• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Resampling Procedure Based on Genetic Algorithm in Particle Filter

    2015-03-23 01:19:02ZHANGMinJIAHaitaoandSHENZhen
    關(guān)鍵詞:電子科技國家自然科學(xué)基金機(jī)動

    ZHANG Min, JIA Hai-tao, and SHEN Zhen

    (1. Library, University of Electronic Science and Technology of China Chengdu 611731;2. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China Chengdu 611731)

    Improved Resampling Procedure Based on Genetic Algorithm in Particle Filter

    ZHANG Min1, JIA Hai-tao2, and SHEN Zhen2

    (1. Library, University of Electronic Science and Technology of China Chengdu 611731;2. Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of China Chengdu 611731)

    Particle filtering is a nonlinear and non-Gaussian dynamical filtering system. It has found widespread applications in detection, navigation, and tracking problems. The strong maneuverability of target tracking brings heavy impact on particle attributes in resampling process of particle filters, such as, particle state, particle weights, and so on. This paper proposes a new particle filter algorithm based on genetic algorithm optimization. This algorithm combines the hereditability and aberrance of the genetic algorithm into the resampling procedure of particle filter to improve the adaptability of maneuvering target tracking.

    genetic algorithm; maneuvering target tracking; nonlinear filtering; particle filter; particle resampling

    Target tracking is used in many application areas, such as the defense system, radar system, sonar system, aeronautical system, satellite system, and autonomous robots[1]. For anyone target tracking system, it must solve two basic tasks. One is the accurate estimation procedure, which needs to infer the accurate estimation of target position from noise measurement data. The other is predicting the target position in the next time that can be used to control the tracker to catch the target[2]. So the kernel problem of target tracking is to estimate the states of the moving target, such as position, velocity, and acceleration. Most target tracking algorithms belong to Bayesian theoretic, such as Kalman filter and particle filter, which they are popular Bayesian filters for target tracking because of their probabilistic nature[3].

    The particle filter algorithm was first proposed in Ref.[4]. In recent years, the particle filter (PF), as an effective estimator for the nonlinear filtering problem, has been widely used in many fields, including signal processing, biostatistics, economics, and engineering.

    The kernel of particle filters is designing the posterior probability density functions based on a sample (or particle). This allows the filter to handle the nonlinearity of system, as well as the non-Gaussian nature of noise processes.

    PF can sufficiently estimate the system states when the number of particles (i.e., estimations of thestate vectors that evolve in parallel) is large. In Ref.[5], a particle filtering algorithm for tracking was introduced, which focuses on geometric properties of the sensor network configuration, and the algorithm was derived from geometry. In Ref.[6], a tracking method was proposed that first estimated the positions of a target in its most recent past and then fit them with a piece-wise trajectory. In Ref.[7], another method for distributed tracking in binary sensor networks was developed, which was derived by using hidden state estimation and the Viterbi algorithm.

    Up to today, particle is one of the most success non-liner filters. But there are some optimization researches in maneuvering target tracking. During tracking strong maneuvering targets, continuous or strong motor will take heavy impacts on the particle filter re-sampling process. Concisely to say, this strong mobility or continuous motor will make the particle weights that can correctly estimate target state turn smaller, or even be abandoned, and the particle weights which have not contribution even be increased infinitely, and this group of particles cannot correctly estimate the target state. So this paper proposes a new particle filter algorithm based on genetic algorithm optimization. This algorithm takes the descendiblity and aberrance of the genetic algorithm into particle filter resampling procedure, which seems to more adapt the maneuvering target tracking.

    1 Particle Filter Theory

    Considering a single target tracking problem, xkis the target motion state vector at time k:

    wherevk~N(μ,Σ)andN(μ,Σ)are noise sequence which have the Gaussian distribution with mean μ and covariance matrix Σ, ωkis observation noise sequence and is independent of vk, f(?)is nonlinear state function, zkis observation vector obtained at time k, and h(?)is nonlinear measurement function. Let X0:k={x0,x1,,xk} and Z0:k={z0,z1,,zk}denote the vectors of the motion states and the observation states of target from beginning to timek.

    In the following discussion, the notation p(?)is used to denote a probability density function (PDF), for exampleindicates that the particles are distributed according to the pdf of the true state[9].

    Using statistics theoretics, the system is completely described as follows[10]:

    1)p(xn|xn?1). The state transition probability density function. It desribes the evolution of the system from time n?1 to n. Alternatively, the same could be described with a state transition model of the formxn=Φ(xn?1,vn), where vnis a noise process.

    2)p(zn|xn). Observation likelihood density, describing the conditional likelihood of observation given state. As before, this relationship could be in the form of an observation model zn=h(xn)+nn, where nnis a noise process which is independent of vn.

    3)p(xn). The prior state probability atttime.

    It is assumed that the X0:n={x0,x1,,xn}is a homogeneous Markov chain, the conditional probability density of xngiven by the past states x0:n?1=(x0,x1,,xn?1) only depends on xn?1, through the transition densityp(xn|xn?1), and the conditional probability density of zngiven by the statesx0:tand the past observationsz0:n?1only depends on xtthrough the conditional likelihood p(zn|xn)[11].

    The objective of filtering is to estimate the posterior density of the state given by the past observationsp(xn|z1:n). As new observations arrive, a recursive update of the posterior density is given by the recursive Bayesian filter. It is defined as[12]:

    In most applications, the posterior density of the state vector p(xn|z1:n) is interested. In particle filtering, densities are approximated by a set of samples (particles)In the state space, their associated normalized probability weights satisfy

    Then the posterior density of the state vector can be approximated as[13]:

    where δ(?) is the Dirac Delta function centered atxn. The setis the weights of particle set that representthe posterior density at timen, and is estimated recursively fromThe initial particlesetobtained from sampling the prior densityπ0=p(x0)[14].

    In general, it is difficult to sample directly from the full posterior density. To overcome this difficulty, the method of importance sampling is used. The particlesare drawn from an easy sampling function q(?) called importance density. So the normalized weights is written as[15]:

    The importance density is factorized as follows[16]:

    So the weights can be updated sequentially as[17]:

    One of the most common particle-filtering algorithms is the sampling importance resampling (SIR) filter. It updates the sample sets that represent the posterior about the map and the trajectory of the vehicle. The process can be summarized by the following four steps[18].

    1) Sampling: The next generation of particlesis obtained from the generationsampling from the proposal distribution π. Usually, a probabilistic motion model is used as the proposal distribution.

    2) Importance weighting: According to the importance sampling principle, an individual importance weightis assigned to each particle. The weights account for the fact that the proposal distribution π is, in general, not equal to the target distribution of successor states.

    3) Resampling: Particles are drawn with the replacement proportional to their importance weight. This step is necessary, since only a finite number of particles are used to approximate a continuous distribution. Furthermore, resampling allows us to apply a particle filter in situations in which the target distribution differs from the proposal. After resampling, all the particles have the same weight[19].

    4) Map estimation: For each particle, based on the trajectoryof that sample and the history of observationsz0:n, the corresponding map estimation p(xn|z1:n) is computed[20].

    2 Improved Algorithm

    Without the resampling step, the basic particle filter would suffer from the sample depletion. This means that all particles not a few will have negligible weights after a while. The resampling step resolves the reduction of the effects of degeneracy. The basic idea of resampling is to drop particles that have small weights and to concentrate on those which have large weights. A new set of samples is generated by resampling the set of samples and taking out the particles that have small weights.rNsamples from the current set, proportionally to their weights. In this new set, for instance, the samples with the lowest probabilities will disappear. Next, the weights associated with the samples are scaled in order to represent the probability associated with each sample. In fact the resulting set of samples is an independency density sample from the discrete posterior probability functionp(xt|z0:t). Therefore, the weights can now be reset asFig. 1 shows the resampling procedure.

    The common resampling procedure would duplicate the old ones that have high weights, which might lead to a loss of diversity (named sample impoverishment). It is very severe and in a poor way that all particles may collapse at a single point with a few iterations if the process noise is very small. Especially there is some mutation in target state when it maneuvers. Without considering this mutation, the particles will not represent the posterior density of target state, and would generate degeneracy of particles.

    Aiming at the resampling step, this paper proposes an improved algorithm whose main idea is generatingsome aberrance particles in the resampling procedure. Once the target state has been maneuvered, some aberrance particles would work well and have high weights, which will increase the diversity and make the particle filter suit to maneuvering target tracking. Figure 2 shows the algorithm flow.

    The improved algorithm detail step is:

    1) Sorting particles into three types: the normal particle, aberrance particle, and best particle. The best particles would maintain its state in the resampling procedure, while the aberrance particle would randomly alter its state.

    2) Evaluating the maneuvering. Here a maneuvering parameter is used to evaluate the target maneuvering. The function of maneuvering parameter is:

    where βmis maneuvering parameter andis the mean value of n?1iterative loop weights.

    3) If the maneuvering parameter is beyond the evaluation threshold, there might have some target maneuvering. The resampling procedure would augment the weights of the aberrance particles. Whereas, resampling procedure would debase the weights of the aberrance particles.

    4) Recording the best particle’s state in every iterative loop. The resampling procedure would eliminate the best particle which is no longer the best in three iterative loops.

    5) If the maneuvering parameter is beyond the evaluation threshold, the resampling procedure would revive the best particle record in three iterative loops.

    The main idea of this improved algorithm is taking the aberrance and descendiblity of the genetic algorithm to increase the diversity of the resampling procedure in order to adapt to maneuvering target tracking.

    3 Simulation

    For validating the proposed algorithm, this paper takes a filter simulation for a maneuvering target tracking.

    Set the nonlinear state function as:

    and the observation function:

    where v(n),ω(n) is Gaussian distribution with mean 0 and variance4,0.01. The standard particle filter, weights choice resampling (WCR filter), linear optimal resampling (LOR filter), and the improved filter are used to estimate the target state. Fig. 3 shows the simulation results.

    The filter estimation error is shown as Fig. 4.

    At the same time, the Kalman filter is simulated. The performances of three filters are shown in Table 1.

    4 Conclusion

    This paper presents a new particle filter algorithm based on genetic algorithm optimization. This algorithm takes the descendiblity and aberrance of the genetic algorithm into particle filter resampling procedure, which seems to be more adaptive to the maneuvering target tracking. The simulation proves that the improved algorithm suits maneuvering target tracking.

    Reference

    [1] ARORA A. A line in the sand: a wireless sensor network for target detection, classification, and tracking[J]. Comput Netw, 2004, 46(5): 605-634.

    [2] BUGALLO M F, LU T, DJURI′C P M. Target tracking by multiple particle filtering[C]//Proceedings of IEEE Aerospace Conference. Big Sky, MO, USA: IEEE, 2007: 153-156.

    [3] DJURI′C P M, LU T, BUGALLO F. Multiple particle filtering[C]//Proceedings of the IEEE 32nd International Conference on Acoustics, Speech and Signal Processing (ICASSP’2007). Honolulu, Hawaii, USA: IEEE, 2007: 1181-1184.

    [4] ISARD M, BLAKE A. Condensation-conditional density propagation for visual tracking[J]. IJCV, 1998, 29(1): 5-28.

    [5] ASLAM J, BUTLER Z, CONSTANTIN F V, et al. Tracking a moving object with a binary sensor network[C]//Proc 1st Int Conf Embedded Networked Sensor Syst. Los Angeles, CA, USA: [s.n.], 2003:150-161.

    [6] KIM W, MECHITOV K, CHOI J Y, et al. On target tracking with binary proximity sensors[C]//Proc 4th Int Symp Inf Process Sensor Netw. Los Angeles, CA, USA: IPSN, 2005.

    [7] OH S, SASTRY S. Tracking on a graph[C]//Proc 4th Int Symp Inf Process Sensor Networks. Los Angeles, CA, USA: IPSN, 2005.

    [8] GRISETTI G, STACHNISS C, BURGARD W. Improvedtechniques for grid mapping with rao-blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.

    [9] LASKA B N M, BOLIC M, GOUBRAN R A. Particle filter enhancement of speech spectral amplitudes[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010,18(8): 2155- 2167.

    [10] GUSTAFSSON F. Particle filter theory and practice with positioning applications[J]. IEEE A&E Systems Magazine. Part 2: Tutorlals-Gustafsson, 2010, 25(7): 53-81.

    [11] MARTINEZ-ESPLA J J, MARTINEZ-MARIN T, LOPEZ-SANCHEZ J M. A particle filter approach for insar phase filtering and unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1197-1211.

    [12] SANKARANARAYANAN A C, SRIVASTAVA A, CHELLAPPA R. Algorithmic and architectural optimizations for computationally efficient particle filtering[J]. IEEE Transactions on Image Processing, 2008, 17(5): 737-748.

    [13] CHENG Qi. An efficient two-stage sampling method in particle filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2666-2672.

    [14] WANG Ya-feng, ZHANG You-an, LIU Hua-ping, et al. Central difference particle filter applied to transfer alignment for sins on missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 375-387.

    [15] CLOSAS P, BUGALLO M F. Improving accuracy by iterated multiple particle filtering[J]. IEEE Signal Processing Letters, 2012, 19(8): 531-534.

    [16] HU Xiao-li, SCHON T B, LJUNG L. A basic convergence result for particle filtering[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1337-1348.

    [17] NICOLI M, MORELLI C, RAMPA V. A jump markov particle filter for localization of moving terminals in multipath indoor scenarios[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3801-3809.

    [18] SEONG-HOON P W, WAEL W M, FARID G. A kalman/particle filter-based position and orientation estimation method using a position sensor/ inertial measurement unit hybrid system[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1787-1798.

    [19] SUTHARSAN S, KIRUBARAJAN T, LANG T, et al. An optimization-based parallel particle filter for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1601-1618.

    [20] BRANKO R, SANJEEV A. Bernoulli particle filter with observer control for bearings-only tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2405- 2415.

    編 輯 黃 莘

    基于遺傳算法改進(jìn)的粒子濾波重采樣模型

    張 民1,賈海濤2,沈 震2
    (1. 電子科技大學(xué)圖書館 成都 611731;2. 電子科技大學(xué)電子科學(xué)技術(shù)研究院 成都 611731)

    提出一種基于遺傳算法改進(jìn)的新粒子濾波算法,該算法對于每次迭代計(jì)算出的最差粒子并未簡單地進(jìn)行丟棄,而是將這些最差粒子利用生物遺傳中的遺傳性和變異性將其進(jìn)行修正。該算法利用最差粒子數(shù)據(jù)與種群中特殊數(shù)據(jù)進(jìn)行交叉變異方法來增強(qiáng)粒子種群中的多樣性,從而有利于粒子濾波對機(jī)動目標(biāo)的跟蹤;同時(shí)保留部分粒子在未來進(jìn)行喚醒也體現(xiàn)了多樣性。該算法更有利于實(shí)現(xiàn)粒子濾波在機(jī)動目標(biāo)跟蹤的適應(yīng)性,提高其跟蹤效果。

    遺傳算法; 機(jī)動目標(biāo)跟蹤; 非線性濾波器; 粒子濾波; 重采樣

    TN953

    A

    10.3969/j.issn.1001-0548.2015.03.005

    2014 ? 09 ? 02;

    2015 ? 04 ? 27

    國家自然科學(xué)基金(61172117)

    張民(1969 ? ),男,高級工程師,主要從事計(jì)算機(jī)網(wǎng)絡(luò)、智能計(jì)算等方面的研究.

    date:2014 ? 09 ? 02; Revised date: 2015 ? 04 ? 27

    Foundation:Support by the National Science Foundation of China(61172117)

    Biography:ZHANG Min was born in 1969, and his research interests include computer network and computational intelligence.

    猜你喜歡
    電子科技國家自然科學(xué)基金機(jī)動
    西安展天電子科技有限公司
    寶雞市普瑞思電子科技有限公司
    常見基金項(xiàng)目的英文名稱(一)
    裝載機(jī)動臂的疲勞壽命計(jì)算
    2S1廣州弘傲電子科技有限公司
    213B廣州市碼尼電子科技有限公司
    12萬畝機(jī)動地不再“流浪”
    機(jī)動三輪車的昨天、今天和明天
    我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
    2017 年新項(xiàng)目
    一边摸一边抽搐一进一小说 | 精品国内亚洲2022精品成人 | 国产精品影院久久| 天天躁狠狠躁夜夜躁狠狠躁| ponron亚洲| 久久精品国产a三级三级三级| 一级a爱片免费观看的视频| av视频免费观看在线观看| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| 日韩人妻精品一区2区三区| 高清毛片免费观看视频网站 | 久久久久久久精品吃奶| 高清毛片免费观看视频网站 | 男人的好看免费观看在线视频 | 欧美日韩亚洲综合一区二区三区_| 午夜福利在线免费观看网站| а√天堂www在线а√下载 | 一区二区三区激情视频| 老司机靠b影院| 丁香欧美五月| 亚洲精品一二三| 亚洲熟妇中文字幕五十中出 | 国产男女内射视频| 午夜久久久在线观看| 久久久久精品国产欧美久久久| 国产aⅴ精品一区二区三区波| 久久ye,这里只有精品| 制服人妻中文乱码| 日日摸夜夜添夜夜添小说| 久久青草综合色| 色综合婷婷激情| 欧美另类亚洲清纯唯美| 中文字幕另类日韩欧美亚洲嫩草| 男女下面插进去视频免费观看| 国产精品成人在线| 18禁裸乳无遮挡免费网站照片 | videos熟女内射| 国产精品免费视频内射| 欧美日韩一级在线毛片| 18禁黄网站禁片午夜丰满| 国产精品秋霞免费鲁丝片| 多毛熟女@视频| 欧美大码av| 中文字幕最新亚洲高清| 50天的宝宝边吃奶边哭怎么回事| av有码第一页| 日韩欧美免费精品| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久av美女十八| 亚洲成人国产一区在线观看| 久久久久久久午夜电影 | 99精国产麻豆久久婷婷| 90打野战视频偷拍视频| 男女免费视频国产| 热99re8久久精品国产| 久久人妻av系列| 女人被狂操c到高潮| 亚洲成人免费av在线播放| 在线十欧美十亚洲十日本专区| 精品国产乱子伦一区二区三区| 国产99久久九九免费精品| 窝窝影院91人妻| 丁香六月欧美| 精品高清国产在线一区| 亚洲欧美一区二区三区久久| 亚洲一区二区三区不卡视频| 欧美精品啪啪一区二区三区| 国产精品98久久久久久宅男小说| 水蜜桃什么品种好| 12—13女人毛片做爰片一| 精品国产亚洲在线| 热re99久久精品国产66热6| 国产精品久久久久久精品古装| www.自偷自拍.com| 两个人免费观看高清视频| 午夜福利在线免费观看网站| 高清毛片免费观看视频网站 | 精品一区二区三区四区五区乱码| 欧美成狂野欧美在线观看| 女人精品久久久久毛片| av网站在线播放免费| 91大片在线观看| 韩国av一区二区三区四区| 一二三四在线观看免费中文在| 黄网站色视频无遮挡免费观看| 亚洲专区中文字幕在线| 国产精品久久久av美女十八| 亚洲片人在线观看| 国产人伦9x9x在线观看| 日本a在线网址| 久久精品成人免费网站| 欧美丝袜亚洲另类 | 人妻丰满熟妇av一区二区三区 | 国产91精品成人一区二区三区| 女人久久www免费人成看片| 欧美精品人与动牲交sv欧美| 免费在线观看亚洲国产| 最新美女视频免费是黄的| 不卡av一区二区三区| 久久久久久人人人人人| 久久精品aⅴ一区二区三区四区| 成人免费观看视频高清| 99riav亚洲国产免费| 久久久久视频综合| 一级毛片精品| 国产精品亚洲一级av第二区| 天天躁狠狠躁夜夜躁狠狠躁| 捣出白浆h1v1| 麻豆av在线久日| 久久久国产成人精品二区 | 精品亚洲成国产av| 亚洲色图av天堂| 日韩中文字幕欧美一区二区| 精品电影一区二区在线| 日本五十路高清| 一级a爱片免费观看的视频| 久久精品国产亚洲av香蕉五月 | 色婷婷av一区二区三区视频| 在线播放国产精品三级| 夜夜躁狠狠躁天天躁| 一本综合久久免费| 亚洲色图av天堂| 欧美+亚洲+日韩+国产| 国产野战对白在线观看| 精品亚洲成国产av| 国产av一区二区精品久久| 99国产综合亚洲精品| 人成视频在线观看免费观看| 亚洲人成伊人成综合网2020| 777米奇影视久久| 最近最新中文字幕大全电影3 | 欧美成人免费av一区二区三区 | 国产精品1区2区在线观看. | 国产午夜精品久久久久久| 久久香蕉国产精品| av网站在线播放免费| 久久草成人影院| 一级毛片精品| 丰满饥渴人妻一区二区三| 精品一区二区三卡| 亚洲人成77777在线视频| 欧美日韩视频精品一区| 亚洲国产中文字幕在线视频| 咕卡用的链子| 自线自在国产av| 在线免费观看的www视频| 久久久久久久精品吃奶| 免费不卡黄色视频| 日日爽夜夜爽网站| 在线观看免费视频日本深夜| 久久国产精品男人的天堂亚洲| 亚洲精品国产精品久久久不卡| 最新的欧美精品一区二区| 成熟少妇高潮喷水视频| 色播在线永久视频| 久久久久久免费高清国产稀缺| 国产淫语在线视频| а√天堂www在线а√下载 | 午夜福利视频在线观看免费| 视频区欧美日本亚洲| 久久久国产成人免费| 最近最新中文字幕大全电影3 | 婷婷成人精品国产| av天堂在线播放| 女人久久www免费人成看片| 欧美日韩视频精品一区| 我的亚洲天堂| 一边摸一边做爽爽视频免费| 成年动漫av网址| 天堂中文最新版在线下载| aaaaa片日本免费| 啦啦啦视频在线资源免费观看| 精品国产超薄肉色丝袜足j| 国产主播在线观看一区二区| 国产成人精品无人区| 可以免费在线观看a视频的电影网站| 亚洲国产欧美网| 亚洲 国产 在线| 欧美黑人欧美精品刺激| 又大又爽又粗| 男女高潮啪啪啪动态图| 老司机在亚洲福利影院| 午夜福利欧美成人| 高清黄色对白视频在线免费看| 成熟少妇高潮喷水视频| www日本在线高清视频| 久久久国产欧美日韩av| 午夜福利免费观看在线| 欧美日韩一级在线毛片| 脱女人内裤的视频| 免费在线观看影片大全网站| 99国产精品免费福利视频| 两性夫妻黄色片| 91老司机精品| 精品一区二区三区视频在线观看免费 | 十八禁人妻一区二区| 夫妻午夜视频| 欧美日韩av久久| 亚洲片人在线观看| 精品福利永久在线观看| 法律面前人人平等表现在哪些方面| 岛国在线观看网站| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 最新在线观看一区二区三区| 9191精品国产免费久久| 亚洲少妇的诱惑av| 俄罗斯特黄特色一大片| 久久久久久亚洲精品国产蜜桃av| 精品国产国语对白av| 国产日韩欧美亚洲二区| 国内毛片毛片毛片毛片毛片| 女人被狂操c到高潮| 老司机深夜福利视频在线观看| 国产精品久久久av美女十八| 日本a在线网址| 久久久国产一区二区| 成年人午夜在线观看视频| 精品视频人人做人人爽| 亚洲黑人精品在线| 国产片内射在线| 又紧又爽又黄一区二区| 他把我摸到了高潮在线观看| 最新的欧美精品一区二区| 精品第一国产精品| 欧美日韩黄片免| 日韩三级视频一区二区三区| 操出白浆在线播放| 在线国产一区二区在线| 涩涩av久久男人的天堂| 一夜夜www| www.精华液| 久久香蕉精品热| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 亚洲 欧美一区二区三区| 午夜精品国产一区二区电影| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩高清在线视频| 国产一区二区三区视频了| 啦啦啦 在线观看视频| 18禁黄网站禁片午夜丰满| 人人澡人人妻人| 国产精品免费视频内射| 欧美黄色片欧美黄色片| 搡老岳熟女国产| 亚洲国产欧美日韩在线播放| 天堂动漫精品| 欧美日韩福利视频一区二区| 国产成人精品久久二区二区免费| 国产野战对白在线观看| 久久99一区二区三区| svipshipincom国产片| 欧美成人午夜精品| 欧美黑人欧美精品刺激| 操出白浆在线播放| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看影片大全网站| 人人妻人人澡人人爽人人夜夜| 99热网站在线观看| 欧美性长视频在线观看| 精品一品国产午夜福利视频| 1024视频免费在线观看| 9色porny在线观看| 亚洲国产欧美日韩在线播放| 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 夜夜躁狠狠躁天天躁| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 国产男女内射视频| 黄网站色视频无遮挡免费观看| 亚洲精品美女久久av网站| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| 18禁美女被吸乳视频| 免费av中文字幕在线| 999久久久精品免费观看国产| 美女高潮到喷水免费观看| 亚洲欧美激情综合另类| 无限看片的www在线观看| 一区福利在线观看| 久久性视频一级片| 啦啦啦在线免费观看视频4| 免费看a级黄色片| 国产精品 国内视频| 欧美成人免费av一区二区三区 | 色精品久久人妻99蜜桃| 男女高潮啪啪啪动态图| 女性被躁到高潮视频| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 久久久久久久久免费视频了| 国产99久久九九免费精品| 新久久久久国产一级毛片| 久久精品国产亚洲av高清一级| 免费av中文字幕在线| 无限看片的www在线观看| 国产xxxxx性猛交| 91国产中文字幕| 王馨瑶露胸无遮挡在线观看| 亚洲精品在线观看二区| 成人免费观看视频高清| e午夜精品久久久久久久| 日韩免费高清中文字幕av| 在线观看免费高清a一片| 亚洲国产精品合色在线| 宅男免费午夜| 亚洲欧美激情综合另类| 亚洲精品一卡2卡三卡4卡5卡| 日本精品一区二区三区蜜桃| 老司机午夜十八禁免费视频| 国产精品99久久99久久久不卡| 国产又爽黄色视频| 女性生殖器流出的白浆| 欧美黄色淫秽网站| 亚洲一区二区三区不卡视频| 新久久久久国产一级毛片| 捣出白浆h1v1| 麻豆国产av国片精品| 午夜久久久在线观看| 欧美精品啪啪一区二区三区| 午夜福利欧美成人| 久久精品亚洲av国产电影网| 亚洲中文日韩欧美视频| 国产日韩欧美亚洲二区| 免费观看人在逋| 欧美精品av麻豆av| 99久久人妻综合| 亚洲国产欧美一区二区综合| 精品久久久久久久久久免费视频 | 亚洲色图综合在线观看| 波多野结衣av一区二区av| 国产黄色免费在线视频| 热re99久久国产66热| 日韩精品免费视频一区二区三区| 久久久国产成人免费| 老司机亚洲免费影院| 十八禁网站免费在线| 狂野欧美激情性xxxx| 久久久精品区二区三区| 久久国产精品大桥未久av| 国内久久婷婷六月综合欲色啪| 久久久久久久国产电影| 亚洲黑人精品在线| 少妇猛男粗大的猛烈进出视频| av在线播放免费不卡| 一级作爱视频免费观看| a级毛片黄视频| 国产精品九九99| 欧美中文综合在线视频| 亚洲 国产 在线| 亚洲五月天丁香| 亚洲av片天天在线观看| 热99久久久久精品小说推荐| av片东京热男人的天堂| 一区二区三区激情视频| 久久中文字幕人妻熟女| 黄片小视频在线播放| 久久久国产精品麻豆| 成人三级做爰电影| 变态另类成人亚洲欧美熟女 | 我的亚洲天堂| 在线视频色国产色| 午夜精品在线福利| 亚洲精品久久午夜乱码| 久久久国产欧美日韩av| 夜夜爽天天搞| 91老司机精品| a级毛片黄视频| 精品一区二区三区av网在线观看| 身体一侧抽搐| 日韩欧美三级三区| 亚洲欧美激情综合另类| 午夜激情av网站| 午夜免费观看网址| 久久香蕉国产精品| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器 | 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 成人18禁高潮啪啪吃奶动态图| a级片在线免费高清观看视频| 久久午夜亚洲精品久久| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| 午夜久久久在线观看| 老熟女久久久| 日韩人妻精品一区2区三区| 日日摸夜夜添夜夜添小说| 久久精品国产清高在天天线| 日韩一卡2卡3卡4卡2021年| 欧美成人午夜精品| 久久国产精品大桥未久av| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区视频了| 一夜夜www| xxx96com| 国产无遮挡羞羞视频在线观看| 精品国产美女av久久久久小说| 99久久人妻综合| 亚洲av第一区精品v没综合| 人人澡人人妻人| 免费在线观看影片大全网站| 国产av精品麻豆| 人妻丰满熟妇av一区二区三区 | 日韩欧美三级三区| 久99久视频精品免费| 在线观看免费高清a一片| av在线播放免费不卡| 亚洲精品乱久久久久久| 亚洲精品国产区一区二| 91av网站免费观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 国产高清国产精品国产三级| 女人被躁到高潮嗷嗷叫费观| 色94色欧美一区二区| 777米奇影视久久| 亚洲一区高清亚洲精品| 精品久久久精品久久久| 在线观看免费视频网站a站| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 极品教师在线免费播放| 成人18禁高潮啪啪吃奶动态图| 久久国产乱子伦精品免费另类| 在线观看免费午夜福利视频| 欧美不卡视频在线免费观看 | 欧美成人午夜精品| 午夜亚洲福利在线播放| 精品福利观看| 夜夜夜夜夜久久久久| 飞空精品影院首页| a级毛片在线看网站| 超碰成人久久| 国产亚洲欧美在线一区二区| 国产高清videossex| 国产精品久久电影中文字幕 | 亚洲伊人色综图| 国产精品久久视频播放| 午夜福利影视在线免费观看| 亚洲国产欧美网| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 男人的好看免费观看在线视频 | 色精品久久人妻99蜜桃| 亚洲成人手机| 美女高潮喷水抽搐中文字幕| 国产精品久久电影中文字幕 | 亚洲九九香蕉| 黄色怎么调成土黄色| 在线永久观看黄色视频| 高清av免费在线| 亚洲伊人色综图| 久9热在线精品视频| 精品国产亚洲在线| 亚洲aⅴ乱码一区二区在线播放 | 大型av网站在线播放| www日本在线高清视频| 久久久久精品人妻al黑| 怎么达到女性高潮| 亚洲av美国av| 搡老乐熟女国产| 人妻 亚洲 视频| 老司机午夜福利在线观看视频| 十八禁高潮呻吟视频| 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 亚洲国产精品一区二区三区在线| 天天躁日日躁夜夜躁夜夜| 国产一区二区激情短视频| 精品久久久久久久久久免费视频 | 免费日韩欧美在线观看| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 国产精品国产av在线观看| 高清av免费在线| 国产在线观看jvid| 女人精品久久久久毛片| 老汉色∧v一级毛片| 久久精品亚洲av国产电影网| av免费在线观看网站| 满18在线观看网站| 不卡av一区二区三区| 国产一区二区激情短视频| 脱女人内裤的视频| 国产精品二区激情视频| 久久热在线av| 亚洲视频免费观看视频| 亚洲国产中文字幕在线视频| av在线播放免费不卡| 91麻豆av在线| 极品少妇高潮喷水抽搐| 日本撒尿小便嘘嘘汇集6| 成人国产一区最新在线观看| 青草久久国产| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 亚洲精品乱久久久久久| 黄网站色视频无遮挡免费观看| 精品免费久久久久久久清纯 | 精品国产美女av久久久久小说| 国内久久婷婷六月综合欲色啪| 精品视频人人做人人爽| 人妻久久中文字幕网| 一级a爱片免费观看的视频| 中出人妻视频一区二区| 村上凉子中文字幕在线| 99热国产这里只有精品6| 老司机靠b影院| 欧美精品一区二区免费开放| 在线观看免费视频日本深夜| 丰满的人妻完整版| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲| 少妇裸体淫交视频免费看高清 | 天堂√8在线中文| 午夜免费鲁丝| 久久久水蜜桃国产精品网| 日日爽夜夜爽网站| 国产免费现黄频在线看| 亚洲国产欧美网| 精品免费久久久久久久清纯 | cao死你这个sao货| 亚洲国产欧美日韩在线播放| av网站在线播放免费| 在线天堂中文资源库| 又黄又爽又免费观看的视频| 欧美日韩一级在线毛片| 亚洲精品久久成人aⅴ小说| 丁香六月欧美| 一级片免费观看大全| 伊人久久大香线蕉亚洲五| 国产精品 欧美亚洲| 色94色欧美一区二区| 国产精品免费视频内射| 性少妇av在线| 亚洲av美国av| 老司机亚洲免费影院| 69精品国产乱码久久久| 成年动漫av网址| 美女福利国产在线| 国产黄色免费在线视频| 亚洲美女黄片视频| 亚洲欧美日韩高清在线视频| 男女下面插进去视频免费观看| 12—13女人毛片做爰片一| 校园春色视频在线观看| videosex国产| 在线观看免费视频日本深夜| 久久久久久亚洲精品国产蜜桃av| 日本精品一区二区三区蜜桃| 岛国在线观看网站| 视频区图区小说| 在线永久观看黄色视频| 美国免费a级毛片| 香蕉国产在线看| 精品国产一区二区三区四区第35| 91精品国产国语对白视频| 麻豆av在线久日| 村上凉子中文字幕在线| 人妻丰满熟妇av一区二区三区 | 好看av亚洲va欧美ⅴa在| 国产色视频综合| 国产xxxxx性猛交| 中文字幕av电影在线播放| 一级,二级,三级黄色视频| 国产在线一区二区三区精| 久久人妻av系列| 亚洲精品中文字幕一二三四区| 国产欧美日韩一区二区三区在线| 高清在线国产一区| 少妇裸体淫交视频免费看高清 | 99re在线观看精品视频| 国产1区2区3区精品| 久久久久国内视频| 在线视频色国产色| 中文字幕av电影在线播放| 亚洲精品自拍成人| 国产男靠女视频免费网站| 我的亚洲天堂| 欧美精品人与动牲交sv欧美| 精品人妻1区二区| 午夜免费鲁丝| 亚洲五月天丁香| 久久久国产欧美日韩av| 国产激情欧美一区二区| 国产黄色免费在线视频| 国产在线观看jvid| 成人精品一区二区免费| 亚洲五月婷婷丁香| 国产精品香港三级国产av潘金莲| 精品国产国语对白av| tocl精华| 国产蜜桃级精品一区二区三区 | 午夜福利在线观看吧| 精品亚洲成a人片在线观看| 看免费av毛片| 免费看十八禁软件| 波多野结衣av一区二区av| 啦啦啦视频在线资源免费观看| 18禁裸乳无遮挡免费网站照片 | 国产成人免费观看mmmm| 日本黄色日本黄色录像| 久热爱精品视频在线9| 久久精品国产99精品国产亚洲性色 | 看黄色毛片网站| 成年人黄色毛片网站|