2,N-doped TiO2,Bi2InTaO7as well as with the absence of photocatalyst.Above measurements are performed under oxygen-saturation conditions(cO2sat=1.02 mmol·L-1).Though the photocatalyst/RhB suspension or RhB suspension exists in the experimental system,the degradation of RhB does not happen in dark.It can be clearly noticed from the results that a reduction of typical RhB peaks at 554 nm and 525 nm appear.Table 2 provides the photocatalytic effects with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation(λ>400 nm).It can be seen from Table 2 that the photocatalytic efficiency is 95%with Fe2BiTaO7,59%with P25 TiO2,63%with N-doped TiO2,37.5%with Bi2InTaO7after 140 min under visible light irradiation.A complete color change from deep pink into colorless solution of the absorption signal is obtained with Fe2BiTaO7within 230 min, which shows a complete degradation.According to the results,fastdegradationrateisobservedwith Fe2BiTaO7as the catalyst,and the photocatalytic degradation activity of Fe2BiTaO7is higher than that of P25 TiO2,N-doped TiO2or Bi2InTaO7.Furthermore, the photocatalytic degradation activity of N-doped TiO2is higher than that of P25 TiO2and Bi2InTaO7. Additionally,somedecreasefortheUV-Vis absorbance signal of RhB is obtained under visible lightirradiationevenintheabsenceofa photocatalyst.The initial rate of RhB degradation isestimated to be 0.071 nmol·L-1·s-1and the photonic efficiency is 0.00149%(λ=420 nm)after visible light irradiation for 200 min with the absence of a photocatalyst.It suggests that the observed disappearance of RhB in the absence of a photocatalyst is due to direct dye-sensitization,and the dye-sensitization mechanism is similar to the observation from Liu et al.[50].

    Fig.7Photocatalytic degradation of rhodamine B under visible light irradiation with the presence of Fe2BiTaO7,P25 TiO2,N-doped TiO2,Bi2InTaO7as well as with the absence of a photocatalyst

    Table 2Photocatalytic effects with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation

    The degradation rate is almost 100%after visible light irradiation for 200 min with Fe2BiTaO7as the catalyst,the catalyst is not in deactivation at this time.Accordingtotheexperimentaldata,the degradation rate of the recycling experiment is 96%, 92%,90%,respectively.Although the degradation rate drops each time,the change is not great,thus the results above can prove that the Fe2BiTaO7catalyst is still active after the previous experiment,the property of Fe2BiTaO7catalyst is stable and it can be recycled for photocatalysis many times.

    Thefirstordernatureofthephotocatalytic degradation kinetics with Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7as catalysts is clearly demonstratedinFig.8,whichpresentsalinear correlation between ln(C/C0)(or ln(TOC/TOC0))and the visible light irradiation time for the photocatalytic degradationofRhBwiththepresenceofthe photocatalysts.In above equation,C represents the RhB concentration at time t,and C0represents the initial RhB concentration,and TOC represents the total organic carbon concentration at time t and TOC0represents the initial total organic carbon concentration.According to the relationship between ln(C/C0) and the irradiation time,the apparent first order rate constant k is 0.022 93 min-1withFe2BiTaO7,0.006 27 min-1with P25 TiO2,0.007 15 min-1with N-doped TiO2and 0.003 29 min-1with Bi2InTaO7,indicating that Fe2BiTaO7is more efficient than P25 TiO2,N-doped TiO2or Bi2InTaO7for the photocatalytic degradation of RhB under visible light irradiation.In addition,N-doped TiO2is more efficient than P25 TiO2and Bi2InTaO7for the photocatalytic degradation of RhB undervisiblelightirradiation.Accordingtothe relationship between ln(TOC/TOC0)and the irradiation time,the apparent first order rate constantkTOCis estimated to be 0.019 22 min-1with Fe2BiTaO7, 0.006 22 min-1with P25 TiO2,0.006 73 min-1with N-dopedTiO2and0.00317min-1with Bi2InTaO7, indicatingthatthephotodegradationintermediate productsofRhBprobablyappearduringthe photocatalytic degradation of RhB under visible light irradiation.

    Fig.8Observed first order kinetic plots for the photocatalytic degradation of rhodamine B with Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7as catalysts under visible light irradiation

    Fig.9Suggested photocatalytic degradation pathway scheme for rhodamine B under visible light irradiation with the presence of Fe2BiTaO7

    Inourexperiments,thephotodegradation intermediate products of RhB with Fe2BiTaO7as the catalyst under visible light irradiation are identified as N,N-diethyl-N′-ethylrhodamine(m/z:415.5),N,N-diethylrhodamine(m/z:387.5),N-ethyl-N′-ethylrhodamine(m/z:387.6),N-ethylrhodamine(m/z:359.5)and rhodamine(m/z:331.5),benzoic acid(m/z:122), terephthalic acid(m/z:166),pentanedioic acid(m/z: 132),3-Hydroxybenzoic acid(m/z:138),1,2-benzenedicarboxylic acid(m/z:166)and maleic acid(m/z: 116),oxalic acid(m/z:90),2-hydroxypentanedioic acid(m/z:148)and adipic acid(m/z:146).Fig.9 suggests a possible photocatalytic degradation pathwayforRhBaccordingtotheintermediateproducts identified in this work.The main identified intermediates are the same as the results from Li et al.[51]for the TiO2-assisted photodegradation of RhB under visible light irradiation.However,Zhong et al.[52]reported that the major intermediates of RhB during microwaveenhanced photocatalysis also include malonic acid, succinic acid,phthalic acid and 3-nitrobenzoic acid. In addition to benzoic acid,2-hydroxypentanedioic acid,adipic acid,3-hydroxybenzoic acid and terephthalic acid,He et al.[53]indentified the presence of succinic acid and phthalic acid as well in the process of photocatalytic degradation of RhB by Bi2WO6with electron accepting agent under microwave irradiation.

    The pathway was similar,but not identical to the pathway proposed by Horikoshi et al.[54]for the photodegradationofRhBunderultravioletlight irradiation and visible light irradiation assisted by microwave radiation with TiO2as the photocatalyst. According to the results of Li et al.[33],the RhB photodegradation occurs via two competitive processes: one process is N-demethylation,and the other process is the destruction of the conjugated structure.Thus, we consider that chromophore cleavage,ring-opening and mineralization should be the main photocatalytic degradation pathway of RhB in our work.RhB is convertedtosmallerorganicspecies,andthen mineralizes together with other organic groups to inorganic products such as CO2and water ultimately. Fig.10 presents the CO2yield during the photocatalytic degradation of RhB with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation.The results show that the CO2yield increases gradually with increasing reaction time.The production rate of CO2with Fe2BiTaO7is higher than that with P25 TiO2,N-doped TiO2or Bi2InTaO7,which is in accordance with the absorption curve(Fig.5)of Fe2BiTaO7.The production amount of CO2is 0.241 03 mmol with Fe2BiTaO7as the catalyst,0.159 02 mmol with P25 TiO2,0.166 73 mmol with N-doped TiO2and 0.108 03 mmol with Bi2InTaO7in 300 mL reaction system after visible light irradiation for 200 min.

    Fig.10CO2production kinetics during the photocatalytic degradation of rhodamine B with Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7as catalysts under visible light irradiation

    Fig.11 demonstrates the results of total organic carbon(TOC)measurements.The results reveal that the total disappearance of organic carbon occurs after visible light irradiation for 230 min with Fe2BiTaO7as the catalyst.The results show that after visible light irradiation for 140 min,91%of TOC decrease is obtained with Fe2BiTaO7as the photocatalyst,59% with P25 TiO2,61%with N-doped TiO2and 37%with Bi2InTaO7.The turnover number(the ratio between the total amount of evolved gas and dissipative catalyst)is 0.185 for Fe2BiTaO7after visible light irradiation for 200min,suggestingthatthereactionsoccur catalytically.The reactions stop when the light is turned off.

    Fig.11Disappearance of total organic carbon(TOC) during the photocatalytic degradation of rhodamine B with Fe2BiTaO7,P25 TiO2, N-doped TiO2and Bi2InTaO7as catalysts under visible light irradiation

    The photocatalytic property of the new compound Fe2BiTaO7is notable under visible light irradiation.This superior quality can be even more appreciated if we consider the fact that the specific surface area of Fe2BiTaO7is apparently smaller than that of titanium dioxide.In our work,the BET specific surface area is 46 m2·g-1for P25 TiO2,46 m2·g-1for N-doped TiO2,2 m2·g-1for Fe2BiTaO7and 1 m2·g-1for Bi2InTaO7respectively.The specific surface area of Fe2BiTaO7is almost 20 times smaller than that of P25 TiO2.

    The action spectra of RhB degradation with the presence of Fe2BiTaO7under visible light irradiation show a clear photonic efficiency(0.03722%at its maximal point)at wavelengths corresponding to sub-Eg energies of Fe2BiTaO7(λ from 710 to 800 nm). The existence of photonic efficiency at energies where photons are not absorbed by Fe2BiTaO7,in particular the correlation between the low-energy action spectrum and the absorption spectrum of RhB,demonstrates clearlythatanyphotodegradationatwavelengths above 710 nm should be attributed to photosensitization by RhB itself(SchemeⅠ).

    SchemeⅠ:

    Accordingtothemechanismabove,RhB adsorbed on Fe2BiTaO7is excited by visible light irradiation.Subsequently an electron is injected from the excited RhB to the conduction band of Fe2BiTaO7where the electron is scavenged by molecular oxygen. SchemeⅠmay explain the results obtained with Fe2BiTaO7asthecatalystundervisiblelight irradiation,where Fe2BiTaO7may reduce recombination ofphotoinducedelectronsandholesviathe scavenging of electrons[56].

    However,thesituationforphotocatalytic degradation mechanism of RhB is different below 710 nm,where the photonic efficiency correlates well with the absorption spectrum of Fe2BiTaO7.It evidently shows that the photocatalytic degradation mechanism of RhB is responsible for the photodegradation of RhB viabandgapexcitationofFe2BiTaO7.Although detailed experiments about the effects of oxygen and water on the degradation mechanism of RhB are not performed,it is sensible to assume that the degradation mechanism of RhB in the first step is similar to the degradation mechanism of RhB observed for Fe2BiTaO7under supra-bandgap irradiation,namely SchemeⅡ:

    SchemeⅡ:

    The M-O-M bond angle is closer to 180°,and the excited state is more delocalized as shown by previous study[57],thus the charge carriers can move easily in the matrix.High diffusivity due to the mobility of the photoinduced electrons and holes helps impel more electrons and holes to reach the reactive sites on the catalyst surface,resulting in the improvement of the photonic efficiency of Fe2BiTaO7.The lattice parameter a=1.048 734 4 nm for Fe2BiTaO7is smaller than the lattice parameter a=1.074 641 0 nm for Bi2InTaO7. Therefore,thephotoinducedelectronsandholes inside the particle of Fe2BiTaO7are easier and faster to reach the reactive sites on the catalyst surface compared with those of Bi2InTaO7.As a result,the photocatalytic degradation activity of Fe2BiTaO7is higher than that of Bi2InTaO7.The Bi-O-Ta bond angle of Fe2BiTaO7is 121°,close to 180°.Thus,the photocatalytic activity of Fe2BiTaO7is accordingly higher.Inaddition,theBi-O-Tabondangleof Fe2BiTaO7is larger than the Bi-O-Ta bond angle of Bi2InTaO7,resulting in an increase of photocatalytic activity for Fe2BiTaO7compared with Bi2InTaO7.The crystal structure of Fe2BiTaO7is similar to that of Bi2InTaO7,but the crystal structures of Fe2BiTaO7and P25 TiO2are different,and the electronic structures of them are also different.For Fe2BiTaO7,Fe is 3d-block metal element,and Bi is 6p-block metal element,and Ta is 5d-block metal element.But for Bi2InTaO7,Bi is 6p-block metal element,and In is 5p-block metal element,and Ta is 5d-block metal element.Moreover, for P25 TiO2,Ti is 3d-block metal element,indicating that the photocatalytic activity may be affected by not only the crystal structure but also the electronic structure of the photocatalysts.The difference of the photocatalytic degradation activity of RhB amongFe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7can be attributed mainly to the difference of their crystalline and electronic structures.

    Fig.12 shows the suggested band structures of Fe2BiTaO7.Recently,the electronic structures of InMO4(M=V,Nb and Ta)and BiVO4have been reported by Oshikirietal.accordingtothefirstprinciples calculations[58].The conduction bands of InMO4(M=V, Nb and Ta)are mainly composed of a dominant orbital component from V3d,Nb4d and Ta5d orbitals, respectively.The valence bands of BiVO4are composed of a small Bi6s orbital component and a dominant O2porbitalcomponent.Thebandstructuresof Fe2BiTaO7should be similar to those of InMO4(M=V, NbandTa)andBiVO4.Therefore,itcanbe concluded that the conduction band of Fe2BiTaO7is composed of Ta5d,Fe3d and Bi6p orbitals,and the valence band of Fe2BiTaO7is composed of a small dominant O2p orbital component and a small Bi6s orbital component.Direct absorption of photons by Fe2BiTaO7can produce electron-hole pairs in the catalyst,showingthatthenecessaryenergyfor decomposing RhB by photocatalysis should be larger than the band gap energy.

    Fig.12Suggested band structure of Fe2BiTaO7

    In order to see the effect of light wavelength on the degradation efficiency of rhodamine B,rhodamine B is degraded with Fe2BiTaO7,P25 TiO2,N-doped TiO2or Bi2InTaO7as the catalyst under visible light irradiation(λ>500 nm).The results show that the photocatalytic efficiency is 42%with Fe2BiTaO7,26% with P25 TiO2,28%with N-doped TiO2,17%with Bi2InTaO7after 140 min under visible light irradiation.

    RhB has a certain absorption in visible light area.In order to eliminate the influence of photosensitization,we have substituted phenol for RhB as the reaction substrate.The process of the experiment is as follows:The photocatalytic degradation of phenol is performed with 0.8 g photocatalyst(Fe2BiTaO7or N-doped TiO2)powder suspended in 300 mL of 0.029 3 mmol·L-1phenol wastewater.The photocatalytic reaction system and initial experimental conditions are performed as the same as the previous experiment with RhB as the reaction substrate.The results show thatthephotocatalyticefficiencyis88%with Fe2BiTaO7,62%with N-doped TiO2after 200 min under visible light irradiation.As phenol has no absorption effect in visible light area,the degradation of phenol can only be caused by photocatalysis.Thus, it can be deduced that Fe2BiTaO7has a strong photocatalytic activity under visible light.

    3 Conclusions

    Fe2BiTaO7was prepared by a solid-state reaction method.The structural,optical absorption and photocatalytic properties of Fe2BiTaO7were investigated and compared with that of P25 TiO2,N-doped TiO2and Bi2InTaO7.XRD results demonstrate that Fe2BiTaO7crystallizes with the pyrochlore-type structure,cubic crystal system and space group Fd3m.The lattice parameter of Fe2BiTaO7is found to be 1.048 734 4 nm. The band gap of Fe2BiTaO7is estimated to be about 1.72 eV,indicating that Fe2BiTaO7shows a strong optical absorption during the visible light region(λ>400 nm).Photocatalytic degradation of aqueous RhB solutions is observed under visible light irradiation with the presence of Fe2BiTaO7accompanied with the formation of end products such as carbon dioxide and water.Therefore,it can be concluded that Fe2BiTaO7/ (Visible light)system may be regarded as an effective way for removing colored contaminants from waste water.Fe2BiTaO7also shows higher photocatalytic activity for photocatalytic degradation of RhB under visible light irradiation compared with P25 TiO2,N-dopedTiO2andBi2InTaO7.Thephotocatalytic degradation of RhB follows the first order reactionkinetics.The apparent first order rate constant k is 0.022 93 min-1withFe2BiTaO7,0.006 27 min-1with P25 TiO2,0.007 15 min-1with N-doped TiO2and 0.003 29 min-1with Bi2InTaO7.The possible photocatalytic degradation pathway of RhB is provided in this paper. The results in our work prove that Fe2BiTaO7/(visible light)photocatalysis may be regarded as a method for practical treatment of diluted colored waste water.The Fe2BiTaO7/(visible light)photocatalysis system without demanding chemical reagents or using high pressure of oxygen or heating can be utilized for decolorization, purification and detoxification in textile industries, and printing and dyeing industries.In conclusion,the Fe2BiTaO7/(visible light)photocatalysis system may provide a valuable treatment for purifying and reusing colored aqueous effluents.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China(No.21277067), by a grant from China-Israel Joint Research Program in Water Technology and Renewable Energy(No.5).by a grant from the NaturalScienceFoundationofJiangsuProvince(No. BK20141312),byaprojectofscienceandTechnology Development Plan of Suzhou City of China from 2014(No. ZXG201440).

    [1]Annadurai G,Juang R S,Lee D J.J.Hazard.Mater.,2002, 92(3):263-274

    [2]Bhatnagar A,Jain A K.J.Colloid Interface Sci.,2005,281 (1):49-55

    [3]Su L,GanY X.Composites Part B,2012,43(2):170-182

    [4]Wang S B,Boyjoo Y,Choueib A.Chemosphere,2005,60 (10):1401-1407

    [5]Shakir K,Elkafrawy A F,Ghoneimy H F,et al.Water Res., 2010,44(5):1449-1461

    [6]Shen C S,Shen Y,Wen Y Z,et al.Water Res.,2011,45(16): 5200-5210

    [7]Zhang F L,Zhao J C,Zang L,et al.J.Mol.Catal.A:Chem., 1997,120(1/2/3):173-178

    [8]Brustein V P,Cavalcanti C L B,de Melo M R,et al.Appl. Biochem.Biotechnol.,2012,166(2):268-275

    [9]Wang S B,Li H,Xu L Y.J.Colloid Interface Sci.,2006, 295(1):71-78

    [10]Guo Y P,Zhao J Z,Zhang H,et al.Dyes Pigm.,2005,66 (2):123-128

    [11]Fu H B,Pan C S,Yao W Q,et al.J.Phys.Chem.B,2005, 109(47):22432-22439

    [12]Ashraf U,Chat O A,Dar A A.Chemosphere,2014,99:199-206

    [13]Parida K M,Sahu N,Biswal N R,et al.J.Colloid Interface Sci.,2008,318(2):231-237

    [14]Mahmoodi N M,Najafi F.Microporous Mesoporous Mater., 2012,156:153-160

    [15]Park H O,Oh S,Bade R,et al.KSCE J.Civ.Eng.,2011,15 (3):453-461

    [16]Chatha S A S,Asgher M,Ali S,et al.Carbohydr.Polym., 2012,87(2):1476-1481

    [17]Xie Y B,Yuan C W,Li X Z.Colloid Surf.A,2005,252 (1):87-94

    [18]Pan H Q,Li X K,Zhuang Z J,et al.J.Mol.Catal.A:Chem., 2011,345(1/2):90-95

    [19]Luan J F,Wang S,Ma K,et al.J.Phys.Chem.C,2010,114 (20):9398-9407

    [20]Rauf M A,Ashraf S S.Chem.Eng.J.,2009,151(1/2/3):10-18

    [21]Chatterjee D,Mahata A.J.Photochem.Photobiol.A-Chem., 2002,153(1/2/3):199-204

    [22]Kyung H,Lee J,Choi W Y.Environ.Sci.Technol.,2005,39 (7):2376-2382

    [23]Su L S,Gan Y X.Composities Part B,2012,43(2):170-182

    [24]Dubal D P,Dhawale D S,More A M,et al.J.Mater.Sci., 2011,46(7):2288-2293

    [25]Bao N,Li Y,Yu X H,et al.Environ.Sci.Pollut.Res.Int., 2013,20(2):897-906

    [26]Qu P,Zhao J C,Shen T,et al.J.Mol.Catal.A:Chem., 1998,129(2-3):257-268

    [27]Ghosh J P,Sui R H,Langford C H,et al.Water Res.,2009, 43(18):4499-4506

    [28]Adhikari R,Gyawali G,Sekino T,et al.J.Solid State Chem., 2013,197:560-565

    [29]Zhang X,Ai Z H,Jia F L,et al.Mater.Chem.Phys.,2007, 103(1):162-167

    [30]Zhou J K,Zou Z G,Ray A K,et al.Ind.Eng.Chem.Res., 2007,46(3):745-749

    [31]Zhang G K,Zou X,Gong J,et al.J.Alloys Compd.,2006, 425(1/2):76-80

    [32]Feng P,Chen C L,Hao Y,et al.Mater.Chem.Phys.,2009, 116(1):294-299

    [33]Li J P,Zhang X,Ai Z H,et al.J.Phys.Chem.C,2007,111 (18):6832-6836

    [34]Li X K,Kako T,Ye J H.Appl.Catal.A:Gen.,2007,326(1): 1-7

    [35]Hou L R,Yuan C Z,Peng Y.J.Mol.Catal.A:Chem.,2006, 252(1/2):132-135

    [36]Tang X D,Ye H Q,Liu H,et al.Chem.Phys.Lett.,2009, 484(1/2/3):48-53

    [37]Dong H J,Chen G,Sun J X,et al.Appl.Catal.B:Environ., 2013,134:46-54

    [38]Li K W,Wang H,Yan H.J.Mol.Catal.A:Chem.,2006,249 (1/2):65-70

    [39]Luan J F,Pan B C,Paz Y,et al.Phys.Chem.Chem.Phys., 2009,11(29):6289-6298

    [40]Luan J F,Li M,Ma K,et al.Chem.Eng.J.,2011,167(1): 162-171

    [41]Yang H,Li J,Wang L Y,et al.Catal.Commun.,2013,35: 101-104

    [42]Nashim A,Parida K M.Chem.Eng.J.,2013,215:608-615

    [43]Luan J F,Zhao W,Feng J W,et al.J.Hazard.Mater.,2009, 164(2/3):781-789

    [44]Marugan J,Hufschmidt D,Sagawe G,et al.Water Res., 2006,40(4):833-839

    [45]Sakthivel S,Shankar M V,Palanichamy M,et al.Water Res.,2004,38(13):3001-3008

    [46]Fazey P G,Oconnor B H,Hammond L C.Clays Clay Miner., 1991,39(3):248-253

    [47]Zou Z,Ye J,Arakawa H.J.Mater.Sci.Lett.,2000,19(21): 1909-1911

    [48]Tauc J,Grigorov R,Vancu A.Phys.Status Solidi,1966,15 (2):627-637

    [49]Butler M A.J.Appl.Phys.,1977,48(5):1914-1920

    [50]Liu G M,Wu T X,Zhao J C,et al.Environ.Sci.Technol., 1999,33(12):2081-2087

    [51]Li J Y,Ma W H,Lei P X,et al.J.Environ.Sci.,2007,19 (7):892-896

    [52]He Z,Yang S G,Ju Y M,et al.J.Environ.Sci.,2009,21(2): 268-272

    [53]He Z,Sun C,Yang S G,et al.J.Hazard.Mater.,2009,162 (2/3):1477-1486

    [54]Oshikiri M,Boero M,Ye J H,et al.J.Chem.Phys.,2002, 117(15):7313-7318

    Structural and Photocatalytic Properties of Fe2BiTaO7Nanocatalyst

    LUAN Jing-Fei*HU Wen-HuaCHEN Biao-HangPEI Dong-Hua
    (State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment,Nanjing University,Nanjing 210023,China)

    Fe2BiTaO7powder photocatalyst was synthesized by a solid state reaction method.The structural and photocatalytic properties of Fe2BiTaO7were characterized by XRD,SEM,TEM and UV-Vis diffuse reflectance spectroscopy.The results show that Fe2BiTaO7crystallizes with the pyrochlore-type structure,cubic crystal system and space group Fd3m.The estimated band gap of Fe2BiTaO7is 1.72 eV.The photocatalytic degradation of rhodamine B over Fe2BiTaO7,P25 TiO2,N-doped TiO2and Bi2InTaO7was investigated under visible light irradiation.The photocatalytic efficiency with Fe2BiTaO7catalyst is 1.5 times of N-doped TiO2catalyst after 140 minutes under visible light irradiation.Fe2BiTaO7has higher visible-light photocatalytic performance and shows much better activity than that of other photocatalysts.The photocatalytic degradation of rhodamine B follows the first-order reaction kinetics,and the first-order rate constant is 0.022 93 min-1for Fe2BiTaO7.The possible photocatalytic degradation pathway of rhodamine B under visible light irradiation is suggested.In addition,the photocatalytic degradation of phenol over Fe2BiTaO7catalyst was investigated under visible light irradiation. Fe2BiTaO7(visible light)photocatalysis system is confirmed to be suitable for textile industry wastewater treatment.

    catalysis;Fe2BiTaO7;optical properties;visible light;photocatalytic degradation;rhodamine B

    O643.36

    A

    1001-4861(2015)02-0385-14

    10.11862/CJIC.2015.046

    2014-09-17。收修改稿日期:2014-11-13。

    國家自然科學(xué)基金(No.21277067);中以科學(xué)與戰(zhàn)略研究開發(fā)專項資金(No.5)資助項目。*

    。E-mail:jfluan@nju.edu.cn

    猜你喜歡
    羅丹明光催化劑資源化
    磷石膏資源化綜合利用任重道遠(yuǎn)
    人造石行業(yè)固廢資源化處理及綜合利用概述
    石材(2022年2期)2022-05-25 13:04:14
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    污泥的處理及資源化利用
    秸稈資源化綜合利用的探討
    Pr3+/TiO2光催化劑的制備及性能研究
    原位合成H4SiW12O40@C協(xié)同UV/H2O2降解羅丹明B模擬廢水
    光助Fenton法處理羅丹明B廢水的研究
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進(jìn)展
    g-C3N4/TiO2復(fù)合光催化劑的制備及其性能研究
    最近最新中文字幕免费大全7| 麻豆av在线久日| 天天躁夜夜躁狠狠躁躁| 免费日韩欧美在线观看| 夫妻午夜视频| 中文欧美无线码| 国产一区二区激情短视频 | 免费不卡黄色视频| 亚洲av欧美aⅴ国产| 国产色婷婷99| 国产乱人偷精品视频| 老司机在亚洲福利影院| 天堂8中文在线网| 在线观看免费午夜福利视频| 日韩av在线免费看完整版不卡| 国产一区二区三区综合在线观看| 久久狼人影院| 女人被躁到高潮嗷嗷叫费观| 一级黄片播放器| 国产成人免费无遮挡视频| 免费av中文字幕在线| 一区二区av电影网| 香蕉国产在线看| 日韩av不卡免费在线播放| 老司机影院毛片| 午夜影院在线不卡| 一边摸一边做爽爽视频免费| 久久韩国三级中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 国产淫语在线视频| 日韩一区二区三区影片| 丰满少妇做爰视频| 成人漫画全彩无遮挡| 亚洲av中文av极速乱| 亚洲男人天堂网一区| 美女中出高潮动态图| 国产乱人偷精品视频| 建设人人有责人人尽责人人享有的| 亚洲自偷自拍图片 自拍| 十分钟在线观看高清视频www| 国产一区有黄有色的免费视频| 下体分泌物呈黄色| 亚洲国产精品一区三区| 亚洲成av片中文字幕在线观看| 嫩草影视91久久| 激情视频va一区二区三区| 日韩免费高清中文字幕av| 国产一区亚洲一区在线观看| 日本午夜av视频| 1024视频免费在线观看| 在线精品无人区一区二区三| 乱人伦中国视频| 国产乱来视频区| 不卡av一区二区三区| 观看美女的网站| www.精华液| 国产成人欧美在线观看 | 最近手机中文字幕大全| 精品第一国产精品| 国产男女内射视频| 婷婷色综合大香蕉| 久久久亚洲精品成人影院| 精品免费久久久久久久清纯 | 午夜日韩欧美国产| 午夜激情久久久久久久| 人人妻人人澡人人看| 人成视频在线观看免费观看| 国产在线视频一区二区| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区三区在线| 天天躁日日躁夜夜躁夜夜| 久久久久精品国产欧美久久久 | 亚洲欧洲日产国产| 国产一区二区在线观看av| 欧美精品人与动牲交sv欧美| 中文字幕人妻丝袜一区二区 | 亚洲国产av新网站| 91aial.com中文字幕在线观看| 久久天躁狠狠躁夜夜2o2o | 十八禁网站网址无遮挡| 少妇被粗大的猛进出69影院| 亚洲第一av免费看| 搡老岳熟女国产| 精品亚洲成a人片在线观看| 亚洲精品中文字幕在线视频| 欧美日韩av久久| 成年人午夜在线观看视频| 黄色视频在线播放观看不卡| 五月天丁香电影| 一级毛片我不卡| 男男h啪啪无遮挡| 日日摸夜夜添夜夜爱| 毛片一级片免费看久久久久| 伦理电影免费视频| 男女国产视频网站| 国产男人的电影天堂91| 精品久久蜜臀av无| 国产精品秋霞免费鲁丝片| 视频区图区小说| 日日撸夜夜添| 国产精品亚洲av一区麻豆 | 国产爽快片一区二区三区| 久久久久久人妻| 国产日韩欧美亚洲二区| 日本91视频免费播放| 日韩电影二区| 日韩精品免费视频一区二区三区| 午夜免费观看性视频| 欧美黑人精品巨大| 1024香蕉在线观看| 中文字幕人妻丝袜一区二区 | 国产麻豆69| bbb黄色大片| 亚洲成国产人片在线观看| 国产精品亚洲av一区麻豆 | 999精品在线视频| 另类精品久久| 韩国av在线不卡| 亚洲国产最新在线播放| 午夜精品国产一区二区电影| 精品一区二区三区av网在线观看 | 老司机影院毛片| 久久亚洲国产成人精品v| 在线观看人妻少妇| 亚洲精品中文字幕在线视频| 丝袜脚勾引网站| 老司机亚洲免费影院| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区久久| 国产免费一区二区三区四区乱码| 热re99久久国产66热| www.熟女人妻精品国产| 精品第一国产精品| 午夜久久久在线观看| 国产精品人妻久久久影院| 国产97色在线日韩免费| 欧美日韩一级在线毛片| 国产欧美日韩综合在线一区二区| av在线观看视频网站免费| 大香蕉久久成人网| 亚洲激情五月婷婷啪啪| 超色免费av| 久久99精品国语久久久| 日本午夜av视频| 国产精品秋霞免费鲁丝片| 99久久精品国产亚洲精品| 久久久久精品久久久久真实原创| 一本—道久久a久久精品蜜桃钙片| 中文字幕色久视频| 亚洲国产中文字幕在线视频| 成人漫画全彩无遮挡| 日本爱情动作片www.在线观看| 亚洲色图综合在线观看| 欧美乱码精品一区二区三区| 五月天丁香电影| 99热全是精品| 亚洲欧美激情在线| 亚洲成人一二三区av| 亚洲国产欧美日韩在线播放| 久久久久久人人人人人| 99久久人妻综合| 国产免费又黄又爽又色| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 大陆偷拍与自拍| 亚洲av日韩在线播放| 男的添女的下面高潮视频| 丝袜人妻中文字幕| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| 看非洲黑人一级黄片| 日本wwww免费看| 一边亲一边摸免费视频| av网站在线播放免费| 高清av免费在线| 国产片内射在线| 久久人人爽av亚洲精品天堂| 久久久久久久精品精品| 精品少妇内射三级| 一本久久精品| 亚洲欧美日韩另类电影网站| 黄色 视频免费看| 丝瓜视频免费看黄片| 亚洲专区中文字幕在线 | 亚洲人成电影观看| 亚洲av国产av综合av卡| 观看av在线不卡| 最近最新中文字幕免费大全7| 丰满迷人的少妇在线观看| 国产av国产精品国产| 夜夜骑夜夜射夜夜干| 亚洲精品成人av观看孕妇| 在线观看www视频免费| 纯流量卡能插随身wifi吗| 99久久人妻综合| 国产xxxxx性猛交| 亚洲成人免费av在线播放| 欧美黑人精品巨大| 久久久久国产精品人妻一区二区| 久久精品国产综合久久久| 久久国产亚洲av麻豆专区| 热re99久久国产66热| www日本在线高清视频| 亚洲欧美精品综合一区二区三区| 一边摸一边抽搐一进一出视频| 婷婷色av中文字幕| 亚洲图色成人| 免费不卡黄色视频| 亚洲av男天堂| 各种免费的搞黄视频| av天堂久久9| 2021少妇久久久久久久久久久| 晚上一个人看的免费电影| 亚洲欧美一区二区三区国产| 大香蕉久久成人网| 中文字幕人妻熟女乱码| 亚洲欧洲精品一区二区精品久久久 | 亚洲中文av在线| 叶爱在线成人免费视频播放| 51午夜福利影视在线观看| 国产一区二区三区综合在线观看| 亚洲第一青青草原| 精品酒店卫生间| av.在线天堂| 黄片无遮挡物在线观看| 日韩制服骚丝袜av| www.熟女人妻精品国产| 91精品伊人久久大香线蕉| 免费日韩欧美在线观看| 婷婷色av中文字幕| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀 | 91精品三级在线观看| 天天添夜夜摸| 亚洲精品久久久久久婷婷小说| 一本—道久久a久久精品蜜桃钙片| 高清不卡的av网站| 2021少妇久久久久久久久久久| 国产精品一区二区精品视频观看| 天天躁夜夜躁狠狠躁躁| 在线观看免费视频网站a站| 国产精品av久久久久免费| 超色免费av| 中文字幕av电影在线播放| 女人高潮潮喷娇喘18禁视频| 欧美日韩精品网址| 97人妻天天添夜夜摸| 自线自在国产av| 99国产精品免费福利视频| 午夜福利网站1000一区二区三区| 亚洲国产日韩一区二区| 日韩av不卡免费在线播放| 91国产中文字幕| 久久久久视频综合| 久久 成人 亚洲| 日本欧美国产在线视频| 黑人巨大精品欧美一区二区蜜桃| 新久久久久国产一级毛片| 亚洲精品美女久久av网站| 汤姆久久久久久久影院中文字幕| 日本一区二区免费在线视频| 中国国产av一级| 超碰成人久久| 精品卡一卡二卡四卡免费| 精品久久久精品久久久| 999久久久国产精品视频| 久久久国产欧美日韩av| 国产成人精品在线电影| bbb黄色大片| 各种免费的搞黄视频| 久久 成人 亚洲| 一区二区三区乱码不卡18| 一区二区三区激情视频| 飞空精品影院首页| 亚洲成av片中文字幕在线观看| 精品酒店卫生间| 日本av免费视频播放| 又大又黄又爽视频免费| 日日爽夜夜爽网站| 国产精品熟女久久久久浪| 亚洲美女搞黄在线观看| 久久狼人影院| 天天添夜夜摸| 亚洲伊人久久精品综合| 久久国产亚洲av麻豆专区| 免费日韩欧美在线观看| 九九爱精品视频在线观看| 国产在线视频一区二区| 久久久久久久久久久久大奶| 久久久久国产一级毛片高清牌| av一本久久久久| 菩萨蛮人人尽说江南好唐韦庄| 欧美久久黑人一区二区| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费观看性视频| 一本一本久久a久久精品综合妖精| 欧美变态另类bdsm刘玥| 成人毛片60女人毛片免费| 看非洲黑人一级黄片| 国产精品一区二区在线不卡| 色播在线永久视频| 一本久久精品| 欧美亚洲日本最大视频资源| 久久亚洲国产成人精品v| 亚洲精品乱久久久久久| 韩国av在线不卡| 黑丝袜美女国产一区| 校园人妻丝袜中文字幕| 久久久国产欧美日韩av| 一级毛片 在线播放| 亚洲国产中文字幕在线视频| 狠狠精品人妻久久久久久综合| 18在线观看网站| 久久99热这里只频精品6学生| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| 国精品久久久久久国模美| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 亚洲av福利一区| 人人妻,人人澡人人爽秒播 | 黑丝袜美女国产一区| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 人人妻人人澡人人看| 久久精品亚洲熟妇少妇任你| 国产在线免费精品| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 观看av在线不卡| 一本大道久久a久久精品| 大香蕉久久网| 亚洲欧洲日产国产| 在线观看免费视频网站a站| 免费高清在线观看日韩| 嫩草影院入口| 最近的中文字幕免费完整| 最近最新中文字幕大全免费视频 | 9热在线视频观看99| 久久国产精品大桥未久av| 久久久久国产一级毛片高清牌| 国产亚洲精品第一综合不卡| 日本av免费视频播放| 亚洲三区欧美一区| 亚洲成色77777| 少妇人妻久久综合中文| 精品少妇久久久久久888优播| 成人国语在线视频| 国产亚洲午夜精品一区二区久久| www.精华液| 亚洲一区中文字幕在线| 晚上一个人看的免费电影| 国产日韩欧美在线精品| 午夜福利在线免费观看网站| 国产成人精品久久久久久| 免费观看av网站的网址| 成年女人毛片免费观看观看9 | 久久青草综合色| 少妇人妻精品综合一区二区| 久久久久久久大尺度免费视频| 欧美激情极品国产一区二区三区| 色精品久久人妻99蜜桃| www.熟女人妻精品国产| 欧美 亚洲 国产 日韩一| 久热这里只有精品99| 肉色欧美久久久久久久蜜桃| 国产精品秋霞免费鲁丝片| 97精品久久久久久久久久精品| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 亚洲,欧美精品.| 爱豆传媒免费全集在线观看| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 如何舔出高潮| 18在线观看网站| 国产乱来视频区| 成年动漫av网址| 啦啦啦在线观看免费高清www| 国产又爽黄色视频| 精品国产乱码久久久久久小说| 久热爱精品视频在线9| 日本色播在线视频| 啦啦啦在线免费观看视频4| 亚洲国产精品国产精品| 90打野战视频偷拍视频| 多毛熟女@视频| 久久久久国产精品人妻一区二区| 少妇精品久久久久久久| 麻豆av在线久日| 亚洲精品乱久久久久久| 午夜激情av网站| 亚洲精品国产区一区二| 欧美黑人精品巨大| 交换朋友夫妻互换小说| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美视频二区| 深夜精品福利| 欧美日韩福利视频一区二区| 一区二区三区乱码不卡18| 无遮挡黄片免费观看| 欧美日本中文国产一区发布| 亚洲综合色网址| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 性少妇av在线| 超碰成人久久| 国产淫语在线视频| 国产精品.久久久| 亚洲国产中文字幕在线视频| 天堂8中文在线网| 成年av动漫网址| 国产伦理片在线播放av一区| 男女之事视频高清在线观看 | 国产精品一区二区精品视频观看| 国产淫语在线视频| 欧美xxⅹ黑人| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 男人舔女人的私密视频| 免费高清在线观看日韩| 久久ye,这里只有精品| 97精品久久久久久久久久精品| 久久毛片免费看一区二区三区| 国产成人精品在线电影| 午夜av观看不卡| 亚洲美女视频黄频| av女优亚洲男人天堂| 国产午夜精品一二区理论片| 欧美激情 高清一区二区三区| 日本色播在线视频| 免费黄色在线免费观看| 五月开心婷婷网| 欧美少妇被猛烈插入视频| 国产精品熟女久久久久浪| 黄色 视频免费看| 精品国产一区二区三区久久久樱花| 国产精品人妻久久久影院| 纯流量卡能插随身wifi吗| 国产成人精品无人区| 中文字幕av电影在线播放| 国产一级毛片在线| av.在线天堂| 一本—道久久a久久精品蜜桃钙片| 久久久久久人妻| 精品免费久久久久久久清纯 | 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 亚洲欧美清纯卡通| 中文字幕亚洲精品专区| 天天躁夜夜躁狠狠久久av| 久久影院123| 久久人人97超碰香蕉20202| 久久久久精品人妻al黑| 久久久久人妻精品一区果冻| 国产淫语在线视频| 少妇的丰满在线观看| 精品亚洲成国产av| 99香蕉大伊视频| 女性被躁到高潮视频| 久久精品国产亚洲av涩爱| 亚洲av男天堂| 韩国高清视频一区二区三区| videosex国产| 国产激情久久老熟女| 日韩电影二区| 国产精品免费大片| 精品视频人人做人人爽| 大码成人一级视频| 成年美女黄网站色视频大全免费| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 免费少妇av软件| 午夜av观看不卡| 午夜激情av网站| 一级片免费观看大全| 亚洲 欧美一区二区三区| 国产精品久久久久久久久免| 日本黄色日本黄色录像| 欧美精品av麻豆av| 极品少妇高潮喷水抽搐| 99精品久久久久人妻精品| 夜夜骑夜夜射夜夜干| 看免费成人av毛片| 各种免费的搞黄视频| 精品一区在线观看国产| 亚洲精品国产av蜜桃| 亚洲成色77777| 国产亚洲最大av| 精品人妻在线不人妻| 男人操女人黄网站| 麻豆乱淫一区二区| 免费观看人在逋| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 一级片免费观看大全| 男女国产视频网站| h视频一区二区三区| 婷婷色综合大香蕉| 国产一级毛片在线| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 丁香六月欧美| 看十八女毛片水多多多| netflix在线观看网站| kizo精华| 看免费av毛片| 美女脱内裤让男人舔精品视频| 国产精品99久久99久久久不卡 | 免费观看性生交大片5| 欧美xxⅹ黑人| 精品久久久精品久久久| 只有这里有精品99| 亚洲成人免费av在线播放| 免费人妻精品一区二区三区视频| 伊人久久国产一区二区| 最黄视频免费看| 999久久久国产精品视频| 一边亲一边摸免费视频| 国产一区有黄有色的免费视频| 国产高清国产精品国产三级| 国产精品一区二区在线观看99| 少妇猛男粗大的猛烈进出视频| 满18在线观看网站| 亚洲精品国产区一区二| 日本一区二区免费在线视频| 一区二区日韩欧美中文字幕| 久久久久久久精品精品| 欧美激情极品国产一区二区三区| 丝袜脚勾引网站| 观看av在线不卡| 麻豆乱淫一区二区| 亚洲一级一片aⅴ在线观看| 80岁老熟妇乱子伦牲交| 欧美精品av麻豆av| 免费在线观看完整版高清| 一边亲一边摸免费视频| 国产又色又爽无遮挡免| 一级毛片电影观看| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| av在线老鸭窝| 国产成人av激情在线播放| 精品国产乱码久久久久久男人| 亚洲欧美激情在线| 婷婷色麻豆天堂久久| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 日本色播在线视频| 精品一品国产午夜福利视频| 国产成人a∨麻豆精品| 亚洲精品美女久久久久99蜜臀 | 久热爱精品视频在线9| bbb黄色大片| 日韩一区二区视频免费看| √禁漫天堂资源中文www| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠久久av| 人人妻,人人澡人人爽秒播 | 黑人巨大精品欧美一区二区蜜桃| 亚洲av欧美aⅴ国产| 亚洲精品第二区| 女人精品久久久久毛片| 亚洲精品第二区| 中国三级夫妇交换| 亚洲,欧美,日韩| 日本欧美国产在线视频| 永久免费av网站大全| www.自偷自拍.com| 国产视频首页在线观看| 91精品三级在线观看| 9热在线视频观看99| 精品久久久久久电影网| 国产精品久久久av美女十八| 黄色毛片三级朝国网站| 电影成人av| 亚洲欧美中文字幕日韩二区| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡动漫免费视频| 精品人妻在线不人妻| 黑人猛操日本美女一级片| 色94色欧美一区二区| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 国产亚洲av高清不卡| 十八禁人妻一区二区| 国产日韩欧美在线精品| 91精品伊人久久大香线蕉| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美| 久久久久精品国产欧美久久久 | 精品久久久精品久久久| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| www.熟女人妻精品国产| 啦啦啦 在线观看视频| 水蜜桃什么品种好| 十分钟在线观看高清视频www| 国产色婷婷99| 在线观看免费高清a一片| 日韩大码丰满熟妇| 天堂俺去俺来也www色官网| 精品久久蜜臀av无| 亚洲成色77777| 一本大道久久a久久精品| 久久精品久久久久久噜噜老黄| 黄片小视频在线播放|