• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses, Crystal Structures and Antimicrobial Activities of Vanadium(V) Complexes with Similar Tridentate Hydrazone Ligands①

    2015-03-25 02:35:30LIKeLIShuJingYAOXinJinNIUJingJingQIUXioYng
    結構化學 2015年6期

    LI Ke LI Shu-Jing②YAO Xin-Jin NIU Jing-Jing QIU Xio-Yng

    a (School of Chemistry & Chemical Engineering,Zhoukou Normal University, Zhoukou 466000, China)

    b (Department of Chemistry, Shangqiu Normal University, Shangqiu 476000, China)

    1 INTRODUCTION

    Hydrazones are a kind of biological active compounds, which can be prepared by the condensation reactions of carbonyl-containing compounds with hydrazides. The compounds have attracted considerable attention for their wide range of biological activities, such as antibacterial[1-3], antifungal[4,5],and antitumor[6,7]. It was reported that hydrazone compounds bearing electron-withdrawing groups can improve their antimicrobial activities[8,9]. Rai and co-workers reported a series of fluoro, chloro,bromo, and iodo-substituted compounds, and found that they have significant antimicrobial activities[10].Vanadium complexes with Schiff bases and hydrazones have been reported with interesting antibacterial activities[11-14]. As a continuation of work on the exploration of novel complexes based antimicrobial agents, in this paper, two hydrazone ligands (E)-N?-(2-hydroxy-5-methoxybenzylidene)-2-hydroxybenzohydrazide (HLa) and (E)-N?-(3,5-dichloro-2-hydroxybenzylidene)-4-methoxybenzohydrazide (HLb) were prepared. Based on the hydrazone ligands, two new structurally similar vanadium(V) complexes, [VOLaL]·CH3OH (1) and[VOLbL] (2), were obtained and their antimicrobial activities were investigated.

    2 EXPERIMENTAL

    2.1 Materials and methods

    Vanadyl acetylacetonate and organic materials were purchased from Sigma-Aldrich and used as received. All other reagents were of analytical reagent grade. Elemental analyses of C, H and N were carried out in a Perkin-Elmer automated model 2400 Series II CHNS/O analyzer. FT-IR spectra were obtained on a Perkin-Elmer 377 FT-IR spectrometer with samples prepared as KBr pellets. UVVis spectra were obtained on a Lambda 900 spectrometer. X-ray diffraction was carried out on a Bruker APEX II CCD diffractometer.

    2.2 Synthesis of HLa

    To the methanolic solution (30 mL) of 5-methoxysalicylaldehyde (0.02 mol, 3.04 g) was added a methanolic solution (20 mL) of 2-hydroxybenzohydrazide (0.02 mol, 3.04 g) with stirring. The mixture was stirred for 30 min at room temperature, and left to slowly evaporate to give colorless crystalline product, which was recrystallized from methanol and dried in vacuum containing anhydrous CaCl2.Yield 87%. IR data (cm–1): 3441, 3230, 1645, 1614,1570, 1492, 1453, 1363, 1311, 1272, 1228, 1156,1040, 963, 898, 813, 756, 640, 473. UV-Vis data(MeOH, λmax, nm): 293, 311, 358. Anal. Calcd. for C15H14N2O4: C, 62.9; H, 4.9; N, 9.8%. Found: C,62.7; H, 5.0; N, 9.7%.1H NMR (300 MHz,d6-DMSO): δ 12.02 (s, 1H), 11.79 (s, 1H), 10.60 (s,1H), 8.66 (s, 1H), 7.89 (1 H, dd, J = 7.8, 1.2). 7.45(m, 1H), 7.15 (d, 1H), 7.0~6.8 (m, 4H), 3.73 (s,3H).

    2.3 Synthesis of HLb

    To 30 mL methanolic solution of 3,5-dichlorosalicylaldehyde (0.02 mol, 3.84 g) was added a methanolic solution (20 mL) of 4-methoxybenzohydrazide (0.02 mol, 3.32 g) with stirring. The mixture was stirred for 30 min at room temperature,and left to slowly evaporate to give colorless crystalline product, which was recrystallized from methanol and dried in vacuum containing anhydrous CaCl2. Yield 91%. IR data (cm–1): 3440, 3273, 1647,1614, 1544, 1498, 1356, 1260, 1182, 1027, 963, 840,765, 685, 608, 479. UV-Vis data (MeOH, λmax, nm):288, 298, 327. Anal. Calcd. for C15H12Cl2N2O3: C,53.1; H, 3.6; N, 8.3%. Found: C, 53.2; H, 3.5; N,8.1%.1H NMR (300 MHz, d6-DMSO): δ 12.02 (s,1H), 11.39 (s, 1H), 8.64 (s, 1H), 7.95 (d, 2H), 7.54(d, 1H), 7.32 (m, 1H), 7.10 (d, 2H), 6.95 (t, 2H),3.86 (s, 3H).

    2.4 Synthesis of [VOLaL]·CH3OH (1)

    HLa(0.1 mmol, 28.6 mg) and vanadyl acetylacetonate (0.1 mmol, 26.5 mg) were mixed in methanol(10 mL). The mixture was refluxed for 1 h and then cooled to room temperature. Single crystals of the complexes, suitable for X-ray diffraction, were grown from the solution upon slow evaporation within a few days. The crystals were isolated by filtration, washed with methanol and dried in vacuum containing anhydrous CaCl2. Yield 37%. IR data (cm–1): 3447, 3208, 1693, 1536, 1496, 1433,1384, 1290, 1249, 1152, 1095, 1031, 974, 915, 756,693, 578, 483, 452. UV-Vis data (EtCN, λmax, nm):268, 314, 453. Anal. Calcd. for C23H22N3O8V: C,53.2; H, 4.3; N, 8.1%. Found: C, 53.0; H, 4.1; N,8.2%.

    2.5 Synthesis of [VOLbL] (2)

    HLb(0.1 mmol, 33.8 mg) and vanadyl acetylacetonate (0.1 mmol, 26.5 mg) were mixed in methanol(10 mL). The mixture was refluxed for 1 h and then cooled to room temperature. Single crystals of the complexes, suitable for X-ray diffraction, were grown from the solution upon slow evaporation within a few days. The crystals were isolated by filtration, washed with methanol and dried in vacuum containing anhydrous CaCl2. Yield 37%. IR data (cm–1): 3213, 1682, 1528, 1493, 1427, 1382,1241, 1165, 1093, 1018, 974, 760, 576, 483, 446.UV-Vis data (EtCN, λmax, nm): 293, 311, 358. Anal.calcd. for C22H16Cl2N3O6V: C, 48.9; H, 3.0; N, 7.8%.Found: C, 48.8; H, 3.1; N, 7.7%.

    2.6 X-ray crystallography

    X-ray diffraction was carried out at a Bruker APEX II CCD area diffractometer equipped with MoKα radiation (λ = 0.71073 ?). The collected data were reduced with SAINT[15], and multi-scan absorption correction was performed using SADABS[16]. The structures of the complexes were solved by direct methods with SHELXS-97[17], and refined against F2by full-matrix least-squares method using SHELXL-97[18]. All of the non-hydrogen atoms were refined anisotropically. The amino hydrogen atoms were located from electronic density maps and refined isotropically. The remaining hydrogen atoms were placed in the calculated positions and constrained to ride on their parent atoms. The crystallographic data and refinement parameters for the compounds are listed in Table 1.Selected bond lengths and bond angles are listed in Table 2.

    Table 1. Crystallographic and Refinement Data for the Complexes

    a R = Fo – Fc/Fo, wR = [∑w(Fo2 – Fc2)/∑w(Fo2)2]1/2

    Table 2. Selected Bond Distances (?) for the Complexes

    2.7 Antimicrobial assay

    The antibacterial activities of the compounds were tested against B. subtilis, S. aureus, E. coli, and P.fluorescence using MH (Mueller-Hinton) medium.The antifungal activities of the compounds were tested against C. albicans and A. niger using the RPMI-1640 medium. The MIC values of the tested compounds were determined by a colorimetric method using the dye MTT[19]. A stock solution of the compound (150 μmol·L–1) in DMSO was prepared and graded quantities (75, 37.5, 18.8, 9.4,4.7, 2.3, 1.2, 0.59 μmol·L–1) were incorporated in specified quantity of the corresponding sterilized liquid medium. A specified quantity of the medium containing the compound was poured into microtitration plates. Suspension of the microorganism was prepared to contain approximately 1.0 × 105cfu·mL–1and applied to microtitration plates with serially diluted compounds in DMSO to be tested and incubated at 37 ℃ for 24 and 48 h for bacterial and fungi, respectively. Then the MIC values were visually determined on each microtitration plate,with 50 μL of PBS (phosphate buffered saline 0.01 mol·L–1, pH = 7.4) containing 2 mg of MTT·mL–1being added to each well. Incubation was continued at room temperature for 4~5 h. The content of each well was removed, and 100 μL of isopropanol containing 5% 1 mol·L–1HCl was added to extract the dye. After 12 h of incubation at room temperature, the optical density was measured with a microplate reader at 550 nm.

    3 RESULTS AND DISCUSSION

    3.1 Synthesis and characterization

    The hydrazone ligands HLaand HLbwere readily prepared by the condensation reaction of 1:1 molar ratio of 5-methoxysalicylaldehyde with 2-hydroxybenzohydrazide, and 3,5-dichlorosalicylaldehyde with 4-methoxybenzohydrazide, respectively in methanol. Complexes 1 and 2 were prepared by the reaction of hydrazone ligands with vanadyl acetylacetonate in methanol, followed by recrystallization.Elemental analyses of the complexes are in accordance with the molecular structures proposed by X-ray analysis.

    3.2 Spectroscopic studies

    In the spectra of hydrazone ligands and the complexes, the weak and broad bands centered at about 3440 cm-1are assigned to the vibration of O–H bonds, and the weak and sharp bands located in the range of 3200~3300 cm-1are assigned to the vibration of N–H bonds. The position of the bands demonstrates that the N–H hydrazone protons are engaged in hydrogen bonds. The intense bands at 1645 cm-1of HLaand 1647 cm-1of HLbare generated by ν(C=O) vibrations, whereas the bands at 1614 cm-1by the ν(C=N) ones. The non-observation of ν(C=O) bands, present in the spectra of hydrazone ligands, indicates the enolization of amide functionality upon coordination to the V-center. Instead strong bands at 1693 cm-1for 1 and 1682 cm-1for 2 are observed, which can be attributed to the asymmetric stretching vibration of the conjugated CH=N–NH–C–O groups, characteristic for the coordination of enolate form of the ligands.The strong ν(V=O) bands at 974 cm-1could be clearly identified for both complexes[20].

    In the electronic spectra of the complexes, the lowest energy transition bands are observed at 453 nm for 1 and 358 nm for 2, which are attributed to LMCT transition as charge transfer from p-orbital on the lone-pair of ligands’ oxygen atoms to the empty d-orbital of the vanadium atoms. The other strong bands in the range of 310~330 nm in the spectra of both complexes are similar to the absorption bands in the spectra of the corresponding hydrazone ligands, so they are attributed to the intra-ligand π→π* absorption peak of the ligands. The other main LMCT and to some extent π→π* bands appear at 268 nm for 1 and 293 nm for 2, and this is due to the oxygen donor atoms bound to vanadium (V)[20].

    3.3 Structure description of the complexes

    The molecular structures of complexes 1 and 2 are shown in Figs. 1 and 2, respectively. The coordination geometry around the vanadium atoms can be described as distorted octahedral with the tridentate hydrazone ligand coordinated in a meridional fashion, forming five- and six-membered chelate rings with bite angles of 74.95(18)° (1) and 74.67(16)° (2) (N(1)–V(1)–O(2)), and 84.11(19)° (1)and 84.09(17)° (2) (N(1)–V(1)–O(1)), respectively,typical for this type of ligand systems[21]. Each chelating hydrazone ligand lies in a plane with one hydroxylato ligand which lies trans to the hydrazone N(1) atom. One carbonyl atom of the benzohydroxamate ligand trans to the oxo group completes the distorted octahedral coordination sphere at a rather elongated distance of about 2.2 ?, due to the trans influence of the oxo group. This is accompanied by a significant displacement of the vanadium atom from the plane defined by the four basal donor atoms towards the apical oxo oxygen atom by 0.29 ?. As expected, the hydrazone ligands coordinate in their doubly deprotonated enolate form which is consistent with the observed O(2)–C(9) and N(2)–C(9) bond lengths of 1.29 and 1.31 ? in 1, and O(2)–C(8) and N(2)–C(8) bond distances of 1.29 and 1.30 ? in 2. This agrees with the reported vanadium complexes containing the enolate form of this ligand type[21-23]. In the crystal packing structure of complex 1, hydrazone molecules are linked by methanol molecules through intermolecular hydrogen bonds of N–H···O and O–H···O (Table 3),leading to the formation of 1D chains along the a axis (Fig. 3). In the crystal packing structure of complex 2, hydrazone molecules are linked together through intermolecular hydrogen bonds of N–H···N(Table 3), leading to the formation of 1D chains along the c axis (Fig. 4). In addition, there are π···π stacking interactions (Table 4) among the chains along the b axis in both structures. The hydrogen bonds as well as the π···π stacking interactions lead to the formation of 2D sheets parallel to the ab plane for 1 and bc plane for 2.

    Table 3. Distances (?) and Angles (o) Involving Hydrogen Bonding of the Complexes

    Table 4. Parameters between the Planes for the Complexes

    Fig. 1. A perspective view of complex 1 with atomic labeling scheme.Thermal ellipsoids are drawn at 30% probability level

    Fig. 2. A perspective view of complex 2 with atomic labeling scheme.Thermal ellipsoids are drawn at the 30% probability level

    Fig. 3. Molecular packing structure of complex 1, with hydrogen bonds shown as dotted lines

    Fig. 4. Molecular packing structure of complex 2, with hydrogen bonds shown as dotted lines

    3.4 Antimicrobial activity

    The hydrazone ligands and vanadium complexes were screened for antibacterial activities against two Gram (+) bacterial strains (Bacillus subtilis and Staphylococcus aureus) and two Gram (–) bacterial strains (Escherichia coli and Pseudomonas fluorescence) by MTT method. The MIC (minimum inhibitory concentration) values of the compounds against four bacteria are listed in Table 5. Penicillin G was used as the standard drug. The hydrazone ligands show medium activities against the bacteria B. subtilis, S. aureus, and E. coli. HLbhas weak activity against P. fluorescence, while HLahas no activity. The two complexes have from strong to medium activities against B. subtilis, S. aureus, and E. coli, while no activity against P. fluorescence. In general, the complexes have stronger activities against B. subtilis, and weaker activities against S.aureus, E. coli and P. fluorescence when compared with the hydrazone ligands. It should be noted that complex 2 has stronger activity against B. subtilis than Penicillin G.

    Table 5. Antimicrobial Activities of the Compounds

    The antifungal activities of the hydrazone ligands and the complexes were also evaluated against two fungal strains (Candida albicans and Aspergillus niger) by MTT method. Ketoconazole was used as a reference material. However, both hydrazone ligands and the complexes have no activity against the fungal strains.

    (1) Kaplancikli, Z. A.; Altintop, M. D.; Ozdemir, A.; Turan-Zitouni, G.; Goger, G.; Demirci, F. Synthesis and in vitro evaluation of some hydrazone derivatives as potential antibacterial agents. Lett. Drug Des. Discov. 2014, 11, 355–362.

    (2) Narisetty, R.; Chandrasekhar, K. B.; Mohanty, S.; Balram, B. Synthesis of novel hydrazone derivatives of 2,5-difluorobenzoic acid as potential antibacterial agents. Lett. Drug Des. Discov. 2013, 10, 620–624.

    (3) Zhi, F.; Shao, N.; Wang, Q.; Zhang, Y.; Wang, R.; Yang, Y. Crystal structures and antibacterial activity of hydrazone derivatives from 1H-indol-3-acetohydrazide. J. Struct. Chem. 2013, 54, 148–154.

    (4) Ozdemir, A.; Turan-Zitouni, G.; Kaplancikli, Z. A.; Demirci, F.; Iscan, G. Studies on hydrazone derivatives as antifungal agents. J. Enzyme Inhib.Med. Chem. 2008, 23, 470–475.

    (5) Loncle, C.; Brunel, J. M.; Vidal, N.; Dherbomez, M.; Letourneux, Y. Synthesis and antifungal activity of cholesterol-hydrazone derivatives. Eur. J.Med. Chem. 2004, 39, 1067–1071.

    (6) Liu, Y. C.; Wang, H. L.; Tang, S. F.; Chen, Z. F.; Liang, H. Synthesis and antitumor mechanism of a new anthracene imidazole hydrazone derivative.Anticancer Res. 2014, 34, 6034–6035.

    (7) Krishnamoorthy, P.; Sathyadevi, P.; Cowley, A. H.; Butorac, R. R.; Dharmaraj, N. Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur. J. Med. Chem. 2011, 46, 3376–3387.

    (8) Zhang, M.; Xian, D. M.; Li, H. H.; Zhang, J. C.; You, Z. L. Synthesis and structures of halo-substituted aroylhydrazones with antimicrobial activity.Aust. J. Chem. 2012, 65, 343–350.

    (9) Shi, L.; Ge, H. M.; Tan, S. H.; Li, H. Q.; Song, Y. C.; Zhu, H. L.; Tan, R. X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 2007, 42, 558–564.

    (10) Rai, N. P.; Narayanaswamy, V. K.; Govender, T.; Manuprasad, B. K.; Shashikanth, S.; Arunachalam, P. N. Design, synthesis, characterization, and antibacterial activity of {5-chloro-2-[(3-substitutedphenyl-1,2,4-oxadiazol-5-yl)-methoxy]-phenyl}-(phenyl)-methanones.Eur. J. Med. Chem. 2010, 45, 2677–2682.

    (11) Wazalwar, S. S.; Bhave, N. S.; Dikundwar, A. G.; Ali, P. Microwave assisted synthesis and antimicrobial study of Schiff base vanadium(IV)complexes of phenyl esters of amino acids. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011, 41, 459–464.

    (12) Liu, J. L.; Sun, M. H.; Ma, J. J. New vanadium complexes with aroylhydrazone ligands: synthesis, structures, and biochemical properties. Synth.React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 117–121.

    (13) Chohan, Z. H.; Sumrra, S. H.; Youssoufi, M. H.; Hadda, T. B. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.Eur. J. Med. Chem. 2010, 45, 2739–2747.

    (14) Taheri, O.; Behzad, M.; Ghaffari, A.; Kubicki, M.; Dutkiewicz, G.; Bezaatpour, A.; Nazari, H.; Khaleghian, A.; Mohammadi, A.; Salehi, M.Synthesis, crystal structures and antibacterial studies of oxidovanadium(IV) complexes of salen-type Schiff base ligands derived from meso-1,2-diphenyl-1,2-ethylenediamine. Trans. Met. Chem. 2014, 39, 253–259.

    (15) Bruker, SMART (Version 5.625) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA 2007.

    (16) Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction of Area Detector, University of G?ttingen, German 1996.

    (17) Sheldrick, G. M. SHELXS-97∶ A Program for Crystal Structure Solution, University of G?ttingen, G?ttingen, Germany 1997.

    (18) Sheldrick, G. M. SHELXL-97∶ A Program for Crystal Structure Refinement, University of G?ttingen, G?ttingen, Germany 1997.

    (19) Meletiadis, J.; Meis, J. F. G. M.; Mouton, J. W.; Donnelly, J. P.; Verweij, P. E. Comparison of NCCLS and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. J. Clin. Microbiol. 2000, 38, 2949–2954.

    (20) Sarkar, A.; Pal, S. Dioxovanadium(V) complexes with N,N,O-donor monoanionic ligands: synthesis, structure and properties. Polyhedron 2007, 26, 1205–1210.

    (21) Monfared, H. H.; Alavi, S.; Bikas, R.; Vahedpour, M.; Mayer, P. Vanadiumoxo-aroylhydrazone complexes: synthesis, structure and DFT calculations.Polyhedron 2010, 29, 3355–3362.

    (22) Zhang, X. T.; Zhan, X. P.; Wu, D. M.; Zhang, Q. Z.; Chen, S. M.; Yu, Y. Q.; Lu, C. Z. Syntheses, structures and characterization of two new vanadium(V) complexes: [PyH][VVO2(C14H9N2O3Br)] and [VVO(C14H9N2O3Br)(OCH3)]. Chin. J. Struct. Chem. 2002, 21, 629–633.

    (23) Monfared, H. H.; Alavi, S.; Bikas, R.; Vahedpour, M.; Mayer, P. Vanadiumoxo-aroylhydrazone complexes: synthesis, structure and DFT calculations.Polyhedron 2010, 29, 3355–3362.

    啦啦啦啦在线视频资源| 夜夜夜夜夜久久久久| АⅤ资源中文在线天堂| 一区二区三区高清视频在线| 可以在线观看毛片的网站| 51国产日韩欧美| 成年女人永久免费观看视频| 在线观看av片永久免费下载| 色综合婷婷激情| 亚洲人成伊人成综合网2020| 黄色视频,在线免费观看| 村上凉子中文字幕在线| av.在线天堂| 久久久久久久亚洲中文字幕| 国产视频内射| а√天堂www在线а√下载| 人人妻,人人澡人人爽秒播| 日韩国内少妇激情av| 色av中文字幕| 午夜福利视频1000在线观看| 国产精品爽爽va在线观看网站| 日韩精品青青久久久久久| 国产精品一区二区免费欧美| 免费高清视频大片| 精品一区二区三区人妻视频| 精品国内亚洲2022精品成人| 人妻久久中文字幕网| 最近视频中文字幕2019在线8| 最好的美女福利视频网| 黄色日韩在线| 又黄又爽又刺激的免费视频.| 国内精品宾馆在线| 18禁在线播放成人免费| 国产精品一及| 色在线成人网| 国产一区二区三区视频了| 色5月婷婷丁香| 亚洲国产精品久久男人天堂| 蜜桃亚洲精品一区二区三区| 99在线视频只有这里精品首页| 制服丝袜大香蕉在线| 精品久久久久久久久av| 欧美黑人欧美精品刺激| 少妇人妻一区二区三区视频| 12—13女人毛片做爰片一| 少妇高潮的动态图| 色5月婷婷丁香| 精品久久久久久久久久免费视频| 最新在线观看一区二区三区| 精品99又大又爽又粗少妇毛片 | 中国美女看黄片| 91久久精品国产一区二区三区| 99热只有精品国产| 一进一出好大好爽视频| 午夜福利18| 精品一区二区三区人妻视频| 婷婷精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 联通29元200g的流量卡| 午夜爱爱视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 久久这里只有精品中国| 黄色一级大片看看| 人妻丰满熟妇av一区二区三区| 麻豆国产av国片精品| 国模一区二区三区四区视频| 精品久久久久久久久av| 免费av毛片视频| 99国产极品粉嫩在线观看| 亚洲电影在线观看av| 久久久久国产精品人妻aⅴ院| 赤兔流量卡办理| 亚洲久久久久久中文字幕| 亚洲国产色片| 欧美激情在线99| 哪里可以看免费的av片| 免费看a级黄色片| 又紧又爽又黄一区二区| 人妻丰满熟妇av一区二区三区| 99热这里只有是精品在线观看| 亚洲欧美日韩卡通动漫| 淫秽高清视频在线观看| 最新中文字幕久久久久| 日韩欧美精品v在线| 日韩欧美 国产精品| 日韩精品中文字幕看吧| 美女被艹到高潮喷水动态| 亚洲美女搞黄在线观看 | 亚洲av.av天堂| 国产熟女欧美一区二区| 国产精品人妻久久久久久| 国产高清三级在线| 狂野欧美白嫩少妇大欣赏| 久久久久久久精品吃奶| 少妇被粗大猛烈的视频| 男女啪啪激烈高潮av片| 国产午夜福利久久久久久| 亚洲中文日韩欧美视频| 又黄又爽又刺激的免费视频.| 18禁黄网站禁片午夜丰满| 成人美女网站在线观看视频| 又黄又爽又刺激的免费视频.| 日日摸夜夜添夜夜添小说| 久久这里只有精品中国| 亚州av有码| 国产不卡一卡二| 又粗又爽又猛毛片免费看| 床上黄色一级片| avwww免费| 欧美+亚洲+日韩+国产| 午夜福利在线观看免费完整高清在 | 18禁黄网站禁片午夜丰满| 欧美成人一区二区免费高清观看| 色哟哟·www| 成人国产麻豆网| 日本与韩国留学比较| 一区二区三区高清视频在线| 看十八女毛片水多多多| 欧美日韩瑟瑟在线播放| 波多野结衣巨乳人妻| 日本三级黄在线观看| 老司机福利观看| 一本一本综合久久| 色精品久久人妻99蜜桃| 国内毛片毛片毛片毛片毛片| 99热只有精品国产| 99在线人妻在线中文字幕| 久久久久久久久大av| 免费在线观看影片大全网站| 麻豆成人av在线观看| 成人欧美大片| 日本在线视频免费播放| 在线看三级毛片| 99热这里只有是精品在线观看| 在线观看午夜福利视频| 91麻豆精品激情在线观看国产| 两个人的视频大全免费| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美,日韩| 观看免费一级毛片| 特大巨黑吊av在线直播| 中国美女看黄片| 淫秽高清视频在线观看| 久久人人爽人人爽人人片va| 久久久久久久久大av| 成人国产麻豆网| 午夜福利高清视频| 熟女电影av网| 特级一级黄色大片| 国产精品电影一区二区三区| 淫妇啪啪啪对白视频| 国产成人av教育| 在现免费观看毛片| 岛国在线免费视频观看| 亚洲国产欧美人成| 亚洲18禁久久av| 最新中文字幕久久久久| 亚洲av中文av极速乱 | 国产黄a三级三级三级人| 嫩草影视91久久| 一个人看视频在线观看www免费| 99热这里只有精品一区| 日韩亚洲欧美综合| 亚洲五月天丁香| av视频在线观看入口| 天堂动漫精品| av中文乱码字幕在线| 一区二区三区高清视频在线| 动漫黄色视频在线观看| 国产精品野战在线观看| 色视频www国产| 熟女人妻精品中文字幕| 一本一本综合久久| 日韩欧美免费精品| 一夜夜www| 狠狠狠狠99中文字幕| 国产精品自产拍在线观看55亚洲| 欧美一区二区国产精品久久精品| 五月玫瑰六月丁香| 免费av毛片视频| 亚州av有码| 国产精品三级大全| 国产男人的电影天堂91| 日本精品一区二区三区蜜桃| 色吧在线观看| 精品久久久久久久久av| 最近视频中文字幕2019在线8| 最近视频中文字幕2019在线8| 一夜夜www| 国产精品久久视频播放| 好男人在线观看高清免费视频| 麻豆国产av国片精品| 少妇人妻精品综合一区二区 | 校园春色视频在线观看| 亚洲av电影不卡..在线观看| 黄色丝袜av网址大全| 精品午夜福利视频在线观看一区| 深夜a级毛片| 午夜福利高清视频| 日本五十路高清| 精品久久久久久久久亚洲 | 在线看三级毛片| 91麻豆av在线| 99久久成人亚洲精品观看| 亚洲男人的天堂狠狠| 联通29元200g的流量卡| 亚洲成av人片在线播放无| 99久久九九国产精品国产免费| 亚洲第一区二区三区不卡| av中文乱码字幕在线| 亚洲美女视频黄频| 男女边吃奶边做爰视频| 天美传媒精品一区二区| 18禁裸乳无遮挡免费网站照片| 99热6这里只有精品| 老司机福利观看| 久久精品国产鲁丝片午夜精品 | 最新中文字幕久久久久| 五月玫瑰六月丁香| or卡值多少钱| 国产精品久久久久久av不卡| 高清毛片免费观看视频网站| 午夜激情欧美在线| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 国产伦在线观看视频一区| 99视频精品全部免费 在线| 久久久午夜欧美精品| 国产精品日韩av在线免费观看| 久久中文看片网| 九九热线精品视视频播放| 校园人妻丝袜中文字幕| 久久九九热精品免费| 最新在线观看一区二区三区| 久久精品国产鲁丝片午夜精品 | 国产精品免费一区二区三区在线| 俄罗斯特黄特色一大片| 一区二区三区免费毛片| 日本撒尿小便嘘嘘汇集6| 99热这里只有精品一区| 成人美女网站在线观看视频| 久久人妻av系列| 99久国产av精品| 国产精品一区二区免费欧美| 日日摸夜夜添夜夜添av毛片 | 日韩精品青青久久久久久| 午夜福利在线观看免费完整高清在 | 国产亚洲精品久久久久久毛片| 日韩一本色道免费dvd| 欧美日韩精品成人综合77777| 久久婷婷人人爽人人干人人爱| 88av欧美| 一个人免费在线观看电影| 亚洲四区av| 亚洲avbb在线观看| 啦啦啦韩国在线观看视频| 国产精品国产高清国产av| 91久久精品电影网| 亚洲精品成人久久久久久| 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx在线观看| 色播亚洲综合网| 国产视频内射| 日本在线视频免费播放| 国产精品人妻久久久久久| 在线观看66精品国产| 波多野结衣高清无吗| 丰满的人妻完整版| 九九热线精品视视频播放| 中国美女看黄片| 成年免费大片在线观看| 久久国产精品人妻蜜桃| 久久久久久久久久成人| 日韩欧美 国产精品| 少妇被粗大猛烈的视频| 国产亚洲91精品色在线| 久久亚洲真实| 色视频www国产| 成人综合一区亚洲| 亚洲av五月六月丁香网| 久久精品人妻少妇| 99热网站在线观看| 亚洲七黄色美女视频| 午夜精品久久久久久毛片777| 成人亚洲精品av一区二区| 中文字幕av在线有码专区| 在线观看66精品国产| 亚洲自拍偷在线| 久久久久久久午夜电影| 久久国内精品自在自线图片| 欧美成人免费av一区二区三区| 韩国av一区二区三区四区| 999久久久精品免费观看国产| 2021天堂中文幕一二区在线观| 长腿黑丝高跟| 久久久久久久精品吃奶| 亚洲人成伊人成综合网2020| 亚洲人成网站高清观看| 免费av不卡在线播放| 亚洲av中文av极速乱 | 欧美成人免费av一区二区三区| 午夜免费男女啪啪视频观看 | 国产成人a区在线观看| 欧美高清成人免费视频www| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观| 亚洲精品色激情综合| 毛片一级片免费看久久久久 | 在线播放国产精品三级| 伦精品一区二区三区| 国产高潮美女av| 亚洲综合色惰| 啪啪无遮挡十八禁网站| 亚洲成a人片在线一区二区| 亚洲三级黄色毛片| 午夜福利在线观看免费完整高清在 | 一进一出好大好爽视频| 制服丝袜大香蕉在线| 好男人在线观看高清免费视频| 午夜激情欧美在线| 99在线视频只有这里精品首页| 最近中文字幕高清免费大全6 | 五月玫瑰六月丁香| 色哟哟哟哟哟哟| 国产一区二区三区av在线 | 特大巨黑吊av在线直播| 亚洲成av人片在线播放无| 日本免费一区二区三区高清不卡| 天堂动漫精品| 成年人黄色毛片网站| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区 | 亚洲久久久久久中文字幕| 成人永久免费在线观看视频| 中文字幕av成人在线电影| 亚洲av成人av| 成年人黄色毛片网站| 十八禁国产超污无遮挡网站| 人妻制服诱惑在线中文字幕| 男人舔奶头视频| 久久久久久国产a免费观看| 午夜精品久久久久久毛片777| 99热这里只有是精品50| 免费观看在线日韩| 免费av毛片视频| 男女视频在线观看网站免费| 欧美中文日本在线观看视频| 亚洲性久久影院| av在线观看视频网站免费| 欧美日韩中文字幕国产精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 老师上课跳d突然被开到最大视频| 亚洲最大成人中文| 国产一区二区三区av在线 | 亚洲国产精品久久男人天堂| 色5月婷婷丁香| 午夜影院日韩av| 久久人人爽人人爽人人片va| 最后的刺客免费高清国语| 国产av一区在线观看免费| 网址你懂的国产日韩在线| 少妇被粗大猛烈的视频| 欧美激情在线99| 国产久久久一区二区三区| 精品福利观看| 搡女人真爽免费视频火全软件 | 国内精品美女久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 高清毛片免费观看视频网站| 免费黄网站久久成人精品| 又黄又爽又免费观看的视频| eeuss影院久久| 99九九线精品视频在线观看视频| 一本一本综合久久| 99热精品在线国产| 国产一级毛片七仙女欲春2| 久久中文看片网| 成年人黄色毛片网站| 久久久久久久亚洲中文字幕| 亚洲专区国产一区二区| 精品国产三级普通话版| videossex国产| 99热这里只有是精品50| 亚洲中文字幕日韩| 香蕉av资源在线| 毛片一级片免费看久久久久 | 天堂av国产一区二区熟女人妻| 999久久久精品免费观看国产| 国产精品一及| 男插女下体视频免费在线播放| 中文字幕免费在线视频6| netflix在线观看网站| 一区二区三区高清视频在线| 少妇的逼好多水| 国产人妻一区二区三区在| 99久久精品一区二区三区| 午夜免费成人在线视频| 免费大片18禁| 特大巨黑吊av在线直播| 色综合色国产| 成人国产麻豆网| 亚洲精品久久国产高清桃花| 美女高潮的动态| 久久久久免费精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 欧美性猛交黑人性爽| 亚洲一区高清亚洲精品| 91狼人影院| 亚洲美女黄片视频| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 亚洲成av人片在线播放无| 精品久久久久久,| 日韩一区二区视频免费看| 村上凉子中文字幕在线| 亚洲精华国产精华精| 亚洲成人久久爱视频| 99精品在免费线老司机午夜| 国产高潮美女av| 男人舔女人下体高潮全视频| 高清毛片免费观看视频网站| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 一本久久中文字幕| 成人精品一区二区免费| 亚洲自拍偷在线| 最后的刺客免费高清国语| 欧美潮喷喷水| 久久人人精品亚洲av| 男女视频在线观看网站免费| 一本精品99久久精品77| 99久久久亚洲精品蜜臀av| 亚洲av一区综合| 国产综合懂色| 男人舔奶头视频| 啪啪无遮挡十八禁网站| 中文字幕久久专区| 午夜福利18| 性插视频无遮挡在线免费观看| 久久久精品大字幕| 国产 一区精品| 久久午夜亚洲精品久久| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 午夜激情欧美在线| 欧美日韩瑟瑟在线播放| 国产精品一及| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| 成年女人永久免费观看视频| 国产男靠女视频免费网站| 亚洲av日韩精品久久久久久密| 免费看日本二区| 波野结衣二区三区在线| 精品久久国产蜜桃| 婷婷丁香在线五月| 少妇高潮的动态图| 久久精品影院6| 在线看三级毛片| 麻豆成人av在线观看| 国产欧美日韩精品亚洲av| 欧美3d第一页| 亚洲中文字幕日韩| 男女边吃奶边做爰视频| 欧美极品一区二区三区四区| av在线蜜桃| 18禁在线播放成人免费| 又爽又黄a免费视频| 日韩精品青青久久久久久| 天堂√8在线中文| a在线观看视频网站| 女的被弄到高潮叫床怎么办 | 老熟妇仑乱视频hdxx| 亚洲一级一片aⅴ在线观看| 99久久无色码亚洲精品果冻| 夜夜夜夜夜久久久久| 麻豆一二三区av精品| 精品一区二区三区人妻视频| 久久久成人免费电影| 欧美成人性av电影在线观看| 夜夜夜夜夜久久久久| 欧美高清成人免费视频www| 午夜免费成人在线视频| 久久人人爽人人爽人人片va| videossex国产| 国产精品久久久久久久久免| 国产亚洲精品综合一区在线观看| 欧美三级亚洲精品| 亚洲美女视频黄频| 制服丝袜大香蕉在线| 亚洲成人久久爱视频| 国产在线精品亚洲第一网站| 色综合色国产| 国产精品无大码| АⅤ资源中文在线天堂| 日韩高清综合在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲午夜理论影院| 午夜福利在线在线| 露出奶头的视频| 亚洲av不卡在线观看| 国产女主播在线喷水免费视频网站 | 日韩高清综合在线| 久久久久久久久中文| 精品国产三级普通话版| 欧美xxxx性猛交bbbb| 变态另类成人亚洲欧美熟女| 露出奶头的视频| 天堂影院成人在线观看| 午夜免费成人在线视频| 国产成人影院久久av| 18+在线观看网站| 99热只有精品国产| 99久国产av精品| 国产乱人视频| 高清毛片免费观看视频网站| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 亚洲天堂国产精品一区在线| 日韩欧美精品v在线| 在现免费观看毛片| 国产精品98久久久久久宅男小说| 日韩强制内射视频| 啦啦啦观看免费观看视频高清| 色综合亚洲欧美另类图片| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站| www.www免费av| 欧美日韩瑟瑟在线播放| 黄色视频,在线免费观看| 亚洲三级黄色毛片| 亚洲av.av天堂| 欧美极品一区二区三区四区| av中文乱码字幕在线| 99精品久久久久人妻精品| 日本-黄色视频高清免费观看| 亚洲精华国产精华精| 人妻制服诱惑在线中文字幕| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 国产91精品成人一区二区三区| 亚洲欧美精品综合久久99| 村上凉子中文字幕在线| 中文字幕精品亚洲无线码一区| 999久久久精品免费观看国产| 少妇高潮的动态图| 中文字幕熟女人妻在线| 免费人成在线观看视频色| 亚洲精品成人久久久久久| 国产亚洲欧美98| 午夜福利在线在线| 精品人妻熟女av久视频| 日本黄大片高清| 午夜免费激情av| 变态另类成人亚洲欧美熟女| 欧美zozozo另类| 老司机深夜福利视频在线观看| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 国产精品久久久久久亚洲av鲁大| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 免费人成视频x8x8入口观看| 亚洲最大成人中文| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验 | 一区二区三区免费毛片| 国产精品亚洲美女久久久| 精品久久国产蜜桃| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 久久久久久久久久久丰满 | 丰满乱子伦码专区| 中文字幕久久专区| 亚洲自偷自拍三级| 淫妇啪啪啪对白视频| 亚洲一级一片aⅴ在线观看| 国产在视频线在精品| 国内揄拍国产精品人妻在线| 老司机福利观看| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 亚洲美女黄片视频| 麻豆精品久久久久久蜜桃| 男人舔奶头视频| 无人区码免费观看不卡| 日韩一本色道免费dvd| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 久久久久国内视频| 久久香蕉精品热| 春色校园在线视频观看| ponron亚洲| 真人一进一出gif抽搐免费| 精品一区二区三区视频在线观看免费| 99riav亚洲国产免费| 九九在线视频观看精品| 99riav亚洲国产免费| 国产高清不卡午夜福利| 成人无遮挡网站| 国产精品久久久久久久电影| www.www免费av| 一区二区三区激情视频| 久久久色成人| 国产高潮美女av| 日韩 亚洲 欧美在线| 国产三级中文精品| 97超级碰碰碰精品色视频在线观看| 精品人妻1区二区|