• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Crystal Structures and Antimicrobial Activities of Vanadium(V) Complexes with Similar Tridentate Hydrazone Ligands①

    2015-03-25 02:35:30LIKeLIShuJingYAOXinJinNIUJingJingQIUXioYng
    結構化學 2015年6期

    LI Ke LI Shu-Jing②YAO Xin-Jin NIU Jing-Jing QIU Xio-Yng

    a (School of Chemistry & Chemical Engineering,Zhoukou Normal University, Zhoukou 466000, China)

    b (Department of Chemistry, Shangqiu Normal University, Shangqiu 476000, China)

    1 INTRODUCTION

    Hydrazones are a kind of biological active compounds, which can be prepared by the condensation reactions of carbonyl-containing compounds with hydrazides. The compounds have attracted considerable attention for their wide range of biological activities, such as antibacterial[1-3], antifungal[4,5],and antitumor[6,7]. It was reported that hydrazone compounds bearing electron-withdrawing groups can improve their antimicrobial activities[8,9]. Rai and co-workers reported a series of fluoro, chloro,bromo, and iodo-substituted compounds, and found that they have significant antimicrobial activities[10].Vanadium complexes with Schiff bases and hydrazones have been reported with interesting antibacterial activities[11-14]. As a continuation of work on the exploration of novel complexes based antimicrobial agents, in this paper, two hydrazone ligands (E)-N?-(2-hydroxy-5-methoxybenzylidene)-2-hydroxybenzohydrazide (HLa) and (E)-N?-(3,5-dichloro-2-hydroxybenzylidene)-4-methoxybenzohydrazide (HLb) were prepared. Based on the hydrazone ligands, two new structurally similar vanadium(V) complexes, [VOLaL]·CH3OH (1) and[VOLbL] (2), were obtained and their antimicrobial activities were investigated.

    2 EXPERIMENTAL

    2.1 Materials and methods

    Vanadyl acetylacetonate and organic materials were purchased from Sigma-Aldrich and used as received. All other reagents were of analytical reagent grade. Elemental analyses of C, H and N were carried out in a Perkin-Elmer automated model 2400 Series II CHNS/O analyzer. FT-IR spectra were obtained on a Perkin-Elmer 377 FT-IR spectrometer with samples prepared as KBr pellets. UVVis spectra were obtained on a Lambda 900 spectrometer. X-ray diffraction was carried out on a Bruker APEX II CCD diffractometer.

    2.2 Synthesis of HLa

    To the methanolic solution (30 mL) of 5-methoxysalicylaldehyde (0.02 mol, 3.04 g) was added a methanolic solution (20 mL) of 2-hydroxybenzohydrazide (0.02 mol, 3.04 g) with stirring. The mixture was stirred for 30 min at room temperature, and left to slowly evaporate to give colorless crystalline product, which was recrystallized from methanol and dried in vacuum containing anhydrous CaCl2.Yield 87%. IR data (cm–1): 3441, 3230, 1645, 1614,1570, 1492, 1453, 1363, 1311, 1272, 1228, 1156,1040, 963, 898, 813, 756, 640, 473. UV-Vis data(MeOH, λmax, nm): 293, 311, 358. Anal. Calcd. for C15H14N2O4: C, 62.9; H, 4.9; N, 9.8%. Found: C,62.7; H, 5.0; N, 9.7%.1H NMR (300 MHz,d6-DMSO): δ 12.02 (s, 1H), 11.79 (s, 1H), 10.60 (s,1H), 8.66 (s, 1H), 7.89 (1 H, dd, J = 7.8, 1.2). 7.45(m, 1H), 7.15 (d, 1H), 7.0~6.8 (m, 4H), 3.73 (s,3H).

    2.3 Synthesis of HLb

    To 30 mL methanolic solution of 3,5-dichlorosalicylaldehyde (0.02 mol, 3.84 g) was added a methanolic solution (20 mL) of 4-methoxybenzohydrazide (0.02 mol, 3.32 g) with stirring. The mixture was stirred for 30 min at room temperature,and left to slowly evaporate to give colorless crystalline product, which was recrystallized from methanol and dried in vacuum containing anhydrous CaCl2. Yield 91%. IR data (cm–1): 3440, 3273, 1647,1614, 1544, 1498, 1356, 1260, 1182, 1027, 963, 840,765, 685, 608, 479. UV-Vis data (MeOH, λmax, nm):288, 298, 327. Anal. Calcd. for C15H12Cl2N2O3: C,53.1; H, 3.6; N, 8.3%. Found: C, 53.2; H, 3.5; N,8.1%.1H NMR (300 MHz, d6-DMSO): δ 12.02 (s,1H), 11.39 (s, 1H), 8.64 (s, 1H), 7.95 (d, 2H), 7.54(d, 1H), 7.32 (m, 1H), 7.10 (d, 2H), 6.95 (t, 2H),3.86 (s, 3H).

    2.4 Synthesis of [VOLaL]·CH3OH (1)

    HLa(0.1 mmol, 28.6 mg) and vanadyl acetylacetonate (0.1 mmol, 26.5 mg) were mixed in methanol(10 mL). The mixture was refluxed for 1 h and then cooled to room temperature. Single crystals of the complexes, suitable for X-ray diffraction, were grown from the solution upon slow evaporation within a few days. The crystals were isolated by filtration, washed with methanol and dried in vacuum containing anhydrous CaCl2. Yield 37%. IR data (cm–1): 3447, 3208, 1693, 1536, 1496, 1433,1384, 1290, 1249, 1152, 1095, 1031, 974, 915, 756,693, 578, 483, 452. UV-Vis data (EtCN, λmax, nm):268, 314, 453. Anal. Calcd. for C23H22N3O8V: C,53.2; H, 4.3; N, 8.1%. Found: C, 53.0; H, 4.1; N,8.2%.

    2.5 Synthesis of [VOLbL] (2)

    HLb(0.1 mmol, 33.8 mg) and vanadyl acetylacetonate (0.1 mmol, 26.5 mg) were mixed in methanol(10 mL). The mixture was refluxed for 1 h and then cooled to room temperature. Single crystals of the complexes, suitable for X-ray diffraction, were grown from the solution upon slow evaporation within a few days. The crystals were isolated by filtration, washed with methanol and dried in vacuum containing anhydrous CaCl2. Yield 37%. IR data (cm–1): 3213, 1682, 1528, 1493, 1427, 1382,1241, 1165, 1093, 1018, 974, 760, 576, 483, 446.UV-Vis data (EtCN, λmax, nm): 293, 311, 358. Anal.calcd. for C22H16Cl2N3O6V: C, 48.9; H, 3.0; N, 7.8%.Found: C, 48.8; H, 3.1; N, 7.7%.

    2.6 X-ray crystallography

    X-ray diffraction was carried out at a Bruker APEX II CCD area diffractometer equipped with MoKα radiation (λ = 0.71073 ?). The collected data were reduced with SAINT[15], and multi-scan absorption correction was performed using SADABS[16]. The structures of the complexes were solved by direct methods with SHELXS-97[17], and refined against F2by full-matrix least-squares method using SHELXL-97[18]. All of the non-hydrogen atoms were refined anisotropically. The amino hydrogen atoms were located from electronic density maps and refined isotropically. The remaining hydrogen atoms were placed in the calculated positions and constrained to ride on their parent atoms. The crystallographic data and refinement parameters for the compounds are listed in Table 1.Selected bond lengths and bond angles are listed in Table 2.

    Table 1. Crystallographic and Refinement Data for the Complexes

    a R = Fo – Fc/Fo, wR = [∑w(Fo2 – Fc2)/∑w(Fo2)2]1/2

    Table 2. Selected Bond Distances (?) for the Complexes

    2.7 Antimicrobial assay

    The antibacterial activities of the compounds were tested against B. subtilis, S. aureus, E. coli, and P.fluorescence using MH (Mueller-Hinton) medium.The antifungal activities of the compounds were tested against C. albicans and A. niger using the RPMI-1640 medium. The MIC values of the tested compounds were determined by a colorimetric method using the dye MTT[19]. A stock solution of the compound (150 μmol·L–1) in DMSO was prepared and graded quantities (75, 37.5, 18.8, 9.4,4.7, 2.3, 1.2, 0.59 μmol·L–1) were incorporated in specified quantity of the corresponding sterilized liquid medium. A specified quantity of the medium containing the compound was poured into microtitration plates. Suspension of the microorganism was prepared to contain approximately 1.0 × 105cfu·mL–1and applied to microtitration plates with serially diluted compounds in DMSO to be tested and incubated at 37 ℃ for 24 and 48 h for bacterial and fungi, respectively. Then the MIC values were visually determined on each microtitration plate,with 50 μL of PBS (phosphate buffered saline 0.01 mol·L–1, pH = 7.4) containing 2 mg of MTT·mL–1being added to each well. Incubation was continued at room temperature for 4~5 h. The content of each well was removed, and 100 μL of isopropanol containing 5% 1 mol·L–1HCl was added to extract the dye. After 12 h of incubation at room temperature, the optical density was measured with a microplate reader at 550 nm.

    3 RESULTS AND DISCUSSION

    3.1 Synthesis and characterization

    The hydrazone ligands HLaand HLbwere readily prepared by the condensation reaction of 1:1 molar ratio of 5-methoxysalicylaldehyde with 2-hydroxybenzohydrazide, and 3,5-dichlorosalicylaldehyde with 4-methoxybenzohydrazide, respectively in methanol. Complexes 1 and 2 were prepared by the reaction of hydrazone ligands with vanadyl acetylacetonate in methanol, followed by recrystallization.Elemental analyses of the complexes are in accordance with the molecular structures proposed by X-ray analysis.

    3.2 Spectroscopic studies

    In the spectra of hydrazone ligands and the complexes, the weak and broad bands centered at about 3440 cm-1are assigned to the vibration of O–H bonds, and the weak and sharp bands located in the range of 3200~3300 cm-1are assigned to the vibration of N–H bonds. The position of the bands demonstrates that the N–H hydrazone protons are engaged in hydrogen bonds. The intense bands at 1645 cm-1of HLaand 1647 cm-1of HLbare generated by ν(C=O) vibrations, whereas the bands at 1614 cm-1by the ν(C=N) ones. The non-observation of ν(C=O) bands, present in the spectra of hydrazone ligands, indicates the enolization of amide functionality upon coordination to the V-center. Instead strong bands at 1693 cm-1for 1 and 1682 cm-1for 2 are observed, which can be attributed to the asymmetric stretching vibration of the conjugated CH=N–NH–C–O groups, characteristic for the coordination of enolate form of the ligands.The strong ν(V=O) bands at 974 cm-1could be clearly identified for both complexes[20].

    In the electronic spectra of the complexes, the lowest energy transition bands are observed at 453 nm for 1 and 358 nm for 2, which are attributed to LMCT transition as charge transfer from p-orbital on the lone-pair of ligands’ oxygen atoms to the empty d-orbital of the vanadium atoms. The other strong bands in the range of 310~330 nm in the spectra of both complexes are similar to the absorption bands in the spectra of the corresponding hydrazone ligands, so they are attributed to the intra-ligand π→π* absorption peak of the ligands. The other main LMCT and to some extent π→π* bands appear at 268 nm for 1 and 293 nm for 2, and this is due to the oxygen donor atoms bound to vanadium (V)[20].

    3.3 Structure description of the complexes

    The molecular structures of complexes 1 and 2 are shown in Figs. 1 and 2, respectively. The coordination geometry around the vanadium atoms can be described as distorted octahedral with the tridentate hydrazone ligand coordinated in a meridional fashion, forming five- and six-membered chelate rings with bite angles of 74.95(18)° (1) and 74.67(16)° (2) (N(1)–V(1)–O(2)), and 84.11(19)° (1)and 84.09(17)° (2) (N(1)–V(1)–O(1)), respectively,typical for this type of ligand systems[21]. Each chelating hydrazone ligand lies in a plane with one hydroxylato ligand which lies trans to the hydrazone N(1) atom. One carbonyl atom of the benzohydroxamate ligand trans to the oxo group completes the distorted octahedral coordination sphere at a rather elongated distance of about 2.2 ?, due to the trans influence of the oxo group. This is accompanied by a significant displacement of the vanadium atom from the plane defined by the four basal donor atoms towards the apical oxo oxygen atom by 0.29 ?. As expected, the hydrazone ligands coordinate in their doubly deprotonated enolate form which is consistent with the observed O(2)–C(9) and N(2)–C(9) bond lengths of 1.29 and 1.31 ? in 1, and O(2)–C(8) and N(2)–C(8) bond distances of 1.29 and 1.30 ? in 2. This agrees with the reported vanadium complexes containing the enolate form of this ligand type[21-23]. In the crystal packing structure of complex 1, hydrazone molecules are linked by methanol molecules through intermolecular hydrogen bonds of N–H···O and O–H···O (Table 3),leading to the formation of 1D chains along the a axis (Fig. 3). In the crystal packing structure of complex 2, hydrazone molecules are linked together through intermolecular hydrogen bonds of N–H···N(Table 3), leading to the formation of 1D chains along the c axis (Fig. 4). In addition, there are π···π stacking interactions (Table 4) among the chains along the b axis in both structures. The hydrogen bonds as well as the π···π stacking interactions lead to the formation of 2D sheets parallel to the ab plane for 1 and bc plane for 2.

    Table 3. Distances (?) and Angles (o) Involving Hydrogen Bonding of the Complexes

    Table 4. Parameters between the Planes for the Complexes

    Fig. 1. A perspective view of complex 1 with atomic labeling scheme.Thermal ellipsoids are drawn at 30% probability level

    Fig. 2. A perspective view of complex 2 with atomic labeling scheme.Thermal ellipsoids are drawn at the 30% probability level

    Fig. 3. Molecular packing structure of complex 1, with hydrogen bonds shown as dotted lines

    Fig. 4. Molecular packing structure of complex 2, with hydrogen bonds shown as dotted lines

    3.4 Antimicrobial activity

    The hydrazone ligands and vanadium complexes were screened for antibacterial activities against two Gram (+) bacterial strains (Bacillus subtilis and Staphylococcus aureus) and two Gram (–) bacterial strains (Escherichia coli and Pseudomonas fluorescence) by MTT method. The MIC (minimum inhibitory concentration) values of the compounds against four bacteria are listed in Table 5. Penicillin G was used as the standard drug. The hydrazone ligands show medium activities against the bacteria B. subtilis, S. aureus, and E. coli. HLbhas weak activity against P. fluorescence, while HLahas no activity. The two complexes have from strong to medium activities against B. subtilis, S. aureus, and E. coli, while no activity against P. fluorescence. In general, the complexes have stronger activities against B. subtilis, and weaker activities against S.aureus, E. coli and P. fluorescence when compared with the hydrazone ligands. It should be noted that complex 2 has stronger activity against B. subtilis than Penicillin G.

    Table 5. Antimicrobial Activities of the Compounds

    The antifungal activities of the hydrazone ligands and the complexes were also evaluated against two fungal strains (Candida albicans and Aspergillus niger) by MTT method. Ketoconazole was used as a reference material. However, both hydrazone ligands and the complexes have no activity against the fungal strains.

    (1) Kaplancikli, Z. A.; Altintop, M. D.; Ozdemir, A.; Turan-Zitouni, G.; Goger, G.; Demirci, F. Synthesis and in vitro evaluation of some hydrazone derivatives as potential antibacterial agents. Lett. Drug Des. Discov. 2014, 11, 355–362.

    (2) Narisetty, R.; Chandrasekhar, K. B.; Mohanty, S.; Balram, B. Synthesis of novel hydrazone derivatives of 2,5-difluorobenzoic acid as potential antibacterial agents. Lett. Drug Des. Discov. 2013, 10, 620–624.

    (3) Zhi, F.; Shao, N.; Wang, Q.; Zhang, Y.; Wang, R.; Yang, Y. Crystal structures and antibacterial activity of hydrazone derivatives from 1H-indol-3-acetohydrazide. J. Struct. Chem. 2013, 54, 148–154.

    (4) Ozdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z. A.; Demirci, F.; Iscan, G. Studies on hydrazone derivatives as antifungal agents. J. Enzyme Inhib.Med. Chem. 2008, 23, 470–475.

    (5) Loncle, C.; Brunel, J. M.; Vidal, N.; Dherbomez, M.; Letourneux, Y. Synthesis and antifungal activity of cholesterol-hydrazone derivatives. Eur. J.Med. Chem. 2004, 39, 1067–1071.

    (6) Liu, Y. C.; Wang, H. L.; Tang, S. F.; Chen, Z. F.; Liang, H. Synthesis and antitumor mechanism of a new anthracene imidazole hydrazone derivative.Anticancer Res. 2014, 34, 6034–6035.

    (7) Krishnamoorthy, P.; Sathyadevi, P.; Cowley, A. H.; Butorac, R. R.; Dharmaraj, N. Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur. J. Med. Chem. 2011, 46, 3376–3387.

    (8) Zhang, M.; Xian, D. M.; Li, H. H.; Zhang, J. C.; You, Z. L. Synthesis and structures of halo-substituted aroylhydrazones with antimicrobial activity.Aust. J. Chem. 2012, 65, 343–350.

    (9) Shi, L.; Ge, H. M.; Tan, S. H.; Li, H. Q.; Song, Y. C.; Zhu, H. L.; Tan, R. X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 2007, 42, 558–564.

    (10) Rai, N. P.; Narayanaswamy, V. K.; Govender, T.; Manuprasad, B. K.; Shashikanth, S.; Arunachalam, P. N. Design, synthesis, characterization, and antibacterial activity of {5-chloro-2-[(3-substitutedphenyl-1,2,4-oxadiazol-5-yl)-methoxy]-phenyl}-(phenyl)-methanones.Eur. J. Med. Chem. 2010, 45, 2677–2682.

    (11) Wazalwar, S. S.; Bhave, N. S.; Dikundwar, A. G.; Ali, P. Microwave assisted synthesis and antimicrobial study of Schiff base vanadium(IV)complexes of phenyl esters of amino acids. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011, 41, 459–464.

    (12) Liu, J. L.; Sun, M. H.; Ma, J. J. New vanadium complexes with aroylhydrazone ligands: synthesis, structures, and biochemical properties. Synth.React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 117–121.

    (13) Chohan, Z. H.; Sumrra, S. H.; Youssoufi, M. H.; Hadda, T. B. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.Eur. J. Med. Chem. 2010, 45, 2739–2747.

    (14) Taheri, O.; Behzad, M.; Ghaffari, A.; Kubicki, M.; Dutkiewicz, G.; Bezaatpour, A.; Nazari, H.; Khaleghian, A.; Mohammadi, A.; Salehi, M.Synthesis, crystal structures and antibacterial studies of oxidovanadium(IV) complexes of salen-type Schiff base ligands derived from meso-1,2-diphenyl-1,2-ethylenediamine. Trans. Met. Chem. 2014, 39, 253–259.

    (15) Bruker, SMART (Version 5.625) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA 2007.

    (16) Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction of Area Detector, University of G?ttingen, German 1996.

    (17) Sheldrick, G. M. SHELXS-97∶ A Program for Crystal Structure Solution, University of G?ttingen, G?ttingen, Germany 1997.

    (18) Sheldrick, G. M. SHELXL-97∶ A Program for Crystal Structure Refinement, University of G?ttingen, G?ttingen, Germany 1997.

    (19) Meletiadis, J.; Meis, J. F. G. M.; Mouton, J. W.; Donnelly, J. P.; Verweij, P. E. Comparison of NCCLS and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. J. Clin. Microbiol. 2000, 38, 2949–2954.

    (20) Sarkar, A.; Pal, S. Dioxovanadium(V) complexes with N,N,O-donor monoanionic ligands: synthesis, structure and properties. Polyhedron 2007, 26, 1205–1210.

    (21) Monfared, H. H.; Alavi, S.; Bikas, R.; Vahedpour, M.; Mayer, P. Vanadiumoxo-aroylhydrazone complexes: synthesis, structure and DFT calculations.Polyhedron 2010, 29, 3355–3362.

    (22) Zhang, X. T.; Zhan, X. P.; Wu, D. M.; Zhang, Q. Z.; Chen, S. M.; Yu, Y. Q.; Lu, C. Z. Syntheses, structures and characterization of two new vanadium(V) complexes: [PyH][VVO2(C14H9N2O3Br)] and [VVO(C14H9N2O3Br)(OCH3)]. Chin. J. Struct. Chem. 2002, 21, 629–633.

    (23) Monfared, H. H.; Alavi, S.; Bikas, R.; Vahedpour, M.; Mayer, P. Vanadiumoxo-aroylhydrazone complexes: synthesis, structure and DFT calculations.Polyhedron 2010, 29, 3355–3362.

    少妇熟女aⅴ在线视频| 久久精品久久久久久久性| 美女 人体艺术 gogo| 99久久人妻综合| 在线国产一区二区在线| 日韩高清综合在线| 美女 人体艺术 gogo| 成人美女网站在线观看视频| av.在线天堂| 精品国产三级普通话版| 一夜夜www| 国产中年淑女户外野战色| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区蜜桃av| 久久草成人影院| 久久午夜福利片| 亚洲国产精品成人综合色| 一边摸一边抽搐一进一小说| 午夜免费激情av| 亚洲va在线va天堂va国产| 国产亚洲精品久久久com| 久久精品综合一区二区三区| 亚州av有码| 国产黄a三级三级三级人| 国产一区二区激情短视频| 国产高清激情床上av| 日韩人妻高清精品专区| 九草在线视频观看| 大又大粗又爽又黄少妇毛片口| 久久人妻av系列| 又黄又爽又刺激的免费视频.| 国产v大片淫在线免费观看| 99热全是精品| 麻豆精品久久久久久蜜桃| 三级毛片av免费| 男人狂女人下面高潮的视频| 亚洲久久久久久中文字幕| 午夜免费男女啪啪视频观看| 一个人看的www免费观看视频| 在线天堂最新版资源| 成年女人看的毛片在线观看| 午夜福利在线观看免费完整高清在 | 亚洲av.av天堂| 国产 一区精品| 成人特级av手机在线观看| 国产精品一区www在线观看| 午夜精品一区二区三区免费看| 夜夜看夜夜爽夜夜摸| 久久久久久伊人网av| 国产精品久久久久久av不卡| 欧美高清性xxxxhd video| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 亚洲国产精品成人综合色| 亚洲av电影不卡..在线观看| 三级经典国产精品| 久久精品国产清高在天天线| 最后的刺客免费高清国语| 国产乱人偷精品视频| 国产精品1区2区在线观看.| 久久精品久久久久久噜噜老黄 | 久久精品国产99精品国产亚洲性色| 亚洲国产日韩欧美精品在线观看| 欧美日本亚洲视频在线播放| 听说在线观看完整版免费高清| 国产中年淑女户外野战色| 欧美高清成人免费视频www| 成人毛片60女人毛片免费| 亚洲国产欧洲综合997久久,| 少妇人妻精品综合一区二区 | 美女黄网站色视频| 久久久国产成人免费| 欧美一级a爱片免费观看看| 亚洲一区二区三区色噜噜| 亚洲国产欧美在线一区| 美女 人体艺术 gogo| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 日韩一本色道免费dvd| 久久久久久久午夜电影| 国产一级毛片在线| 在线a可以看的网站| 国产精品久久久久久精品电影| 国产精品久久视频播放| 精品国内亚洲2022精品成人| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 国产综合懂色| 亚洲精品自拍成人| 69av精品久久久久久| 亚洲久久久久久中文字幕| 变态另类成人亚洲欧美熟女| 国产av不卡久久| 国产精品久久久久久精品电影小说 | 亚洲人成网站在线观看播放| 日本与韩国留学比较| 在线观看美女被高潮喷水网站| 久久草成人影院| 亚洲色图av天堂| 久久久成人免费电影| 成人无遮挡网站| 观看免费一级毛片| 日本五十路高清| 在线观看美女被高潮喷水网站| 精品日产1卡2卡| 国产精品.久久久| 精品一区二区免费观看| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 精品人妻视频免费看| 久久韩国三级中文字幕| 国产探花在线观看一区二区| 亚洲成人精品中文字幕电影| 性色avwww在线观看| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 日韩高清综合在线| 国产精品野战在线观看| 在线观看一区二区三区| 日韩强制内射视频| 亚洲av男天堂| 少妇裸体淫交视频免费看高清| 麻豆av噜噜一区二区三区| 国产免费男女视频| 日日撸夜夜添| 少妇熟女欧美另类| 黄色配什么色好看| 国产精品,欧美在线| 久久久久网色| 不卡视频在线观看欧美| 亚洲18禁久久av| 三级毛片av免费| 日韩国内少妇激情av| 少妇被粗大猛烈的视频| 1024手机看黄色片| 搞女人的毛片| 99热只有精品国产| 非洲黑人性xxxx精品又粗又长| 91狼人影院| 久久精品国产自在天天线| 99riav亚洲国产免费| 国产探花在线观看一区二区| 日本色播在线视频| 久久久色成人| 黄色配什么色好看| 日韩三级伦理在线观看| 热99re8久久精品国产| 不卡视频在线观看欧美| 中文精品一卡2卡3卡4更新| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区| 久久婷婷人人爽人人干人人爱| 免费大片18禁| 男人狂女人下面高潮的视频| 国产精品久久久久久久电影| www.色视频.com| 日韩欧美精品免费久久| 赤兔流量卡办理| 婷婷色综合大香蕉| 麻豆国产av国片精品| 国产精品不卡视频一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄片美女视频| 亚洲精品国产成人久久av| 国产精品久久久久久久久免| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线 | 简卡轻食公司| 亚洲国产精品合色在线| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 午夜福利成人在线免费观看| 国产成人精品久久久久久| 青春草亚洲视频在线观看| 校园春色视频在线观看| 成人毛片60女人毛片免费| 日本免费a在线| 乱码一卡2卡4卡精品| 永久网站在线| 两个人视频免费观看高清| 日韩欧美国产在线观看| 亚洲欧美精品专区久久| 国产精品久久久久久精品电影小说 | 亚洲成人av在线免费| 久久精品影院6| 国产精品伦人一区二区| 日韩人妻高清精品专区| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 日韩成人伦理影院| 99热网站在线观看| 婷婷色av中文字幕| 在线观看av片永久免费下载| 一边摸一边抽搐一进一小说| 欧美+日韩+精品| 国产精品一及| 亚洲人成网站在线播| 人妻夜夜爽99麻豆av| 我要搜黄色片| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| 日本撒尿小便嘘嘘汇集6| 亚洲经典国产精华液单| 天美传媒精品一区二区| 亚洲在线自拍视频| 26uuu在线亚洲综合色| 精品人妻熟女av久视频| 免费av不卡在线播放| 一级毛片电影观看 | 国产精品电影一区二区三区| 日韩制服骚丝袜av| 国产单亲对白刺激| 日韩精品青青久久久久久| 好男人视频免费观看在线| 少妇的逼水好多| 久久婷婷人人爽人人干人人爱| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线 | 日韩一区二区三区影片| 婷婷精品国产亚洲av| 国产一区二区亚洲精品在线观看| 国产久久久一区二区三区| 亚洲精品自拍成人| 国产淫片久久久久久久久| 看免费成人av毛片| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 欧美bdsm另类| 国产麻豆成人av免费视频| 亚洲经典国产精华液单| 欧美性感艳星| 看黄色毛片网站| 美女国产视频在线观看| 又爽又黄无遮挡网站| 精品一区二区三区人妻视频| 男女视频在线观看网站免费| 日本熟妇午夜| 一级二级三级毛片免费看| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 能在线免费观看的黄片| 小说图片视频综合网站| 免费人成视频x8x8入口观看| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 丝袜喷水一区| 久久99热这里只有精品18| 国产精品一二三区在线看| 成人特级黄色片久久久久久久| 日本av手机在线免费观看| 中文字幕久久专区| 国产私拍福利视频在线观看| 国产精品久久电影中文字幕| 午夜福利在线在线| 一进一出抽搐动态| 精品一区二区三区人妻视频| 日本与韩国留学比较| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 国产精品精品国产色婷婷| 国产精品久久久久久久久免| 99久久九九国产精品国产免费| 欧美又色又爽又黄视频| 色吧在线观看| 亚洲欧美中文字幕日韩二区| 中国美白少妇内射xxxbb| 亚洲美女视频黄频| 日本av手机在线免费观看| 日本三级黄在线观看| 永久网站在线| 国产一区二区激情短视频| 国产片特级美女逼逼视频| 大又大粗又爽又黄少妇毛片口| 久久这里只有精品中国| 欧美另类亚洲清纯唯美| 美女大奶头视频| 热99re8久久精品国产| 日本黄色视频三级网站网址| 在线观看午夜福利视频| 免费无遮挡裸体视频| 国产视频首页在线观看| 国产精品伦人一区二区| 久久精品国产亚洲av涩爱 | 亚洲精品国产av成人精品| 国产在视频线在精品| 少妇高潮的动态图| or卡值多少钱| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 日本色播在线视频| 午夜老司机福利剧场| 久久精品国产亚洲av天美| 国产探花极品一区二区| 亚洲av中文av极速乱| 国产视频首页在线观看| 一级av片app| 成年版毛片免费区| 国产精品一区二区三区四区久久| 乱系列少妇在线播放| 欧美人与善性xxx| 搡女人真爽免费视频火全软件| 男插女下体视频免费在线播放| 中文字幕av在线有码专区| 亚洲自拍偷在线| 亚洲精品国产av成人精品| 中文字幕av在线有码专区| 国产一区二区在线观看日韩| 亚洲四区av| 色5月婷婷丁香| www.色视频.com| 热99re8久久精品国产| 黄色配什么色好看| 床上黄色一级片| 成人鲁丝片一二三区免费| 久久久欧美国产精品| 亚洲成人精品中文字幕电影| 寂寞人妻少妇视频99o| 国产一区二区亚洲精品在线观看| 亚洲丝袜综合中文字幕| 国产国拍精品亚洲av在线观看| 久久久a久久爽久久v久久| 久久精品国产亚洲av香蕉五月| 女的被弄到高潮叫床怎么办| 国产精品福利在线免费观看| 成人鲁丝片一二三区免费| 日日啪夜夜撸| 国产日本99.免费观看| 一进一出抽搐gif免费好疼| 最近手机中文字幕大全| 全区人妻精品视频| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 欧美激情在线99| 日本熟妇午夜| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 长腿黑丝高跟| 日韩大尺度精品在线看网址| 国产精品一及| 中文在线观看免费www的网站| 99久久精品热视频| av黄色大香蕉| 黑人高潮一二区| 精品人妻一区二区三区麻豆| 草草在线视频免费看| 亚洲欧美精品综合久久99| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 国产乱人视频| 青春草国产在线视频 | 亚洲精品影视一区二区三区av| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 国产亚洲精品久久久久久毛片| 美女内射精品一级片tv| 国产熟女欧美一区二区| 春色校园在线视频观看| 1000部很黄的大片| 能在线免费观看的黄片| 久久久久久九九精品二区国产| 久久久国产成人免费| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 悠悠久久av| 成人av在线播放网站| 1000部很黄的大片| 中文字幕精品亚洲无线码一区| ponron亚洲| 国产精品一区www在线观看| 国内少妇人妻偷人精品xxx网站| 乱系列少妇在线播放| 久久久久久九九精品二区国产| 乱系列少妇在线播放| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区 | 免费观看的影片在线观看| 成人特级黄色片久久久久久久| 国产精华一区二区三区| ponron亚洲| 久久精品夜色国产| 亚洲欧美精品专区久久| 91精品国产九色| eeuss影院久久| 亚洲久久久久久中文字幕| 国产精品av视频在线免费观看| 亚洲国产精品国产精品| 亚州av有码| 啦啦啦观看免费观看视频高清| 一边亲一边摸免费视频| 亚洲精华国产精华液的使用体验 | av天堂中文字幕网| 亚洲四区av| 两个人的视频大全免费| 国产麻豆成人av免费视频| 2022亚洲国产成人精品| 亚洲欧美精品综合久久99| avwww免费| 高清毛片免费看| 日日撸夜夜添| 国产精品电影一区二区三区| 成人漫画全彩无遮挡| 特级一级黄色大片| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人澡人人爽人人夜夜 | 亚洲av男天堂| 国产探花在线观看一区二区| 嫩草影院精品99| 一个人看视频在线观看www免费| 青青草视频在线视频观看| 人妻制服诱惑在线中文字幕| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩高清专用| 99国产极品粉嫩在线观看| 男人狂女人下面高潮的视频| 男女做爰动态图高潮gif福利片| 午夜久久久久精精品| 在线免费观看的www视频| 黄色欧美视频在线观看| 噜噜噜噜噜久久久久久91| 久久亚洲国产成人精品v| 青青草视频在线视频观看| www.av在线官网国产| 六月丁香七月| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 国产欧美日韩精品一区二区| 中国国产av一级| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 中文字幕精品亚洲无线码一区| 白带黄色成豆腐渣| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 最近手机中文字幕大全| 男女啪啪激烈高潮av片| 久久精品国产99精品国产亚洲性色| 久久精品久久久久久噜噜老黄 | 日本-黄色视频高清免费观看| 欧美色视频一区免费| 久久久午夜欧美精品| 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 精品国内亚洲2022精品成人| 18禁在线播放成人免费| 看十八女毛片水多多多| 好男人在线观看高清免费视频| 久久欧美精品欧美久久欧美| 如何舔出高潮| 97超视频在线观看视频| 日韩欧美在线乱码| 少妇猛男粗大的猛烈进出视频 | 麻豆精品久久久久久蜜桃| 国产一区二区在线观看日韩| 亚洲人成网站高清观看| 久久久精品94久久精品| 天天一区二区日本电影三级| 亚洲精品国产av成人精品| 国产乱人视频| 成熟少妇高潮喷水视频| 亚洲自偷自拍三级| 18+在线观看网站| 精品免费久久久久久久清纯| 国产精品久久久久久久电影| 精品无人区乱码1区二区| www日本黄色视频网| 国产又黄又爽又无遮挡在线| 成年女人永久免费观看视频| 国产精品不卡视频一区二区| 亚洲高清免费不卡视频| 成人毛片a级毛片在线播放| 日韩一区二区三区影片| 草草在线视频免费看| 久久久a久久爽久久v久久| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 美女黄网站色视频| 十八禁国产超污无遮挡网站| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 国内精品一区二区在线观看| 精品欧美国产一区二区三| 久久久午夜欧美精品| 精品久久久久久成人av| www.色视频.com| 久久久久久久久久久丰满| 国产精品久久久久久精品电影| 高清在线视频一区二区三区 | 狂野欧美激情性xxxx在线观看| 国产毛片a区久久久久| 一本一本综合久久| 亚洲成人精品中文字幕电影| 国产色爽女视频免费观看| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 国产成人aa在线观看| 少妇人妻一区二区三区视频| 国产大屁股一区二区在线视频| 国产精品三级大全| 黄色一级大片看看| 成人av在线播放网站| 亚洲精品成人久久久久久| 日韩欧美国产在线观看| 青春草亚洲视频在线观看| 变态另类成人亚洲欧美熟女| 午夜激情福利司机影院| 久久久成人免费电影| 少妇的逼水好多| av卡一久久| 日韩人妻高清精品专区| 亚洲国产精品久久男人天堂| 久久精品综合一区二区三区| 国语自产精品视频在线第100页| 亚洲av免费高清在线观看| 欧美日韩在线观看h| 国产高清三级在线| 18禁在线播放成人免费| 亚洲电影在线观看av| 成人鲁丝片一二三区免费| 日韩欧美三级三区| 亚洲在久久综合| 一本一本综合久久| 精品久久久久久久久亚洲| 大又大粗又爽又黄少妇毛片口| 最近中文字幕高清免费大全6| 国产午夜福利久久久久久| 又爽又黄无遮挡网站| 亚洲自偷自拍三级| 一个人看视频在线观看www免费| 99久国产av精品国产电影| 亚洲自拍偷在线| 久久久久久久亚洲中文字幕| 嫩草影院新地址| 亚洲欧美精品自产自拍| 久久草成人影院| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 国产麻豆成人av免费视频| 久久99热这里只有精品18| 久久久欧美国产精品| 能在线免费看毛片的网站| 2022亚洲国产成人精品| 久久久a久久爽久久v久久| 亚洲av一区综合| 亚洲一区二区三区色噜噜| 中出人妻视频一区二区| 中文精品一卡2卡3卡4更新| 久久久久国产网址| 一进一出抽搐动态| 日日撸夜夜添| 亚洲在久久综合| 麻豆成人午夜福利视频| 搡女人真爽免费视频火全软件| 午夜免费男女啪啪视频观看| 久久久久九九精品影院| 中文欧美无线码| 久久久久久久亚洲中文字幕| 两个人视频免费观看高清| 男的添女的下面高潮视频| 日本三级黄在线观看| 嫩草影院精品99| 日本-黄色视频高清免费观看| 亚洲欧美精品综合久久99| 麻豆国产97在线/欧美| 国产黄片美女视频| 日本撒尿小便嘘嘘汇集6| 亚洲精品色激情综合| 一个人看视频在线观看www免费| 麻豆成人午夜福利视频| 婷婷六月久久综合丁香| 亚洲无线观看免费| 麻豆国产av国片精品| 搡女人真爽免费视频火全软件| kizo精华| 久久午夜亚洲精品久久| 日韩精品有码人妻一区| 97超碰精品成人国产| 亚洲最大成人手机在线| 午夜a级毛片| 91精品一卡2卡3卡4卡| 国产亚洲av嫩草精品影院| 欧美bdsm另类| kizo精华| 国产精品嫩草影院av在线观看| 91aial.com中文字幕在线观看| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 国产在线男女| 精品不卡国产一区二区三区| 99国产精品一区二区蜜桃av| 女同久久另类99精品国产91| 成人无遮挡网站| 亚洲成人久久性| 少妇熟女欧美另类| 少妇丰满av| 国产综合懂色| 97在线视频观看| 精品少妇黑人巨大在线播放 | 国产黄片视频在线免费观看| 国产精品麻豆人妻色哟哟久久 | 一进一出抽搐动态| 中文欧美无线码| 日韩欧美国产在线观看| 又粗又硬又长又爽又黄的视频 | 精品国产三级普通话版|