• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于“平均值概念”的“殘差示蹤法”
    ——黃土高原降水重建的應(yīng)用

    2015-03-28 07:48:24周衛(wèi)健陳茂柏孔祥輝杜雅娟武振坤宋少華康志海
    地球環(huán)境學(xué)報(bào) 2015年6期
    關(guān)鍵詞:黃土高原加速器黃土

    周衛(wèi)健,陳茂柏,孔祥輝,鮮 鋒,杜雅娟,武振坤,宋少華,康志海

    (1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061; 2. 西安加速器質(zhì)譜中心 ,西安 710061;3. 北京師范大學(xué),北京 100875;4. 西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)

    基于“平均值概念”的“殘差示蹤法”
    ——黃土高原降水重建的應(yīng)用

    周衛(wèi)健1,2,3,4,陳茂柏1,2,孔祥輝1,2,鮮 鋒1,2,杜雅娟1,2,武振坤1,2,宋少華1,2,康志海1,2

    (1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061; 2. 西安加速器質(zhì)譜中心 ,西安 710061;3. 北京師范大學(xué),北京 100875;4. 西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)

    本文對定量重建黃土高原降水的傳統(tǒng)方法進(jìn)行了回顧分析,提出了利用新發(fā)展的“殘差示蹤法”定量重建黃土高原古降水變化的兩種新方法。一種是利用黃土磁化率和粉塵通量指標(biāo)的關(guān)系進(jìn)行降水重建的磁化率方法(SUS-approach),另一種是利用黃土10Be濃度與10Be產(chǎn)率和粉塵通量指標(biāo)的關(guān)系進(jìn)行降水重建的10Be方法(10Be-approach)。上述兩種方法定量重建的洛川地區(qū)13萬年以來降水變化曲線高度一致,但與前人利用現(xiàn)代觀測數(shù)據(jù)建立的氣候回歸方程等傳統(tǒng)方法重建的降水記錄具有明顯的差異。本文所建立的降水曲線具有明顯的細(xì)節(jié)特征,揭示了粉塵稀釋作用對降水指標(biāo)的影響,顯示了該方法的優(yōu)勢。文章同時(shí)指出,“殘差示蹤法”的數(shù)學(xué)涵義是基于“平均值概念”(MVC),并對此從統(tǒng)計(jì)學(xué)角度進(jìn)行了論證。最后,就本文所提出的運(yùn)用線性回歸后的殘差進(jìn)行示蹤的新方法與傳統(tǒng)的示蹤方法之差異作了對比分析。

    黃土高原;SUS-approach;10Be-approach;平均值概念(MVC);殘差示蹤法;古降水

    1 Background of the traditional approach for paleoprecipitation reconstruction over the Chinese Loess Plateau

    The magnetic susceptibility records in Chinese loess-paleosols are very similar to the δ18O records from deep-sea sediments. This similarity led to the suggestion that magnetic susceptibility records from loess-paleosols could be used for paleoclimate change research (Kukla et al, 1988). For more than two decades, a number of studies (Maher et al, 1994; An and Sun, 1995; Sun et al, 1995; Han et al, 1996; Porter et al, 2001) have pursued this approach, with magnetic susceptibility as a proxy of paleoprecipitation over the Chinese Loess Plateau (CLP). These studies took important steps towards the spatial and temporal reconstruction of paleoprecipitation over the CLP. However, it becomes clear that the magnetic susceptibility signal in loess includes a dustfall induced susceptibility from the dust source regions that is not related to precipitation, and that the rainfall-induced pedogenic susceptibility is controlled by chemical/ biochemical pedogenic processes. Because it is not yet possible to collect information on all of the variables involved in pedogenic susceptibility, they cannot be quantitatively accounted for through conventional regression analysis (Porter et al, 2001). Therefore most studies have considered precipitation as the dominant factor that controls the pedogenic processes, and have adopted different simplifying assumptions to rule out other non-precipitation factors, and to reconstruct paleoprecipitation. These studies have given rise to a diverse set of climofunctions and results (Maher et al, 1994; An and Sun, 1995; Sun et al, 1995; Han et al, 1996; Porter et al, 2001) (Tab.1).

    Tab.1 Different types of climofunction in published papers

    All of the climofunctions cited in Tab.1, with the exception of Porter et al (2001), were established using a best fit between present (most recent 10 ~ 30 years) precipitation and total magnetic susceptibility (or pedogenic susceptibility) in the modern soil (near surface) from different locations, without consideration of the dust dilution effect. Namely, all these papers through burdensome work have ruled out all non-precipitation factors in regression calculations, leaving the latest 10 ~ 30 years’ precipitation alone. As a result, the effect of non-precipitation factors, including dustfall-induced susceptibility SUS(D) and the dilution effect (Kukla et al, 1988; Porter et al, 2001) of the slow dust deposition during pedogenesis (An and Sun, 1995; Porter et al, 2001), have altogether been taken as the rainfall-related composition to be fitted with the measured present precipitation P in their regression, which has resulted in that the inherentlinear correlation between the precipitation and the pedogenic susceptibility (Beer et al, 1993; Heller et al, 1993; An and Sun, 1995; Shen et al, 2000; Zhou et al, 2007a) was incorporated into a nonlinear climofunction (polynomial type or logarithmic type) depending on the local and temporal climate conditions being considered (Tab.1). These different types of nonlinear climofunctions did not achieve a perfect correlation between precipitation and pedogenic susceptibility in nature as they only reflected the best fit between the present precipitation and near surface susceptibility for a specifi c locality over the past 10 ~ 30 years.

    A basic question that arises from the aforementioned approach is whether climofunctions from the latest 10 ~ 30 years’ data can be extended to include past glacial and interglacial periods. Such an approach implies that all non-precipitation factors have been constant or have negligible changes from glacial and interglacial ages through the present. This is obviously not a valid assumption. For example, Fig.1a shows the dust flux (D) from the Louchuan loess profile for the past 130 ka, with a relative standard deviation RSD = 25%. This record features an abrupt change in dust flux at circa 80 ka that reached up to 200%. The large fluctuation of the dust flux indicates that it is inappropriate to apply the climofunctions in Table 1 through this interval. This includes the formula of Porter et al (2001), which accounts for the dust dilution effect, but still refers to recent accumulation rates.

    In addition to the susceptibility-based approach for paleoprecipitation reconstruction, Heller et al (1993) exploited a “10Be-Susceptibility similarity” approach to extract the pedogenic susceptibility. In their approach, they used both susceptibility and10Be to reconstruct regional paleorainfall in the CLP (Beer et al, 1993; Heller et al, 1993; Shen et al, 2000). However, their approach did not consider both dust flux variations and10Be changes associated with geomagnetic field changes. The latter account for 10% ~ 20% of the total10Be signal.

    Fig.1 The dust fl ux D (a), magnetic susceptibility (b),10Be concentration (c) for the past 130 ka of the Louchuan loess profi le. The RSD (relative standard deviation) of D, i.e. the ratio of the mean root square of the fl uctuation ΔD to their average value, is 25%, an abrupt change occurred at circa 80 ka. The high magnetic susceptibility during 80 ~ 110 ka was formed by a combination of high precipitation and low dust fl ux (Fig.1a) rather than by high precipitation alone.

    Authors have used the correlation between7Be in modern precipitation (Wallbrink and Murray, 1994; Ishikawa et al, 1995; Caillet et al, 2001) and tropospheric10Be/7Be ratio to derive quantitative estimates of the past 80 ka precipitation over the Luochuan profile (Zhou et al, 2007a). The results were comparable to speleothem δ18O records from Dongge and Hulu caves (Wang et al, 2001, 2008), however the approach relies the correlation with7Be which again is only available from modern observations. Hence the method cannot fully account for geomagnetic field changes and dust dilution effects that one may expect when extending a model to the past 80 ka.

    Hence, a quantitative reconstruction of paleoprecipitation remains a crucial goal towards understanding changes in East Asia Monsoon intensity through time. Here we introduce a new method to reconstruct paleoprecipitation by using loess magnetic susceptibility and10Be records.

    In order to make it clear, we explain a few terms used in the text as following (Tab.2).

    Tab.2 The explanation of terms used in this study

    2 Application of the “Residual Trace Approach”to the paleoprecipitation reconstruction over the past 130 ka from Luochuan loess prof le

    We describe next two approaches based on what we term the “Residual Trace Approach” (RTA) for paleoprecipitation reconstruction, and demonstrate their application over the past 130 ka in the Luochuan loess profile. The first is the SUS-approach where the dust dilution effect on pedogenic susceptibility is considered. The second is10Be-approach, which arose from10Be production rate reconstruction studies (Zhou et al, 2007a, 2007b, 2010a, 2010b). In the10Be-approach, the influences of both atmospheric10Be production rate and loess dust flux on the wet deposited10Be records are considered.

    2.1 SUS-approach

    In the SUS-approach we use magnetic susceptibility SUS(M ) = SUS(D, P) (Fig.1b) and dust fl ux D (Fig.1a) to reconstruct precipitation P at Luochuan for the past 130 ka. As stated above, this approach is different from previous methods that ignored dilution effects of the loess component on the pedogenic susceptibility (Maher et al, 1994; An and Sun, 1995; Sun et al, 1995; Han et al, 1996), and considers the dilution effect of the dust deposition on the pedogenic susceptibility SUS(P).

    We first assume that the dustfall-induced susceptibility SUS(D) is independent of precipitation and is homogenous in both its spatial and temporal distributions (Zhou et al, 2007a), it is reasonable to use the measured SUS(M ) =SUS(D, P), instead of the SUS(P) for precipitation reconstruction, since the pure SUS(P) is diffi cult to be extracted from the total SUS(M ).

    A linear regression of SUS(M ) vs. D for the Luochuan loess profi le during the past 130 ka is:

    According to Mean Value Concept (MVC) (Zhou et al, 2007b), the estimated SUS(M )eis determined by the varying dust fl ux D under the average precipitationfor the past 130 ka. The negative slope of the regression line refl ects the dilution effect of D on the magnetic susceptibility.

    We can then compute residual values compared to those foras:

    These are fl uctuations of pedogenic susceptibility caused by changes in monsoon precipitation relative to the mean precipitation(Zhou et al, 2007b).

    We next assert that the residual ΔSUS(ΔP) should be linearly correlated to precipitation variations ΔP about the mean,,

    Thus the absolute precipitation at age T is:

    And the absolute precipitation during the present day T0is:

    The [0, 1] normalization is introduced in order to delete the unknown constants in (4).

    where the symbol < > denotes the normalized precipitation value, and the footprint ‘max’ and ‘min’is the maximum and minimum residual or P within the regression interval.

    Then the ratio of (5-1) to (5-2) would be the relative precipitation to be reconstructed to the present, if the smallest precipitation is Pmin= 0 within the regression interval.

    where the present relative precipitation P(T0) =1.

    The next step is how to determine the ΔSUS(ΔP)mincorresponding to the Pmin= 0, that will be discussed in section 2.3.

    2.210Be-approach

    In10Be-approach, we will extract the precipitation P signals from the measured Be(M ) = Be(D, P, Pr) (Fig.1c) by using both the loess dust flux D (Fig.1a) and the reconstructed atmospheric10Be production rate Pr (Fig.2) synthesized from two Pr curves reconstructed from the Luochuan and Xifeng loess10Be records (Zhou et al, 2010a) which are closely comparable with the calculated10Be production rate from marine10Be (Christl et al, 2010) and SINT 800 paleointensity records (Guyodo and Valet, 1999).

    Fig.2 The reconstructed10Be production rate Pr curve synthesized from two Pr curves reconstructed from the past 130 ka of Luochuan and Xifeng10Be records (Zhou et al, 2010a)

    In the10Be-approach (Zhou et al, 2014a), we fi rst carried out binary linear regression of Be(M ) with Pr and D over the past 130 ka Luochuan loess profi le:

    where the estimated value Be (M)eis determined byvarying Pr and D under the average precipitationof the past 130 ka according to the MVC (Zhou et al, 2007b) and the dust dilution effect is apparent in the negative slope before D in equation (7).

    Next, we obtain the residual:

    which is the loess10Be concentration fluctuations caused by the precipitation variations ΔP relative to the averageof past 130 ka according to MVC.

    Similar to (3)~(6), the ratio in (9) would be the relative precipitation to be reconstructed to the present, if the smallest precipitation is Pmin= 0 within the regression interval.

    where the present relative precipitation P(T0) =1.

    The next step is how to determine the ΔBe(ΔP)mincorresponding to the Pmin= 0, that will be discussed in section 2.3.

    2.3 Normalization and Scaling

    As mentioned above, the ratios in (6) and (9) would be relative precipitation when reconstructed to the present. If the smallest precipitation within the regression interval is Pmin= 0 then the corresponding residual would be Δymin(ΔSUS(ΔP)minor ΔBe(ΔP)min) (10),

    Under the limiting condition that precipitation P = 0, the corresponding composition of the pedogenic susceptibility in loess would be SUS(P)=0, and the measured contemporary total susceptibility SUS(M ) is the smallest and is only related to dustfall-induced susceptibility, i.e. SUS(M) = SUS(D). According to the comparison of loess magnetic susceptibility versus coercivity (Evans and Heller, 2001) from a wide range of locations on the Chinese Loess Plateau for the last 135 ka, the endmember of high coercivity represents a dry dust component of loess susceptibility. We note the corresponding SUS(D) ≈ 25×10-8(m3· kg-1) (driest period) (Zhou et al, 2007a).

    Consequently, we can f ind the age corresponding to the smallest susceptibility SUS(M )≤25 (10-8m3· kg-1), and we can obtain the corresponding residual Δyminfrom the regression equation, i.e., ΔSUS(ΔP)minin SUS-approach, ΔBe(ΔP)minin10Be-approach. If the measured datum error is moderate, the residual Δymin(ΔSUS(ΔP)minor ΔBe(ΔP)min) should be the smallest (most negative) within the concerned regression interval. With the value of ΔSUS(ΔP)minor ΔBe(ΔP)min, the relative precipitation to the present can be reconstructed from equations (6) or (9).

    On the other hand, it has been acknowledged through modern observation that the average precipitation at present is about≈ 650 mm in Luochuan, thus, we can calculate the absolute precipitation through scaling the present relative precipitation to= 650 mm, noting the present relative precipitation P(T0)=1.

    Or through scaling the present normalized precipitationto 650 mm (Zhou et al, 2014a), which will introduce the ΔSUS(ΔP)maxor ΔBe(ΔP)max.

    2.4 Cross check and inter-comparison

    The correlation coefficient of the reconstructed precipitation curves (Fig.3 a, b) by the two approaches are 0.96. The relative differences of their average values are 13.0% (0 ~ 130 ka) and 12.7% (0 ~ 80 ka), and the RSDs (relative standard deviation of their difference to the average) are 9.6% (Tab.3).

    In order to compare our results with other susceptibility-reconstructed precipitation records, we substituted our measured magnetic susceptibility value SUS(M ) (Fig.1b) (or approximate pedogenic SUS(P)= SUS(M ) -25) into the individual climofunctions introduced by previous studies (Maher et al, 1994; Han et al, 1996; Porter et al, 2001) to calculate the past 130 ka precipitation over the Louchuan loess profi le. These results are superimposed on our curves as shown in Fig.3. The differences are apparent, especially at age ranges between 80 ~ 110 ka where the alternernative curves are higher than ours (Fig.3 c, d, e).

    In our view, the high pedogenic susceptibility during 80 ~ 110 ka (Fig.1b) formed through a combination of high precipitation and low dust flux (Fig.1a) rather than by high precipitation alone, so the horizontal sections of the precipitation curves during 80 ~ 110 ka should follow a lower trend, such as ours (Fig.3 a, b). The previous approaches follow a trend above these values because they failed to account for the abrupt drop in dust fl ux from 80 ~ 110 ka (Fig.1a).

    In addition, our reconstructed precipitation records (Fig.4 a, b) compare well with the δ18O records from Hulu-Sanbao caves (Fig.4c) (Wang et al, 2001, 2008), which is widely regarded as a reliable record of Asian Monsoon intensity. Like speleothem δ18O records,10Be precipitation records in loess during MIS 5 clearly reveal sub-cycles (MIS 5a—MIS 5e) of precipitation changes, providing further proof that our approaches are reliable.

    Fig.3 The comparison of the reconstructed precipitation curves by the SUS-approach (a) and the10Be-approach (b) with individual precipitation curves (c-e) reconstructed by substituting our measured magnetic susceptibility values into the climofunctions reported in previous studies

    Tab.3 The average precipitation () and their relative differences (σ, RSD) and correlation coeffi cient (R2) of the reconstructed precipitation curves by two approaches

    Tab.3 The average precipitation () and their relative differences (σ, RSD) and correlation coeffi cient (R2) of the reconstructed precipitation curves by two approaches

    Correlation (R2) σRSD (SUS-approach)(10Be-approach)0 ~ 130 ka440.7506.313.0%0.92 (r = 0.96)48.69.6% 0 ~ 80 ka444.4508.914.9%0.91(r = 0.96)48.79.6%

    Fig.4 The reconstructed past 130 ka precipitation over the Louchuan loess profi le by a)10Be-approach and b) SUS-approach, and their correlation with speleothem δ18O records (c) from Hulu-Sanbao caves (Wang et al, 2001, 2008)

    2.5 Summary for the paleoprecipitation reconstruction

    Using the loess susceptibility alone for precipitation reconstruction in previous studies based on the traditional trace methods has derived a number of climofunctions which have neglected to include the infl uence of dust dilution on pedogenic susceptibility, and on the reconstructed precipitation. The paired measurements of loess susceptibility and loess dust fl ux can be used to reconstruct glacial and interglacial precipitation by using the SUS-approach, in which the dust dilution influence on the reconstructed precipitation is accounted for.

    As a byproduct of reconstruction global10Be production rate (or geomagnetic intensity) reconstruction, we can use the10Be-approach to reconstruct precipitation over the loess plateau. The coincidence of the reconstructed precipitation curves by the two approaches is marked. Nevertheless, as speculated by previous workers (Heller et al, 1993; Maher et al, 1994), difficulties are also encountered with the SUS-approach and10Be-approach in determining precise estimates of dust fl ux through the loess accumulation rates and the dry bulk density.

    3 Mathematical explanation of the“Residual Trace Approach”: Mean Value Concept

    Variables SUS(P, D), P, D used in the SUS-approach, or variables Be(P, D, Pr), (P, D), Pr used in the10Be-approach constitute multiple variables y(x1, x2), x1, x2. Other than conventional multivariable regression analysis or traditional tracer research, in the“Residual Trace Approach”, we carry out the linear regression analyses between y(x1, x2) and x1to remove the effect of x1, and then carry out a calculation to quantify the variation due to the second variable x2through the calculated residual Δy(Δx2).

    Usually, the estimated regression equations (1) and (7) are expressed as the only correlation betweeny(x1, x2) and x1.

    Obviously, the second variable x2“uninvolved”in regression equation (12), must be a constant xCin the estimated values y(x1, x2= xc)eor on the regression line, otherwise the regression analysis (12) would be meaningless, and the calculated residuals Δy(Δx2) are caused only by the difference between the measured x2and the constant xCon the regression line.

    How much is the constant xCon the regression line? According to our study (Zhou et al, 2007b), this constant is taken to be xC=, the arithmetic mean value of x2over the concerned regression interval. Namely, all x2values corresponding to estimated values on the regression line are equal to the arithmetic mean value(Fig.5). This is the root of the MVC (Mean Value Concept) (Zhou et al, 2007b), which can be further explained from a statistical view as following.

    The top and middle panels of Fig.5 are the scatter diagrams of y(x1, x2) vs. x1(Fig.5a) and y(x1, x2) vs. x2(Fig.5b) respectively. The decline line in Fig.5a is the regression line of y(x1, x2) vs. x1and the vertical line in Fig.5b is the constant x2line xCcorresponding to the value on the regression line. Even though assuming the complete correlation between y(x1, x2) and x1and without datum errors, all measured data y(x1, x2) are distributed around the two sides of the regression line (Fig.5a). They are located at different distance Δy(Δx2) from the regression line depending on the Δx2, the deviation of the x2values from the constant value xC(Fig.5b). No matter whether the correlation between y(x1, x2) and x2is linear or nonlinear, the further the Δx2, the bigger the Δy (Δx2), and vice versa.

    Fig.5 Scatter diagrams of y(x1, x2) vs. x1

    If we define the Δy(Δx2), the deviation from the regression line caused by the Δx2, as a“residual”, like the conventionally defi ned residual in statistics due to datum error or incomplete similarity correlation, the regression equation derived by computer programs must be determined in compliance with the minimum of the sum of the“residual” square Δy(Δx2)2or the deviation square Δx2

    2according to the well-known principle of least square method, applicable to linear correlations. Moreover, the statistics indicates that the summation of the squares of the deviation from arithmetic mean value is the least among the sum of various deviation squares. Thus the constant xCon the regression line (Fig.5c) or on the vertical line (Fig.5b) must be the arithmetic mean valueso as to meet the minimum of the sum of the “residual” squares Δy(Δx2)2or the deviation squares Δx22. That is the virtual MeanValue Concept (MVC) deduced from the statistical point of view. The more the number of specimens, the more accurate the MVC.

    According to the MVC, a linear regression of a multivariable system, such as y(x1, x2) vs. x1, is carried out around the average, and the estimated value y(x1, x2) of the regression equation (12) is the correlation between y(x1, x2) and x1under the condition of constant(Fig.5c).

    With introduction of the MVC, we realize the residual in RTA,

    is the variations of y(x1, x2) caused by the Δx2, variation of x2relative to its average valuewithin concerned regression interval, which becomes the mathematic connotation of the “Residual Trace Approach”.

    4 Other successful application examples of the “Residual Trace Approach”

    By taking the loess susceptibility as climate (P, D) proxy, this new approach has successfully been applied to reconstruct the past 80 ka, 130 ka paleogeomagnetic intensities by using the10Be records in Luochuan and Xifeng loess profiles (Zhou et al, 2007a, 2010a). By using this approach, we have determined the Brunhes/ Matuyama (B/M) geomagnetic reversal at circa 780 ± 3 ka BP in Xifeng and Luochuan loess profi les, this timing is synchronous with the B/M reversal timing seen in marine records, facilitating the resolution of the long standing debate about the discrepancy of the B/M magnetic records between Chinese loess and marine sediments by paleomagnetic studies (Zhou et al, 2014b).

    In addition, taking the radioisotope90Sr as proxy of the sea surface temperature, we have applied this new approach to quantitatively reconstruct the past 90 years’ sea salty in the Xisha and Hainan islands with δ18O (Song, 2006) records.

    There is no doubt that the “Mean Value Concept”based “Residual Trace Approach” has opened a new way in environment tracing studies. The differences of the developed “Residual Trace Approach” from the traditional trace method are compared in tab.4, both of which can be applied to the trace research under the respect appropriate condition and with its own advantage and disadvantage, and the “Residual Trace Approach” is especially suitable to the trace research for a multivariable geosystem where all variables are changeable and their distribution have been known except the one to be reconstructed. However, it is important for RTA that the linear correlation between the dependent variable y and independent variables x1, x2… should be high, the higher the linear correlation, the more accurate the traced/ reconstructed results.

    Tab.4 Comparison of the “Residual Trace Approach” with the traditional trace approach

    References

    孫東懷, 周 杰, 吳錫浩. 1995. 全新世氣候適宜期黃土高原及黃土/沙漠過渡區(qū)年降水量的初步恢復(fù)[J].中國沙漠, 15: 339 - 344. [Sun D H, Zhou J, Wu X H. 1995. Preliminary reconstruction of annual rainfall in loess plateau and loess-desert transitional regions in suitable climatic period of Holocene [J]. Journal of Desert Research, 15: 339 - 344.]

    周衛(wèi)健, 孔祥輝, 鮮 鋒, 等. 2010b. 中國黃土10Be重建古地磁場變化史的初步研究[J]. 地球環(huán)境學(xué)報(bào),1(1): 20 - 27. [Zhou W J, Kong X H,Xian F, et al. 2010b. Preliminary study on the reconstruction of the plaeogeomagnetic intensities by10Be in Chinese loess [J]. Journal of Earth Environment, 1(1): 20 - 27.]

    An Z S, Sun D H. 1995. Discussion on the monsoon variation over the Loess Plateau in the Last Glacial Cycle [M]. Beijing: Science Press.

    Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese Loess [J]. Geophysical Research Letters, 20: 57 - 60.

    Caillet S, Arpagaus P, Monna F, et al. 2001. Factors controlling7Be and210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland [J]. Journal of Environmental Radioactivity, 53: 241 - 256.

    Christl M, Lippold J, Steinhilber F, et al. 2010. Reconstruction of global10Be production over the past 250 ka from highly accumulating Atlantic drift sediments [J]. Quaternary Science Review, 29: 2663 - 2672.

    Evans M E, Heller F. 2001. Magnetism of loess/palaeosol sequences: recent developments [J]. Earth-Science Reviews, 54: 129 - 144.

    Guyodo Y, Valet J P. 1999. Global changes in intensity of the Earth’s magnetic fi eld during the past 800 kyr [J]. Nature, 399: 249 - 252.

    Han J M, Lu H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction [J]. Studia Geophysica et Geodaetica, 40: 262 - 275.

    Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications [J]. Earth and Planetary Science Letters, 114: 385 - 390.

    Ishikawa Y, Murakami H, Sekine T, et al. 1995. Precipitation scavenging studies of radionuclides in air using cosmogenic7Be [J]. Journal of Environmental Radioactivity, 26: 19 - 36.

    Kukla G, Heller F, Liu X M, et al. 1988. Pleistocene climates in China dated by magnetic susceptibility [J]. Geology, 16: 811 - 814.

    Maher B A, Thompson R, Zhou L P, et al. 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach [J]. Earth and Planetary Science Letters, 125: 461 - 471.

    Porter S C, Hallet B, Wu X H, et al. 2001. Dependence of nearsurface magnetic susceptibility on dust accumulation rate and precipitation on the Chinese Loess Plateau [J]. Quaternary Research, 55: 271 - 283.

    Shen C D, Beer J, Heller F, et al. 2000.10Be-susceptibility model and quantitative estimates of pedogenic ferromagnetic material fl ux in Chinese loess [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172: 551 - 554.

    Song S H. 2006. Reconstruction of climatic history based on coral in South China Sea and the related data analysis method [D]. Beijing: Graduate University of Chinese Academy of Sciences.

    Wallbrink P J, Murray A S. 1994. Fallout of7Be in South Eastern Australia [J]. Journal of Environmental Radioactivity, 25: 213 - 228.

    Wang Y J, Cheng H, Edwards R L, et al. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294: 2345 - 2349.

    Wang Y J, Cheng H, Edwards R L, et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J]. Nature, 451: 1090 - 1093.

    Zhou W J, Priller A, Beck W, et al. 2007a. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of10Be [J]. Radiocarbon, 49: 139 - 160.

    Zhou W J, Chen M B, Xian F, et al. 2007b. The mean value concept in mono-linear regression of multi-varaibles and its application to trace studies in geosciences [J]. Science in China Series D: Earth Sciences, 50: 1828 - 1834.

    Zhou W J, Xian F, Beck W, et al. 2010a. Reconstruction of 130-kyr relative geomagnetic intensities from10Be in two Chinese loess sections [J]. Radiocarbon, 52: 129 - 147.

    Zhou W J, Xian F, Du Y J, et al. 2014a. The last 130 ka precipitation reconstruction from Chinese loess10Be [J]. Journal of Geophysical Research: Solid Earth, 119: 191 - 197.

    Zhou W J, Beck W, Kong X H, et al. 2014b. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J]. Geology, 42: 467 - 470.

    “Mean Value Concept” based “Residual Trace Approach” — application to paleoprecipitation reconstruction over the Chinese Loess Plateau

    ZHOU Wei-jian1,2,3,4, CHEN Mao-bai1,2, KONG Xiang-hui1,2, XIAN Feng1,2, DU Ya-juan1,2, WU Zhen-kun1,2, SONG Shao-hua1,2, KANG Zhi-hai1,2
    (1. State Key Laboratory of Loess and Quaternary Geology and Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. Xi’an Accelerator Mass Spectrometry Center, Xi’an 710061, China; 3. Beijing Normal University, Beijing 100875, China; 4. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

    The traditional trace methods for paleoprecipitation reconstruction over Chinese Loess Plateau are fi rst analyzed. Then, two practical applications of the newly developed “Residual Trace Approach” to quantitatively reconstruct the paleoprecipitation over the Chinese Loess Plateau are described. One is the “SUS-approach” that uses paired measurements of magnetic susceptibility and dust flux in loess-paleosol sediments as proxies, the other is the “10Be-approach” that uses both atmospheric10Be production rate and loess dust fl ux as proxies. The reconstructed precipitation curves of the past 130 ka over Luochuan loess plateau site by the two approaches are highly correlated. However, they are different to some extent from the other precipitation curves calculated by theindividual climofunctions of the previous studies using traditional trace methods, and the detailed variations evident in the new approach offer an advantage over the traditional methods in revealing the dust dilution effect on the reconstructed precipitation. Furthermore, it is pointed out that the mathematical connotation of the “Residual Trace Approach” is equivalent to the “Mean Value Concept (MVC)” which is further explained from a statistical point of view. Finally, the difference of the “Residual Trace Approach” from the traditional trace method is compared.

    Chinese Loess Plateau; SUS-approach;10Be-approach; Mean Value Concept; Residual Trace Approach; paleoprecipitation

    ZHOU Wei-jian, E-mail: weijian@loess.llqg.ac.cn

    P532

    A

    1674-9901(2015)06-0382-11

    10.7515/JEE201506002

    Received Date:2015-09-29

    Foundation Item:National Basic Research Program of China (2013CB955904); National Natural Science Foundation of China (41230525); MOST (Ministry of Science and Technology) Special Fund for State Key Laboratory of Loess and Quaternary Geology.

    猜你喜歡
    黃土高原加速器黃土
    輪滑加速器
    化學(xué)工業(yè)的“加速器”
    全民小康路上的“加速器”
    各路創(chuàng)新人才涌向“黃土高坡”
    只要有信心 黃土變成金
    黃土成金
    《劉文西:繪不盡是黃土情》
    選舉 沸騰了黃土高原(下)
    公民與法治(2016年3期)2016-05-17 04:09:00
    選舉沸騰了黃土高原(上)
    公民與法治(2016年1期)2016-05-17 04:07:56
    等待“加速器”
    韩国av在线不卡| 在线天堂最新版资源| av在线app专区| 国语对白做爰xxxⅹ性视频网站| 亚洲色图 男人天堂 中文字幕| 亚洲欧美成人精品一区二区| 青春草国产在线视频| 日日爽夜夜爽网站| 国产精品亚洲av一区麻豆 | 亚洲第一av免费看| 高清在线视频一区二区三区| 悠悠久久av| 亚洲精品久久午夜乱码| 人人妻人人澡人人看| 色网站视频免费| 久久久国产欧美日韩av| 超碰成人久久| av一本久久久久| 最黄视频免费看| 叶爱在线成人免费视频播放| 国产色婷婷99| 妹子高潮喷水视频| av卡一久久| 中文字幕色久视频| 亚洲人成电影观看| 国产免费现黄频在线看| 国产精品久久久av美女十八| 亚洲精品成人av观看孕妇| 国精品久久久久久国模美| 18禁裸乳无遮挡动漫免费视频| 亚洲一码二码三码区别大吗| 深夜精品福利| 无遮挡黄片免费观看| 一级黄片播放器| 一二三四中文在线观看免费高清| 日韩中文字幕视频在线看片| 一区二区三区精品91| 老司机影院毛片| 亚洲精品在线美女| 亚洲精品久久午夜乱码| 国产1区2区3区精品| 老司机影院毛片| 女的被弄到高潮叫床怎么办| 中国国产av一级| 国产一区二区在线观看av| 欧美精品一区二区大全| 91精品三级在线观看| 国产精品久久久av美女十八| 免费看av在线观看网站| 国产精品久久久久成人av| 成人影院久久| 亚洲av男天堂| av在线观看视频网站免费| 久久久久久久久久久免费av| 美女午夜性视频免费| 美女视频免费永久观看网站| 高清欧美精品videossex| 国产日韩一区二区三区精品不卡| 少妇人妻 视频| 日韩av不卡免费在线播放| 看十八女毛片水多多多| 久久婷婷青草| 国产深夜福利视频在线观看| 一二三四在线观看免费中文在| 嫩草影院入口| 久久久久精品国产欧美久久久 | 国产成人av激情在线播放| 一本—道久久a久久精品蜜桃钙片| 超色免费av| 国产av码专区亚洲av| 宅男免费午夜| 波多野结衣av一区二区av| 激情视频va一区二区三区| 夜夜骑夜夜射夜夜干| 欧美日韩视频高清一区二区三区二| 亚洲精品乱久久久久久| 久久性视频一级片| 国产福利在线免费观看视频| 精品酒店卫生间| 国产精品国产av在线观看| 国产乱人偷精品视频| 麻豆精品久久久久久蜜桃| 我要看黄色一级片免费的| 精品少妇久久久久久888优播| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费鲁丝| 可以免费在线观看a视频的电影网站 | 精品视频人人做人人爽| 日韩制服丝袜自拍偷拍| 一边摸一边做爽爽视频免费| 最近手机中文字幕大全| 久久精品久久精品一区二区三区| 亚洲综合色网址| 国产国语露脸激情在线看| 一级,二级,三级黄色视频| 在线天堂最新版资源| 国产在线免费精品| 国产精品国产av在线观看| 少妇精品久久久久久久| 亚洲专区中文字幕在线 | 亚洲第一区二区三区不卡| 黄色视频不卡| a级片在线免费高清观看视频| 搡老岳熟女国产| 人人妻,人人澡人人爽秒播 | 国产精品人妻久久久影院| 视频区图区小说| 只有这里有精品99| 纵有疾风起免费观看全集完整版| 久久久久久久久久久免费av| 久久av网站| av视频免费观看在线观看| 高清在线视频一区二区三区| 韩国高清视频一区二区三区| a 毛片基地| 大片免费播放器 马上看| xxxhd国产人妻xxx| 亚洲精品国产色婷婷电影| 又粗又硬又长又爽又黄的视频| 亚洲av男天堂| 国产精品秋霞免费鲁丝片| 国产黄频视频在线观看| 久久久亚洲精品成人影院| 成年美女黄网站色视频大全免费| 久久精品人人爽人人爽视色| 欧美黑人欧美精品刺激| 亚洲精品一二三| 欧美激情高清一区二区三区 | 亚洲免费av在线视频| 日韩精品有码人妻一区| 成人黄色视频免费在线看| 最新的欧美精品一区二区| 国产成人精品久久久久久| 久久精品人人爽人人爽视色| www.av在线官网国产| 99国产精品免费福利视频| 国产av一区二区精品久久| 久久精品熟女亚洲av麻豆精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产爽快片一区二区三区| 欧美日韩亚洲高清精品| 老汉色∧v一级毛片| 青春草国产在线视频| 少妇人妻精品综合一区二区| 黄色视频在线播放观看不卡| 国产精品熟女久久久久浪| 人妻人人澡人人爽人人| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 色视频在线一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产亚洲欧美精品永久| 18禁裸乳无遮挡动漫免费视频| av片东京热男人的天堂| 极品人妻少妇av视频| 日韩制服骚丝袜av| 操出白浆在线播放| 日本午夜av视频| 亚洲色图 男人天堂 中文字幕| 制服诱惑二区| 亚洲天堂av无毛| 99香蕉大伊视频| 久久久久精品久久久久真实原创| 操出白浆在线播放| 亚洲欧洲国产日韩| 日韩不卡一区二区三区视频在线| 操出白浆在线播放| 久久这里只有精品19| av福利片在线| 欧美人与性动交α欧美精品济南到| 亚洲熟女精品中文字幕| 国产精品一国产av| 婷婷色综合大香蕉| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女精品中文字幕| 观看av在线不卡| 视频区图区小说| 性少妇av在线| 丰满饥渴人妻一区二区三| 欧美 亚洲 国产 日韩一| 在现免费观看毛片| 午夜激情av网站| 亚洲精品第二区| 久久久久久免费高清国产稀缺| 久久久精品区二区三区| 欧美日韩亚洲高清精品| 丝瓜视频免费看黄片| 伊人久久国产一区二区| 91成人精品电影| 少妇精品久久久久久久| www.自偷自拍.com| 国产乱人偷精品视频| 国产精品久久久av美女十八| 精品视频人人做人人爽| av视频免费观看在线观看| 亚洲第一青青草原| 国产探花极品一区二区| videosex国产| 欧美xxⅹ黑人| 久久天躁狠狠躁夜夜2o2o | 交换朋友夫妻互换小说| 国产黄色免费在线视频| 如日韩欧美国产精品一区二区三区| 欧美日韩一级在线毛片| 国产精品秋霞免费鲁丝片| 国产成人欧美在线观看 | 国产成人系列免费观看| 人妻 亚洲 视频| 亚洲久久久国产精品| 午夜福利免费观看在线| av.在线天堂| 国产精品 国内视频| 亚洲美女黄色视频免费看| 美女主播在线视频| 人人妻人人澡人人看| 成年美女黄网站色视频大全免费| 久久毛片免费看一区二区三区| 欧美亚洲日本最大视频资源| 精品久久久精品久久久| 欧美日韩视频高清一区二区三区二| 亚洲精品国产色婷婷电影| 视频区图区小说| 欧美日韩一区二区视频在线观看视频在线| 精品一区二区三卡| 久久久久久免费高清国产稀缺| www.自偷自拍.com| 亚洲美女搞黄在线观看| 亚洲成人手机| 男女边吃奶边做爰视频| 婷婷色综合大香蕉| 男女之事视频高清在线观看 | 观看av在线不卡| 男女之事视频高清在线观看 | 最新在线观看一区二区三区 | 女性生殖器流出的白浆| 国产男女超爽视频在线观看| 纵有疾风起免费观看全集完整版| 只有这里有精品99| 国产一区二区在线观看av| 久久久国产一区二区| 我的亚洲天堂| 最近手机中文字幕大全| 亚洲欧美日韩另类电影网站| 18禁观看日本| 日韩电影二区| 高清视频免费观看一区二区| 亚洲成人av在线免费| 久久久亚洲精品成人影院| 观看av在线不卡| 精品久久蜜臀av无| 久久综合国产亚洲精品| 丰满少妇做爰视频| 亚洲精品第二区| 伊人久久大香线蕉亚洲五| 亚洲国产看品久久| 亚洲国产日韩一区二区| 精品免费久久久久久久清纯 | 久久人人爽人人片av| 18禁动态无遮挡网站| 国产又爽黄色视频| 国产成人一区二区在线| 欧美日韩综合久久久久久| 午夜福利网站1000一区二区三区| 欧美精品一区二区免费开放| 性少妇av在线| 国产精品一区二区在线不卡| 欧美日韩国产mv在线观看视频| 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 亚洲激情五月婷婷啪啪| 日本vs欧美在线观看视频| 国产精品欧美亚洲77777| 久久国产亚洲av麻豆专区| 丝袜脚勾引网站| 熟妇人妻不卡中文字幕| 国产av一区二区精品久久| 久久精品人人爽人人爽视色| 老鸭窝网址在线观看| bbb黄色大片| 国产精品三级大全| 精品少妇内射三级| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 久久久精品免费免费高清| 国产成人精品在线电影| 麻豆av在线久日| 日韩一卡2卡3卡4卡2021年| 丰满乱子伦码专区| 国产免费一区二区三区四区乱码| 九色亚洲精品在线播放| 人人妻,人人澡人人爽秒播 | 国语对白做爰xxxⅹ性视频网站| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 久久av网站| 精品免费久久久久久久清纯 | 精品国产超薄肉色丝袜足j| 欧美精品高潮呻吟av久久| 亚洲国产日韩一区二区| 久久精品国产亚洲av高清一级| 国产成人精品在线电影| a级片在线免费高清观看视频| 精品视频人人做人人爽| 丝袜喷水一区| 亚洲av成人不卡在线观看播放网 | 婷婷色av中文字幕| 最近2019中文字幕mv第一页| 老司机深夜福利视频在线观看 | 9191精品国产免费久久| 久久青草综合色| 亚洲情色 制服丝袜| 男男h啪啪无遮挡| 9191精品国产免费久久| 热re99久久精品国产66热6| 日韩精品免费视频一区二区三区| 成人亚洲欧美一区二区av| 最新的欧美精品一区二区| 可以免费在线观看a视频的电影网站 | 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 日韩精品免费视频一区二区三区| 国产av精品麻豆| 观看av在线不卡| 久久影院123| 777久久人妻少妇嫩草av网站| 日本91视频免费播放| 亚洲,欧美,日韩| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 最近手机中文字幕大全| 黑人巨大精品欧美一区二区蜜桃| 一本一本久久a久久精品综合妖精| 久久久亚洲精品成人影院| 777米奇影视久久| 午夜福利影视在线免费观看| 久久人人97超碰香蕉20202| 亚洲在久久综合| 亚洲精品日韩在线中文字幕| 熟女少妇亚洲综合色aaa.| 免费在线观看视频国产中文字幕亚洲 | 久久天堂一区二区三区四区| 高清黄色对白视频在线免费看| 99热网站在线观看| 毛片一级片免费看久久久久| 老司机靠b影院| 国产毛片在线视频| a级毛片在线看网站| 大片电影免费在线观看免费| 精品少妇久久久久久888优播| 一边摸一边做爽爽视频免费| 人妻 亚洲 视频| 国产女主播在线喷水免费视频网站| 中国三级夫妇交换| 美国免费a级毛片| 97在线人人人人妻| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 看免费av毛片| 国产一级毛片在线| 国产伦理片在线播放av一区| 汤姆久久久久久久影院中文字幕| 国产精品欧美亚洲77777| 欧美日韩av久久| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆 | 宅男免费午夜| 国产极品天堂在线| 久久午夜综合久久蜜桃| 韩国av在线不卡| 亚洲第一青青草原| 在线观看免费日韩欧美大片| 亚洲国产精品一区三区| 久久久精品区二区三区| 欧美老熟妇乱子伦牲交| 久久99精品国语久久久| 青春草亚洲视频在线观看| 亚洲熟女毛片儿| 尾随美女入室| 亚洲美女黄色视频免费看| 日韩成人av中文字幕在线观看| 亚洲成人一二三区av| 尾随美女入室| 黄片无遮挡物在线观看| 搡老乐熟女国产| 国产亚洲一区二区精品| 99re6热这里在线精品视频| 一区在线观看完整版| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| 国产精品.久久久| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 国产日韩欧美在线精品| 天天操日日干夜夜撸| www.熟女人妻精品国产| 国产精品国产三级国产专区5o| 一本一本久久a久久精品综合妖精| 大香蕉久久成人网| 国产99久久九九免费精品| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆 | 五月开心婷婷网| 日日撸夜夜添| 五月天丁香电影| 久久毛片免费看一区二区三区| 久久精品亚洲av国产电影网| av国产精品久久久久影院| 自线自在国产av| 人体艺术视频欧美日本| 中文精品一卡2卡3卡4更新| 最近2019中文字幕mv第一页| 亚洲,欧美精品.| 看非洲黑人一级黄片| 一级毛片我不卡| 日韩电影二区| 久久99精品国语久久久| 亚洲,一卡二卡三卡| av在线app专区| 交换朋友夫妻互换小说| 亚洲国产精品一区三区| 女的被弄到高潮叫床怎么办| 成人免费观看视频高清| av片东京热男人的天堂| 一边摸一边抽搐一进一出视频| 1024香蕉在线观看| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 搡老岳熟女国产| 日韩人妻精品一区2区三区| 黄片播放在线免费| 免费看av在线观看网站| 90打野战视频偷拍视频| 在线观看三级黄色| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 国产精品亚洲av一区麻豆 | 纵有疾风起免费观看全集完整版| 综合色丁香网| 国产爽快片一区二区三区| 国产伦人伦偷精品视频| 久久ye,这里只有精品| 久久久精品区二区三区| 人人妻人人澡人人爽人人夜夜| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一区二区三区欧美精品| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 精品人妻熟女毛片av久久网站| 亚洲av成人精品一二三区| 五月天丁香电影| 国产成人一区二区在线| 亚洲精品国产一区二区精华液| 亚洲一区中文字幕在线| 18禁国产床啪视频网站| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 尾随美女入室| 99热网站在线观看| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 777米奇影视久久| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 美女扒开内裤让男人捅视频| 亚洲成人一二三区av| 中文字幕人妻丝袜制服| 中文字幕最新亚洲高清| 99久久人妻综合| 1024视频免费在线观看| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| 亚洲国产精品999| 国产精品亚洲av一区麻豆 | 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 久久久国产欧美日韩av| 超色免费av| 夜夜骑夜夜射夜夜干| 国产伦理片在线播放av一区| 最新在线观看一区二区三区 | 国产伦理片在线播放av一区| 日韩制服骚丝袜av| 秋霞在线观看毛片| 国产在线免费精品| √禁漫天堂资源中文www| 黄色 视频免费看| 人体艺术视频欧美日本| 我的亚洲天堂| 十八禁网站网址无遮挡| 国产男人的电影天堂91| 亚洲国产成人一精品久久久| 一级片免费观看大全| 99久久99久久久精品蜜桃| 欧美激情 高清一区二区三区| 日韩不卡一区二区三区视频在线| 一级a爱视频在线免费观看| 国产高清不卡午夜福利| 国产一区二区 视频在线| 搡老岳熟女国产| 久久久久精品久久久久真实原创| 97精品久久久久久久久久精品| 国产av精品麻豆| 99久久人妻综合| 不卡视频在线观看欧美| 免费不卡黄色视频| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 久久久久视频综合| 999久久久国产精品视频| 日韩大码丰满熟妇| 久久国产亚洲av麻豆专区| 国产一卡二卡三卡精品 | 看非洲黑人一级黄片| 亚洲五月色婷婷综合| 亚洲欧美精品自产自拍| 国产成人a∨麻豆精品| 国产伦理片在线播放av一区| av网站在线播放免费| 国产乱人偷精品视频| 69精品国产乱码久久久| 少妇人妻精品综合一区二区| 丝袜美腿诱惑在线| 啦啦啦视频在线资源免费观看| 国产一卡二卡三卡精品 | 免费黄色在线免费观看| 亚洲人成电影观看| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 久久人妻熟女aⅴ| 亚洲精品国产一区二区精华液| 久久久久国产精品人妻一区二区| 免费在线观看完整版高清| 制服诱惑二区| 大片免费播放器 马上看| 精品亚洲成国产av| 人成视频在线观看免费观看| 国产片内射在线| 老司机靠b影院| 免费高清在线观看日韩| 久久久久国产一级毛片高清牌| 欧美日韩精品网址| 深夜精品福利| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 亚洲精品久久成人aⅴ小说| av在线观看视频网站免费| 久久97久久精品| 男女午夜视频在线观看| 纵有疾风起免费观看全集完整版| 伦理电影免费视频| 久久久久久久大尺度免费视频| 国产免费现黄频在线看| 国产精品亚洲av一区麻豆 | 国产不卡av网站在线观看| 亚洲天堂av无毛| 丰满少妇做爰视频| 国产精品香港三级国产av潘金莲 | 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 免费看av在线观看网站| 国产黄色免费在线视频| 曰老女人黄片| 大话2 男鬼变身卡| 中文字幕精品免费在线观看视频| 久久鲁丝午夜福利片| 综合色丁香网| 国产成人一区二区在线| 欧美精品av麻豆av| 精品一品国产午夜福利视频| xxx大片免费视频| 少妇精品久久久久久久| 色吧在线观看| 嫩草影视91久久| 亚洲美女视频黄频| 久久久久久人妻| 操出白浆在线播放| 中文字幕亚洲精品专区| 国产精品无大码| 麻豆精品久久久久久蜜桃| 亚洲一区二区三区欧美精品| 九色亚洲精品在线播放| 伊人亚洲综合成人网| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 人妻人人澡人人爽人人| 99精国产麻豆久久婷婷| 日韩欧美精品免费久久| 老司机影院毛片| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 亚洲精品美女久久av网站| www.精华液| 黄片小视频在线播放| 黄色怎么调成土黄色| 五月开心婷婷网| 一本大道久久a久久精品| 日韩av不卡免费在线播放| 超碰97精品在线观看| 国产麻豆69| 午夜影院在线不卡| 中文字幕最新亚洲高清| 看免费成人av毛片| 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 美女视频免费永久观看网站| 色婷婷av一区二区三区视频| 成年动漫av网址| 黄色怎么调成土黄色| 老司机影院毛片| 水蜜桃什么品种好| 亚洲天堂av无毛|