• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations: Discussion

    2015-03-21 05:49:02Shanmugam
    Journal of Palaeogeography 2015年3期

    G. Shanmugam*

    Department of Earth and Environmental Sciences, The University of Texas at Arlington,Arlington, TX 76019, USA

    1 Introduction

    The incentive for this discussion came from an editorial by Feng (2015), which appeared in the January issue of 2015 of theJournal of Palaeogeographyentitled “Hope to be from model to practice — Words of the Editor-in-Chief”,on an article “3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations” by Vérardet al.(2015). Vérardet al.(2015, p. 64) claim that “Afull global geodynamical model over 600 million years(Ma)has been developed at the University of Lausanne during the past 20 years.We show herein how the2D maps were converted into 3D(i.e.,full hypsometry and bathymetry),using a heuristic—based approach.Although the synthet?ic topography may be viewed as relatively crude,it has the advantage of being applicable anywhere on the globe and at any geological time.” As a process sedimentologist and as a petroleum geologist who has spent the past 40 years in understanding the importance of deep-water sedimentation and their implications for petroleum reservoirs (Shan -mugam, 2006, 2012, 2015), I was initially enthusiastic about the geodynamical model because of its unlimited potential for application in time and space. However , after a critical review of the paper, my enthusiasm for the model has waned. The methodology and datasets used in developing the model raise serious questions on several fundamental levels. The objective here is to identify specifci problem areas associated with the model using the following topics:

    · Submarine fans and other depositional systems

    · Mass-transport deposits (MTD)

    · Submarine canyons

    · Sea-level changes

    · Glacial isostasy

    · Sr-ratio curve

    ·Tectonics and paleobathymetry

    2 Submarine fans and other depositional systems

    Vérardet al.(2015, p. 72) state that “Sedimentation does not reflect local climatic variations,nor does it ac?count for local variations in detrital input.Lakes or rivers are not taken into account on continents,and deep sea fans are not modelled here. The amount of sediment in all major deep sea fans,however,is estimated to represent less than0.01%(order of1014to1015 m3)of the total sedi?ment volume in ocean.”

    Although it is the authors’ prerogative to include or exclude certain datasets in their research, the total exclusion of sedimentation in rivers, lakes, and deep-sea fans from consideration is not only geologically unrealistic but deeply troubling. During the past four decades, various aspects of modern and ancient submarine fans have been well documented (Boumaet al., 1985; Currayet al., 2003, among others; Mutti and Ricci Lucchi, 1972; Shanmugam and Moiola, 1985, 1988; Shanmugamet al., 1985a, 1985b; Weimer and Link, 1991). From a topographic viewpoint, submarine fans constitute important sites of sediment accumulation in the world’s oceans (Fig. 1). Barnes and Normark (1985)have compiled dimensions of 21 modern fans and 10 ancient fans. Fans have impressive dimensions (Table 1). The world’s largest submarine fan, known as the Bengal Fan(Fig. 2), has a length of 3,000 km, a width of 1,430 km, and a sediment thickness of 16.5 km (Currayet al., 2003). Although the Bengal Fan virtually occupies the entire length of the Bay of Bengal (Fig. 2), it has been discarded from the model. This and other issues are identified below.

    Figure 1 Map showing 10 large modern submarine fans in the world (Bouma et al., 1985). See Table 1 for dimensions of these fans.Blank world map credit: http://upload.wikimedia.org/wikipedia/commons/8/83/Equirectangular_projection_SW.jpg (accessed January 20, 2015).

    · Despite the authors’ claim that the geodynamic model is “applicable anywhere on the globe and at any geologi?cal time”, the model is not applicable everywhere. In fact,Vérardet al.(2015, p. 73) concede that the Bengal Fan is not represented in the synthetic topography created by the model.

    · One of the problems with the paper by Vérardet al.(2015) is their failure to cite peer-reviewed publications in revealing the original datasets. For example, the first published estimate of sediment thickness for the Bengal Fan was >5 km (Curray and Moore, 1974; see also Barnes and Normark, 1985). This value was later updated to 16.5 km(Currayet al., 2003). But Vérardet al.(2015, p. 73) claim a new sediment thickness of “more than 20 km” for the Bengal Fan, without citing any peer-reviewed reference. If the authors have new seismic datasets of their own to validate the 20-km thickness of the Bengal Fan, they should publish the seismic profiles with their interpretations.

    · Vérardet al.(2015) present a simplistic notion that deep-sea fans represent the entire deep-sea depositional system. The reality is that deep-sea depositional systems are highly complex and that fans represent only one of many systems (Shanmugam, 2012). Each system is controlled by various deep-sea processes. For example, (1) gravity-driv-en downslope processes tend to form deposits of slides,slumps, debris flows, and turbidity currents (Dott, 1963);(2) contour-following thermohaline currents develop contourites along continental slopes and rises (Hollister, 1967);(3) deep-marine tidal currents deposit tidalites in submarine canyons (Shanmugam, 2003); and (4) internal-wave related baroclinic currents tend to accumulate baroclinites on continental slopes and on guyots (Shanmugam, 2013).These processes may or may not be part of a submarine fan. Did the authors consider this variability of sediments in estimating the total marine sediment volume?

    Table 1 Empirical data on dimensions of 10 large modern submarine fans in the world’s oceans. Note the world’s largest modern fan,known as the Bengal Fan (Fig. 2), with 16.5 km in sediment thickness. Compiled from a chart (see inside pocket of book’s back cover)by Barnes and Normark (1985)

    · If fans represent less than 0.01% of the total marine sediment volume, is the remaining 99.99% of marine sediment composed of non-fans? What is the depositional origin, texture, and mineral composition of non-fans?

    · In documenting that the total volume of sediment in all major deep-sea fans indeed accounts for less than 0.01%, Vérardet al.(2015) need to identify the original datasets (i.e., names, locations, sediment volumes, and related references) of individual fans used in their calculation. · Each fan is a local accumulation of sediment (Fig.1). However, a total volume of 0.01% obtained by lumping together all fans worldwide is meaningless. Is there an“absolute threshold value” of sediment volume for all fans in order for “fans” to be considered as a distinct entity in the geodynamic model?

    · Finally, Vérardet al.(2015) excluded sediment input by rivers and lakes on continents. Is it because river and lake deposits are volumetrically insignificant? Did Vérardet al.(2015) consider other depositional systems on Earth(e.g., Reading, 1996), such as alluvial fan, eolian, glacial,volcanic, deltaic, beach, estuarine, and shelf environments in building their model?

    3 Mass-transport deposits (MTD)

    Vérardet al.(2015) do not acknowledge the geologic importance of mass-transport deposits (MTD) in building their model. The general term “mass transport” represents the failure, dislodgement, and downslope movement of either sediment or glacier under the influence of gravity. Mass-transport deposits occur in both submarine and subaerial environments (Fig. 3). MTD are composed of slides, slumps, and debrites, but not turbidites (Dott,1963). MTD are important not only because of their volumetric significance in the sedimentary record (Gamboaet al., 2010), but also because of their potential for developing deep-water petroleum reservoirs (Shanmugam, 2012).MTD are an important component of certain large modern submarine fans, such as the Amazon Fan (Damuthet al.,1988; Piperet al., 1997). Importantly, MTD constitute significant local topographic features worldwide, and they vary in size greatly (Shanmugam, 2015). For example,Greeneet al.(2006) described the large (130 km2) Goleta landslide complex located off Coal Oil Point near the town of Goleta, southern California (Fig. 4). It measures 14.6 km long extending from a depth of 90 m to nearly 574 m deep and is 10.5 km wide. Greeneet al.(2006) have estimated that approximately 1.75 km3has been displaced by this slide during the Holocene. On the other hand, the world’s largest submarine MTD is the Agulhas Slump in SE Africa (Dingle, 1977), which is 20,331 km3in size. However, Vérardet al.(2015) have totally ignored the importance of both submarine and subaerial MTD in building their model.

    · What is the reason for ignoring MTD?

    Figure 2 Map showing the distribution of the world’s largest fan in the Bay of Bengal, originally described by Curray and Moore(1974). See Table 1 for dimensions of this and other fans. Note that the offshore Krishna-Godavari (KG) Basin (red-filled circle)contains important petroleum-producing deep-water sandstone reservoirs on the east coast of India (Shanmugam et al., 2009). Map from Curray et al. (2003). With permission from Elsevier Copyright Clearance Center’s RightsLink: Licensee: G. Shanmugam. License Number: 3615361505200. License Date: April 24, 2015.

    4 Submarine canyons

    Vérardet al.(2015) do not acknowledge the topographic significance of submarine canyons in building their model.A submarine canyon is a steep-sided valley that incises into the seafloor of the continental shelf, slope and rise. Some major submarine fans, such as the Bengal Fan (Fig. 2), are associated with submarine canyons (Table 2). MTD are an important depositional facies in submarine canyons (Shanmugam, 2012). Despite the fact that submarine canyons are the ubiquitous topographic features on the continental margins of the world (Carlson and Karl, 1988; Harris and Whiteway, 2011; Normark and Carlson, 2003; Shanmugam,2002; among others; Shepard and Dill, 1966), Vérardet al.(2015) have altogether ignored the importance of submarine canyons.

    Submarine canyons constitute complex topographic features that have direct implications for predicting local bathymetry (Fig. 5). Normark and Carlson (2003) compared submarine canyons and their cross-sections near the shelf edge worldwide (Fig. 6). Three of the world’s largest submarine canyons, Zhemchug, Bering, and Navarin, occur in the Bering Sea (Table 2). The Zhemchug Canyon has the largest cross-section (Fig. 6), and it has a volume of 5,800 km3(Carlson and Karl, 1988). The Bering Canyon has the largest area (30,800 km2) of all 11 canyons studied (Fig. 6,

    Table 2). From an economic point of view, submarine canyons are of significance. In the Bay of Bengal, the offshore Krishna-Godavari (KG) Basin contains important petroleumproducing deep-water sandstone reservoirs in submarine canyons (Fig. 2). These petroleum reservoirs are interpreted as canyon-fill sandy debrites and tidalites (Shanmugamet a

    ·l., 2009).The incision by the Zhemchug Canyon on the Beringian margin is so colossal that the canyon floor has reached a water depth of 2.6 km (Fig. 6). Ignoring such a gigantic erosion topography from the model, for the sake of convenience, defies logic or common sense.

    5 Sea-level changes

    Vérardet al.(2015, their Fig. 17) discuss various models of sea-level changes for the Phanerozoic. The key sea-level curve used in their Figure 17 is attributed to a reference cited as “EXXON Petroleum Company, 1988”. But in the References section, this item is listed as “EXXON Petroleum Company, 1988. The EXXON ‘global’ sea-level curve; unpublished.”

    · The use of proprietary (unpublished) datasets, owned by EXXON (a private oil company), in their paper is troubling. This is because the international scientific community does not have access to this dataset.

    · Vérardet al.(2015) aptly emphasize the first-order cycles of sea-level changes controlled by tectonic activity.Although first-order cycles are important (Shanmugam and Moiola, 1982; Vailet al., 1977; Vailet al., 1991), fourth-and fifth-order cycles of sea-level changes are more important in dealing with local development of parasequences (Van Wagoneret al., 1988, 1990). However, Vérardet al.(2015)do not discuss higher-order cycles that have implications for sedimentation associated with tropical cyclones and tsunamis in shelf, slope, and basinal environments (Shanmugam, 2007, 2008). What is the reason for ignoring higherorder cycles?

    Table 2 Area of submarine canyons. Data compiled from Normark and Carlson (2003).

    Figure 3 Map showing 50 examples of submarine (black triangle) and subaerial (white triangle) mass-transport deposits (MTD) that constitute significant local topography worldwide. MTD are often erroneously called “l(fā)andslides”. See Figure 4 for details of the Goleta slide.See Shanmugam (2015) for references for each MTD example and for details on core and outcrop description. With permission from the Journal of Palaeogeography.

    6 Glacial isostasy

    Vérardet al.(2015, p. 73) state that “Note,finally,that effects related to post-glacial isostatic rebounds or to dynamic topography are not accounted for in themodel.” The authors’ decision to ignore datasets on postglacial isostatic rebounds is puzzling. In a recent study,Rovereet al.(2014) combined field observations and glacial isostatic adjustment modeling to estimate the dynamic topography signal in three areas that are important to paleo-sea level studies of the Mid-Pliocene warm period (South Africa, West Australia and southeastern United States) and demonstrated that dynamic topography played a significant role in the post-depositional displacement of Pliocene, and even younger Pleistocene, shorelines. This study has provided a robust paleo-sea level elevation data set, corrected for glacial isostatic adjustment, that can be used to evaluate predictions from mantle flow models of dynamic topography. Previously, Peltier (1998, 2004)and Sellaet al.(2007), among others, have discussed this issue.

    Figure 4 A-Multibeam bathymetric image of the Goleta slide complex in the Santa Barbara Channel, southern California. Note lobe-like(dashed line) distribution of displaced material that was apparently detached from the main scarp near the shelf edge. This mass transport complex is composed of multiple segments of failed material; B-Sketch of the Goleta mass transport complex in the Santa Barbara Channel, Southern California showing three distinct segments (i.e., west, central, and east). Contour intervals (-100, -200, -300, -400, -500,and -600) are in meters. From Greene et al. (2006). Images courtesy of H.G. Greene. Credit: European Geosciences Union.

    · Vérard et al. (2015, p. 73) acknowledge that their model has failed in areas affected by post-glacial rebounds,such as Iceland, South Africa, North America, and Greenland. Clearly, the authors discard datasets that do not fit the model.

    7 Sr-ratio curve

    Vérardet al.(2015, p. 64) state that “The processes responsible for the long-term trend of the Sr-ratio curve,however,remain unclear,although Sr variations are com?monly associated with global tectonic activity(e.g.,Veizer et al.,1999;McArthuret al.,2001).” It is worth revisiting the early history behind the Sr-ratio curve. Veizer (1989, p.154) summarized the pioneering history as follows: “In the 1970s the increased sampling density,the improvements in stratigraphic resolution,and particularly the development of a new generation of mass spectrometers stimulated vig?orous research effort,which culminated in the publication of the Mobil curve(Burkeet al.,1982).The latter is pres?ently an unchallenged reference for the87Sr/86Sr ratio of Phanerozoic seawater,despite the fact that its analytical documentation has been published only for the Cretaceous and the Cenozoic(Koepnicket al.,1985).” I am familiar with the history of the “Mobil curve” because the original authors of the Sr curve (W. H. Burke, R. B. Koepnick, R.E. Denison,et aI.) and I were co-researchers in the same Geology-Geochemistry Research Group at the Mobil Field Research Laboratory in Dallas, Texas (USA) in the 1970s under the management of Dr. E. L. Jones. Although I did not work on the Sr-ratio project, I did work on aspects of eustasy and tectonics (Shanmugamet al., 1985b).

    Figure 5 Map showing the distribution of Types 2 and 3 submarine canyons near the Laurentian Channel on the Canadian margin of the North Atlantic. Diagram compiled from Figures 5 and 6 in Harris and Whiteway (2011), with permission from Elsevier. Copyright Clearance Center’s RightsLink: Licensee: G. Shanmugam. License Number: 3615371044063. License Date: License Date: April 24, 2015.

    Figure 6 Comparison of cross-sections of 11 submarine canyons near the shelf edge worldwide. Note the world’s largest cross-section of the Zhemchug Canyon (red line). See Table 2 for area of all canyons. The subaerial Grand Canyon (green line) is shown for comparison. SeeFigure 5 for location of the Laurentian Channel. See Shanmugam (2012, his Fig. A-42) for geographic locations of these canyons. Figure after Normark and Carlson (2003), with permission from the Geological Society of America. See also Carlson and Karl (1988) for related details.

    · Because the processes responsible for the long-term trend of the Sr-ratio curve remain unclear, it would be helpful if the authors could address this issue and provide the much-needed clarity.

    8 Tectonics and paleobathymetry

    One of the claims made by Vérardet al.(2015) is that the geodynamic model can establish paleobathymetry anywhere on the globe and at any geological time. However, reconstructing paleobathymetry of early Paleozoic sequences is a daunting task. These aspects have been addressed in a thematic edited volume entitled “Appalachian Geodynamic Research” (Walker and Roeder, 1978). Benedict and Walker(1978) proposed a multi-prong approach using (1) chemical, (2) sedimentologic, (3) biologic, and (4) stratigraphic indicators of paleobathymetry in Paleozoic sequences. This task becomes even more challenging when dealing with the highly complex tectonic evolution of a foredeep basin in the Ordovician of the central and southern Appalachians(Shanmugam and Lash, 1982).

    In a tectono-stratigraphic study of the Middle Ordovician Sevier Basin in the Southern Appalachians, Shanmugam and Walker (1980) established a sudden increase in water depth of nearly 700 m based on local variations in physical, chemical, biological, and stratigraphic elements (Shanmugam and Walker, 1978). In particular, the manganese distribution in the carbonate fraction has revealed a diagnostic increase from shelf to basinal sequence (Shanmugm and Benedict, 1983). This bathymetric reversal from shelf to basinal sequences was attributed to “block” faulting in the Middle Ordovician (Shanmugam and Walker, 1980).

    · The lesson here is that local bathymetric changes cannot be reconstructed using a global geodynamic model without input from local details on lithofacies, depositional facies, biofacies, tectonics,etc.

    9 The bottom line

    The proposed global geodynamic model, without inputs from the real-world datasets on local to regional sedimentation, erosion, and glacial isostasy, is inherently flawed.Therefore, the universal applicability of the model is dubious.

    Acknowledgements

    I thank Prof. Zeng-Zhao Feng (Editor-in-Chief ofJour?nal of Palaeogeography; China University of Petroleum,Beijing) for inviting me to contribute this discussion. I am grateful to Ms. Yuan Wang (Associate Editor-in-Chief, Editorial Office of theJournal of Palaeogeography, Beijing) for her editorial help. I wish to thank Prof. Zhong-Qiang Chen(Associate Editor-in-Chief ofJournal of Palaeogeography;State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan) and Prof.Zhong Li (Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing) for their helpful reviews. As always, I am grateful to my wife, Jean Shanmugam, for her general comments. History behind this discussion:

    ·January 1, 2015: Vérard et al. (2015) and Feng (2015)published their article and editorial, respectively.

    · January 2, 2015: In an e-mail to Prof. Feng on his timely editorial, I expressed my concerns over the challenges in reconstructing paleobathymetry of Paleozoic sequences based on my Ph.D. research (Shanmugam, 1978).

    · January 7, 2015: In his e-mail response, Prof. Feng invited me to write an academic discussion on the paper by Vérardet al.(2015) explaining my views on issues associated with the model.

    · January 21, 2015: I submitted this discussion.

    1. Barnes, N. E., Normark, W. R., 1985. Diagnostic parameters for comparing modern submarine fans and ancient turbidite systems, in: Bouma, A. H., Normark, W. R., Barnes, N. E.,(Eds.), Submarine Fans and Related Turbidite Systems. Springer-Verlag, New York, pp. 13-14.

    2. Benedict, G. L., III, Walker, K. R., 1978. Paleobathymetric analysis in Paleozoic sequences and its geotectonic significance, in: Walker, K. R., Roeder, D., (Eds.), Appalachian Geodynamic Research.American Journal of Science, 278, 579-607.

    3. Bouma, A. H., Normark, W. R., Barnes, N. E., (Eds.), 1985.Submarine Fans and Related Turbidite Systems. New York,Springer-Verlag, 351.

    4. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick,R. B., Nelson, H. F., Otto, J. B., 1982. Variation of seawater87Sr/86Sr through Phanerozoic time.Geology, 10, 516-519.

    5. Carlson, P. R., Karl, H. A., 1988. Development of large submarine canyons in the Bering Sea indicated by morphologic,seismic, and sedimentologic characteristics.GSA Bulletin,100, 1594-1615.

    6. Curray, J. R., Moore, D. G., 1974. Sedimentary and tectonic processes in the Bengal Deep-sea Fan and Geosyncline, in:Burk, C. A., Drake, C. L., (Eds.), Continental Margins. Springer-Verlag, New York, pp. 617-627.

    7. Curray, J. R., Emmel, F. J ., Moore, D. G., 2003. The Bengal Fan: morphology, geometry, stratigraphy, history and processes.Marine and Petroleum Geology, 19 (10), 1191-1223.

    8. Damuth, J. E., Flood, R. D., Kowsmann, R. O., Gorini, M. A.,Belderson, R. H., Gorini, M. A., 1988. Anatomy and growthpattern of Amazon deep-sea fan revealed by long-range sidescan sonar (GLORIA) and high-resolution seismic studies.AAPG Bulletin, 72, 885-911.

    9. Dingle, R. V., 1977. The anatomy of a large submarine slump on a sheared continental margin (SE Africa).Geological Soci?ety of London Journal, 134, 293-310.

    10. Dott, R. H., Jr., 1963. Dynamics of subaqueous gravity depositional processes.AAPG Bulletin, 47, 104-128.

    11. EXXON Petroleum Company, 1988. The EXXON ‘global’ sealevel curve; unpublished.

    12. Feng, Z. Z., 2015. Hope to be from model to practice —Words of the Editor-in-Chief.Journal of Palaeogeography,4(1), 63-63.

    13. Gamboa, D., Alves, T., Cartwright, J., Terrinha, P., 2010. MTD distribution on a ‘passive’ continental margin: The Espírito Santo Basin (SE Brazil) during the Paleogene.Marine and Pe?troleum Geology, 27, 1311-1324.

    14. Greene, H. G., Murai, L. Y., Watts, P., Maher, N. A., Fisher,M. A., Paull, C. E., Eichhubl, P., 2006. Submarine landslides in the Santa Barbara Channel as potential tsunami sources.Natural Hazards and Earth System Sciences, 6, 63-88.

    15. Harris, P. T., Whiteway, T., 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins.Marine Geology, 285, 69-86.

    16. Hollister, C. D., 1967. Sediment distribution and deep circulation in the western North Atlantic. Columbia University, New York, Ph.D. Dissertation, 467 p.

    17. Koepnick, R. B., Burke, W. H., Denison, R. E., Hetherington,E. A., Nelson, H. F.,et al.1985. Construction of the seawater87Sr/86Sr curve for the Cenozoic and Cretaceous: Supporting data.Chemical Geology, 58, 55-81.

    18. McArthur, J., Howarth, R., Bailey, T., 2001. Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age.Journal of Geology, 109, 155-170.

    19. Mutti, E., Ricci Lucchi, F., 1972. Turbidites of the northern Apennines: Introduction to facies analysis (English translation by T.H. Nilsen, 1978).International Geology Review, 20, 125-166.

    20. Normark, W. R., Carlson, P. R., 2003. Giant submarine canyons: Is size any clue to their importance in the rock record?in: Chan, M. A., Archer, A. W., (Eds.), Extreme Depositional Environments: Mega end Members in Geologic Time. Boulder, CO: Geological Society of America,Geological Society of America Special Paper, 370, 175-190.

    21. Oppenheimer, J. R., 1951. Encouragement of Science, in: The Scientist in Public Affairs.Bulletin of the Atomic Scientists,7(1), 6-8.

    22. Peltier, W. R., 1998. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics.Reviews of Geophysics, 36 (4), 603-689.

    23. Peltier, W. R., 2004, Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model.Annual Review of Earth and Planetary Sciences, 32, 111-149.

    24. Piper, D. J. W., Pirmez, C., Manley, P. L., Long, D., Flood, R.D., Normark, W. R., Showers, W., 1997. Mass-transport deposits of the Amazon Fan, in: Flood, R. D., Piper, D. J. W., Klaus,A., Peterson, L. C., (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. 155, 109-143

    25. Reading, H. G., (ed), 1996. Sedimentary Environments: Processes, Facies, and Stratigraphy, 3rd ed. Blackwell Science,Oxford, UK.

    26. Rovere, A., Raymo, M. F., Mitrovica, J. X., Hearty, P. J.,O’Leary, M. J., Inglis, J. D., 2014. The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography.Earth and Planetary Science Letters, 387, 27-33.

    27. Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James,T. S., Mazzotti, S., Dokka, R. K., 2007. Observation of glacial isostatic adjustment in “stable” North America with GPS.Geophysical Research Letters, 34 (2), L02306. Bibcode:2007GeoRL..3402306S.doi:10.1029/2006GL027081.

    28. Shanmugam, G., 1978. The stratigraphy, sedimentology, and tectonics of the Middle Ordovician Sevier Shale Basin in East Tennessee. Knoxville, Tennessee: The University of Tennessee. Ph.D. Dissertation, 222 p.

    29. Shanmugam, G., 2002. Submarine canyons. AccessScience,McGrawHill Education. http://www.accessscience.com/content/ submarine-canyons/664300 (accessed January 20, 2015)

    30. Shanmugam, G., 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons.Marine and Petroleum Geology, 20, 471-491.

    31. Shanmugam, G., 2006. Deep-Water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Elsevier, Amsterdam, Handbook of Petroleum Exploration and Production, v. 5, pp. 476.

    32. Shanmugam, G., 2007. The obsolescence of deep-water sequence stratigraphy in petroleum geology.Indian Journal of Petroleum Geology, 16 (1), 1-45.

    33. Shanmugam, G., 2008. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration.AAPG Bulletin, 92, 443-471.

    34. Shanmugam, G., 2012. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality.Elsevier, Amsterdam, Handbook of Petroleum Exploration and Production, v. 9, pp. 524.

    35. Shanmugam, G., 2013. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands.AAPG Bulletin,97(5), 767-811.

    36. Shanmugam, G., 2015. The landslide problem.Journal of Pal?aeogeography, 4(2), 109-166.

    37. Shanmugam, G., Walker, K. R., 1978. Tectonic significance of distal turbidites in the Middle Ordovician Blockhouse and lower Sevier formations in east Tennessee, in: Walker, K. R.,Roeder, D., (Eds.), Appalachian Geodynamic Research.Ameri?can Journal of Science, 278, 551-578.

    38. Shanmugam, G., Walker, K. R., 1980. Sedimentation, subsidence, and evolution of a foredeep basin in the Middle Ordovician, Southern Appalachians.American Journal of Science,280, 479-496.

    39. Shanmugam, G., Lash, G. G., 1982. Analogous tectonic evolution of the Ordovician foredeeps, southern and central Appalachians.Geology, 10, 562-566.

    40. Shanmugam, G., Moiola, R. J., 1982. Eustatic control of turbidites and winnowed turbidites.Geology, 10, 231-235.

    41. Shanmugam, G., Benedict, G. L., III, 1983. Manganese distribution in the carbonate fraction of shallow and deep marine lithofacies, Middle Ordovician, eastern Tennessee.Sedimen?tary Geology, 35, 159-175.

    42. Shanmugam, G., Moiola, R. J., 1985. Submarine fan models:problems and solutions, in: Bouma, A. H., Normark, W. R.,Barnes, N. E., (Eds.), Submarine Fans and Related Turbidite Systems. Springer-Verlag, New York, pp. 29-34.

    43. Shanmugam, G., Moiola, R. J., 1988. Submarine fans: Characteristics, models, classification, and reservoir potential.Earth-Science Reviews, 24, 383-428.

    44. Shanmugam, G., Damuth, J. E., Moiola, R. J., 1985a. Is the turbidite facies association scheme valid for interpreting ancient submarine fan environments?Geology, 13, 234-237.

    45. Shanmugam, G., Moiola, R. J., Damuth, J. E., 1985b. Eustatic control of submarine fan development, in: Bouma, A.H., Normark, W. R., Barnes, N. E., (Eds.), Submarine Fans and Related Turbidite Systems. Springer-Verlag, New York, pp.23-28.

    46. Shanmugam, G., Shrivastava, S. K., Das, B., 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upperslope canyon environments, offshore Krishna-Godavari Basin(India): Implications.Journal of Sedimentary Research, 79,736-756.

    47. Shepard, F. P., Dill, R. F., 1966. Submarine Canyons and Other Sea Valleys. Rand McNally & Co., Chicago.

    48. Vail, P. R., Mitchum Jr., R. M., Thompson III, S., 1977. Seismic Stratigraphy and Global Changes of Sea Level: Part 3. Relative Changes of Sea Level from Coastal Onlap, in: Payton, C. E.,(Ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration.AAPG Memoir, 26, 63-81.

    49. Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., Perez-Cruz, P., 1991. The stratigraphic signatures of tectonics,eustasy and sedimentology — An overview, in: Einsele, G.,Ricken, W., Seilacher, A., (Eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin, pp. 618-659.

    50. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail.,P. R., Sarg, J. F., Loutit, T. S., Hardenbol, J., 1988. An overview of the fundamentals of sequence stratigraphy and key definitions, in: Wilgus, C. K., Hastings, B. S., Kendall, C. G.St. C., Posamentier, H. W., Ross, C. A., Van Wagoner, J. C.,(Eds). Sea-Level Changes: An Integrated Approach. SEPM Special Publication,Tulsa, OK. 42, 39-45.

    51. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., Rahmanian, V. D., 1990. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops. AAPG Methods in Exploration Series 7,Tulsa, OK.

    52. Veizer, J., 1989. Strontium isotopes in seawater through time.Annual Review of Earth and Planetary Sciences. 17, 141-67.

    53. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn,F., Carden, G., Diener, A., Ebneth, S., Goddéris, Y., Jasper,T., Korte, C., Pawellek, F., Podlaha, O., Strauss, H., 1999.87Sr/86Sr, δ13C, δ18O evolution of Phanerozoic sea-water.Chemical Geology, 161, 59-88.

    54. Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M.,2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations.Journal of Pal?aeogeography, 4(1), 64-84.

    55. Walker, K. R., Roeder, D., (Eds.), 1978. Appalachian Geodynamic Research.American Journal of Science, 278, 386-607(Special Issue).

    56. Weimer, P., Link, M. H., 1991. Global Petroleum Occurrences in Submarine Fans and Turbidite Systems, in: Weimer, P., Link,M. H. (Eds.), Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer-Verlag, New York. pp. 9-67.

    99久久成人亚洲精品观看| 国产精品福利在线免费观看| 欧美日韩国产亚洲二区| 免费av观看视频| 91精品国产九色| 国产精品久久久久久av不卡| 久久亚洲精品不卡| 国产av码专区亚洲av| 大又大粗又爽又黄少妇毛片口| 淫秽高清视频在线观看| 亚洲欧美精品专区久久| 18+在线观看网站| 麻豆精品久久久久久蜜桃| 六月丁香七月| 国产精品久久久久久精品电影| 国产精品一区二区在线观看99 | 国产免费一级a男人的天堂| 成人午夜精彩视频在线观看| 成人二区视频| 欧美成人a在线观看| 精品午夜福利在线看| 黄片无遮挡物在线观看| 22中文网久久字幕| 欧美激情国产日韩精品一区| 欧美成人免费av一区二区三区| 国产老妇伦熟女老妇高清| 日韩一区二区三区影片| av黄色大香蕉| 欧美另类亚洲清纯唯美| 国产在视频线精品| 床上黄色一级片| 国产真实伦视频高清在线观看| 一个人看的www免费观看视频| 久久久久久久久中文| 国产v大片淫在线免费观看| 一个人观看的视频www高清免费观看| 色视频www国产| 亚洲精品,欧美精品| 色综合色国产| av在线老鸭窝| 国产黄色视频一区二区在线观看 | 成人av在线播放网站| 欧美性猛交黑人性爽| 国产私拍福利视频在线观看| 午夜福利在线在线| 国产精品.久久久| 欧美日韩国产亚洲二区| 青春草视频在线免费观看| 又爽又黄a免费视频| 免费黄网站久久成人精品| 亚洲内射少妇av| 亚洲国产精品sss在线观看| 国内少妇人妻偷人精品xxx网站| 人妻夜夜爽99麻豆av| 亚洲,欧美,日韩| 国产亚洲av片在线观看秒播厂 | 国产一区二区在线观看日韩| 内射极品少妇av片p| 国产综合懂色| 亚洲av不卡在线观看| 免费黄色在线免费观看| 日韩高清综合在线| 免费观看性生交大片5| 成年女人永久免费观看视频| 99久久精品热视频| 亚洲成人精品中文字幕电影| 国产爱豆传媒在线观看| 插逼视频在线观看| 亚洲人成网站在线观看播放| 久久久精品大字幕| 亚洲精品一区蜜桃| 成人亚洲精品av一区二区| 国产视频内射| 一边摸一边抽搐一进一小说| 国模一区二区三区四区视频| 国产亚洲精品久久久com| 日韩 亚洲 欧美在线| 国产精品蜜桃在线观看| 亚洲美女搞黄在线观看| 成年av动漫网址| 欧美极品一区二区三区四区| 免费在线观看成人毛片| 麻豆成人午夜福利视频| 久久国内精品自在自线图片| 亚洲精品国产av成人精品| 青青草视频在线视频观看| 国内少妇人妻偷人精品xxx网站| 久久热精品热| 日韩精品有码人妻一区| 国产高清视频在线观看网站| 3wmmmm亚洲av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 免费av毛片视频| 国产真实伦视频高清在线观看| 国产成人免费观看mmmm| 国产精品精品国产色婷婷| 校园人妻丝袜中文字幕| 久久精品久久精品一区二区三区| 亚洲精品影视一区二区三区av| 免费观看的影片在线观看| 日韩大片免费观看网站 | 少妇的逼好多水| 婷婷色综合大香蕉| 日本色播在线视频| 亚洲自拍偷在线| 国产精品无大码| 国产一区二区在线观看日韩| 在线观看一区二区三区| 亚洲第一区二区三区不卡| 亚洲欧美日韩东京热| 国产精品永久免费网站| 色尼玛亚洲综合影院| 级片在线观看| 国产激情偷乱视频一区二区| 91狼人影院| 国产精品.久久久| 身体一侧抽搐| 午夜日本视频在线| 亚洲成人中文字幕在线播放| 人人妻人人澡欧美一区二区| 久久国产乱子免费精品| 色综合亚洲欧美另类图片| 国产欧美另类精品又又久久亚洲欧美| 九九热线精品视视频播放| 五月玫瑰六月丁香| 精华霜和精华液先用哪个| 22中文网久久字幕| 永久网站在线| 久久欧美精品欧美久久欧美| 欧美bdsm另类| 长腿黑丝高跟| 免费观看人在逋| 一夜夜www| 一夜夜www| 青春草亚洲视频在线观看| 久久精品影院6| 国产精品人妻久久久影院| 男女下面进入的视频免费午夜| 欧美日本亚洲视频在线播放| 男女啪啪激烈高潮av片| 在线a可以看的网站| 日韩成人伦理影院| 免费观看精品视频网站| 精品久久久噜噜| 亚洲,欧美,日韩| 大香蕉久久网| 国产老妇女一区| 午夜福利网站1000一区二区三区| 麻豆久久精品国产亚洲av| 两个人的视频大全免费| 欧美三级亚洲精品| 波多野结衣高清无吗| 男人舔女人下体高潮全视频| 亚洲国产欧美人成| 亚洲国产色片| 亚洲av中文字字幕乱码综合| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 亚洲欧美日韩高清专用| 欧美xxxx性猛交bbbb| 一边摸一边抽搐一进一小说| 一个人观看的视频www高清免费观看| 日本av手机在线免费观看| 日韩av在线大香蕉| 99久国产av精品国产电影| 亚洲国产色片| 三级毛片av免费| 国产精品一二三区在线看| 国产成人aa在线观看| 高清毛片免费看| 午夜视频国产福利| 两个人的视频大全免费| 高清日韩中文字幕在线| 亚洲熟妇中文字幕五十中出| 国产亚洲91精品色在线| 中文字幕熟女人妻在线| 男插女下体视频免费在线播放| 国产精品久久电影中文字幕| 日韩国内少妇激情av| 寂寞人妻少妇视频99o| 成人三级黄色视频| 亚洲国产精品专区欧美| 国产高清视频在线观看网站| 丰满乱子伦码专区| 91精品伊人久久大香线蕉| 久久国内精品自在自线图片| 亚洲成人久久爱视频| 又爽又黄无遮挡网站| 国产av一区在线观看免费| 国产探花在线观看一区二区| 国产免费男女视频| 一级黄色大片毛片| ponron亚洲| 哪个播放器可以免费观看大片| 国产伦精品一区二区三区视频9| 色哟哟·www| 亚洲aⅴ乱码一区二区在线播放| 国模一区二区三区四区视频| 最近2019中文字幕mv第一页| 一级av片app| av在线老鸭窝| 精品酒店卫生间| 少妇丰满av| 亚州av有码| 美女cb高潮喷水在线观看| 国产综合懂色| 欧美日韩综合久久久久久| 最新中文字幕久久久久| 欧美性猛交╳xxx乱大交人| av女优亚洲男人天堂| 国产69精品久久久久777片| 日韩一区二区视频免费看| 亚洲经典国产精华液单| 国产精品综合久久久久久久免费| 日本-黄色视频高清免费观看| 精品国产一区二区三区久久久樱花 | 日韩精品青青久久久久久| 免费观看a级毛片全部| 国产精品国产三级国产av玫瑰| 欧美zozozo另类| 国产精品嫩草影院av在线观看| 能在线免费看毛片的网站| 麻豆成人午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 可以在线观看毛片的网站| 欧美日韩综合久久久久久| 久久久久久久久久久免费av| 精品一区二区三区人妻视频| 精品酒店卫生间| 伊人久久精品亚洲午夜| 黄色配什么色好看| 全区人妻精品视频| 看非洲黑人一级黄片| 天美传媒精品一区二区| 日韩 亚洲 欧美在线| 国产91av在线免费观看| 男女那种视频在线观看| 成人午夜精彩视频在线观看| 成人高潮视频无遮挡免费网站| 伦精品一区二区三区| 成年女人看的毛片在线观看| 3wmmmm亚洲av在线观看| 高清日韩中文字幕在线| 国产一区二区在线av高清观看| 中国国产av一级| 美女内射精品一级片tv| 久久久国产成人免费| 久久99热6这里只有精品| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 成年av动漫网址| 国产探花在线观看一区二区| 伦精品一区二区三区| 高清午夜精品一区二区三区| 永久免费av网站大全| 免费观看性生交大片5| 久久精品综合一区二区三区| 国产精品精品国产色婷婷| av视频在线观看入口| 亚洲四区av| 久久精品久久久久久久性| 亚洲天堂国产精品一区在线| 日韩视频在线欧美| 亚洲性久久影院| 99视频精品全部免费 在线| 日韩精品青青久久久久久| av免费观看日本| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久av不卡| 国产中年淑女户外野战色| 99热这里只有是精品50| 熟女电影av网| 欧美bdsm另类| 欧美一区二区亚洲| 麻豆乱淫一区二区| 大又大粗又爽又黄少妇毛片口| 黄色欧美视频在线观看| 99久久成人亚洲精品观看| 免费看光身美女| 久久欧美精品欧美久久欧美| 国产亚洲午夜精品一区二区久久 | 国产久久久一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美精品一区二区大全| av又黄又爽大尺度在线免费看 | 18禁动态无遮挡网站| 小蜜桃在线观看免费完整版高清| 老司机影院毛片| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 少妇猛男粗大的猛烈进出视频 | 国产老妇女一区| 五月伊人婷婷丁香| 高清日韩中文字幕在线| 国产精品女同一区二区软件| 99久国产av精品国产电影| 高清在线视频一区二区三区 | 欧美区成人在线视频| 欧美日本亚洲视频在线播放| 久久久久久久久大av| 免费观看人在逋| 男人和女人高潮做爰伦理| a级毛色黄片| 天堂影院成人在线观看| 久久久久久久久久成人| 永久免费av网站大全| 亚洲精品久久久久久婷婷小说 | 国产亚洲最大av| 美女cb高潮喷水在线观看| 啦啦啦啦在线视频资源| 联通29元200g的流量卡| 成年女人看的毛片在线观看| 国产精品国产三级国产av玫瑰| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆| 久久久久久久久久久免费av| 国产av在哪里看| 亚洲18禁久久av| 能在线免费看毛片的网站| 国产又黄又爽又无遮挡在线| av天堂中文字幕网| 男女边吃奶边做爰视频| 九九爱精品视频在线观看| 日本黄色视频三级网站网址| 久久精品综合一区二区三区| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 九草在线视频观看| 成人三级黄色视频| 岛国在线免费视频观看| 高清在线视频一区二区三区 | 美女黄网站色视频| 大香蕉97超碰在线| 99久久精品一区二区三区| 内地一区二区视频在线| www.av在线官网国产| 搡女人真爽免费视频火全软件| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久大av| 久久韩国三级中文字幕| 高清毛片免费看| av天堂中文字幕网| 久久亚洲精品不卡| 日韩高清综合在线| 天堂网av新在线| 亚洲激情五月婷婷啪啪| 18禁在线播放成人免费| 日本黄色片子视频| 欧美不卡视频在线免费观看| 国产一区亚洲一区在线观看| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 日日啪夜夜撸| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| .国产精品久久| 亚洲精品乱久久久久久| 熟女人妻精品中文字幕| 久久久久免费精品人妻一区二区| 国产午夜精品久久久久久一区二区三区| 国产黄片视频在线免费观看| 老司机福利观看| 免费无遮挡裸体视频| 国产伦精品一区二区三区视频9| 一边摸一边抽搐一进一小说| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 麻豆国产97在线/欧美| 能在线免费观看的黄片| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品sss在线观看| 一二三四中文在线观看免费高清| 中文字幕免费在线视频6| 人体艺术视频欧美日本| 久久久久久久久久黄片| 日韩亚洲欧美综合| 亚洲人成网站高清观看| 国产高潮美女av| 男女边吃奶边做爰视频| 三级国产精品片| 日本熟妇午夜| 日韩制服骚丝袜av| 精品欧美国产一区二区三| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 日本熟妇午夜| 亚洲伊人久久精品综合 | 亚洲不卡免费看| 亚洲电影在线观看av| 91久久精品国产一区二区三区| 久久精品久久久久久久性| 99久久九九国产精品国产免费| 国产精品,欧美在线| 中文乱码字字幕精品一区二区三区 | 日本爱情动作片www.在线观看| 成年av动漫网址| 久久精品91蜜桃| 久久精品综合一区二区三区| 美女高潮的动态| 国产精品1区2区在线观看.| 丰满人妻一区二区三区视频av| 亚洲国产色片| 特级一级黄色大片| www.色视频.com| 亚洲最大成人手机在线| 午夜视频国产福利| 日韩欧美精品v在线| 精品久久久久久久末码| 亚洲成av人片在线播放无| 国产精品国产三级国产av玫瑰| 成年免费大片在线观看| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 99热精品在线国产| 久久精品久久久久久噜噜老黄 | 女人久久www免费人成看片 | 亚洲在线自拍视频| 少妇人妻一区二区三区视频| 美女cb高潮喷水在线观看| 搞女人的毛片| 亚洲国产欧美在线一区| 日本黄色片子视频| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 日韩欧美国产在线观看| 深夜a级毛片| 亚洲国产色片| 黄色日韩在线| 中国国产av一级| 十八禁国产超污无遮挡网站| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 亚洲国产成人一精品久久久| 又粗又爽又猛毛片免费看| 91精品伊人久久大香线蕉| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 国产人妻一区二区三区在| 亚洲性久久影院| 婷婷六月久久综合丁香| 春色校园在线视频观看| 秋霞伦理黄片| 欧美日本亚洲视频在线播放| av视频在线观看入口| 女人久久www免费人成看片 | 好男人在线观看高清免费视频| 九九爱精品视频在线观看| 日本黄色视频三级网站网址| 欧美性猛交╳xxx乱大交人| 青春草视频在线免费观看| 亚洲国产精品专区欧美| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 国产精品国产三级国产av玫瑰| 国产乱来视频区| 欧美日韩综合久久久久久| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 乱人视频在线观看| 联通29元200g的流量卡| 成人国产麻豆网| 久99久视频精品免费| 少妇高潮的动态图| 国产精品日韩av在线免费观看| 午夜福利成人在线免费观看| 大话2 男鬼变身卡| 狠狠狠狠99中文字幕| 久久亚洲国产成人精品v| 久久久精品欧美日韩精品| 国产色婷婷99| 亚洲av免费在线观看| 午夜久久久久精精品| 神马国产精品三级电影在线观看| 国产麻豆成人av免费视频| 男女啪啪激烈高潮av片| 最近手机中文字幕大全| 在线a可以看的网站| 一边摸一边抽搐一进一小说| 大香蕉久久网| 久久综合国产亚洲精品| 午夜免费男女啪啪视频观看| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 国产av不卡久久| 夜夜爽夜夜爽视频| 亚洲国产欧美在线一区| 国产高清三级在线| 日日撸夜夜添| 女人被狂操c到高潮| 亚洲精品乱码久久久久久按摩| 亚洲精品影视一区二区三区av| 久久久欧美国产精品| 国产成人免费观看mmmm| 麻豆av噜噜一区二区三区| 永久网站在线| av国产久精品久网站免费入址| 日日摸夜夜添夜夜添av毛片| 又粗又硬又长又爽又黄的视频| 乱码一卡2卡4卡精品| 哪个播放器可以免费观看大片| 男人狂女人下面高潮的视频| 国产真实伦视频高清在线观看| 久久精品久久久久久久性| 日韩一本色道免费dvd| 1024手机看黄色片| 永久网站在线| 大香蕉97超碰在线| 在线观看66精品国产| 搡老妇女老女人老熟妇| 国产精品野战在线观看| 国产私拍福利视频在线观看| 如何舔出高潮| 欧美又色又爽又黄视频| 久久久色成人| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 看十八女毛片水多多多| 99久久无色码亚洲精品果冻| 九草在线视频观看| 久久久精品欧美日韩精品| 天堂网av新在线| 亚洲国产精品专区欧美| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 99久国产av精品| 日日啪夜夜撸| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| 天天躁日日操中文字幕| 国产午夜精品论理片| 国国产精品蜜臀av免费| 国产在线一区二区三区精 | 黄片无遮挡物在线观看| 欧美xxxx性猛交bbbb| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 国内精品一区二区在线观看| 欧美性感艳星| 麻豆一二三区av精品| 高清av免费在线| 久久人妻av系列| 国产精品,欧美在线| 国产久久久一区二区三区| 黄片wwwwww| 久久精品国产99精品国产亚洲性色| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 国产高清不卡午夜福利| 丝袜美腿在线中文| 伊人久久精品亚洲午夜| 免费看美女性在线毛片视频| 国产精品野战在线观看| 亚洲18禁久久av| 国产一区有黄有色的免费视频 | 久久鲁丝午夜福利片| 欧美一区二区亚洲| kizo精华| 日韩强制内射视频| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 国产单亲对白刺激| 黄片无遮挡物在线观看| 欧美3d第一页| 亚洲乱码一区二区免费版| 三级国产精品片| 亚洲精品自拍成人| 热99re8久久精品国产| 国产乱人视频| 日韩 亚洲 欧美在线| 中文天堂在线官网| 国产人妻一区二区三区在| 麻豆久久精品国产亚洲av| 大香蕉97超碰在线| 永久网站在线| 午夜精品在线福利| 成年女人看的毛片在线观看| 日本一二三区视频观看| 日本黄色视频三级网站网址| 久久久久九九精品影院| 精品国产一区二区三区久久久樱花 | 大香蕉久久网| 国产精品久久视频播放| 国产极品精品免费视频能看的| 狂野欧美白嫩少妇大欣赏| 蜜臀久久99精品久久宅男| 99热这里只有精品一区| 亚洲18禁久久av| 成人欧美大片| 欧美性感艳星| 一级黄色大片毛片| 国产人妻一区二区三区在| 麻豆久久精品国产亚洲av| 老司机影院成人| 亚洲精品亚洲一区二区| 中文字幕制服av| 精品久久久久久久久亚洲| 日本黄色片子视频| 国产三级在线视频| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 波多野结衣巨乳人妻| 欧美一区二区亚洲| 波野结衣二区三区在线| 成人av在线播放网站| 婷婷色综合大香蕉| 亚洲人成网站高清观看| 我要看日韩黄色一级片| 国产精品1区2区在线观看.|